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Abstract. We say a polynomial P over ZZM strongly M -represents
a Boolean function F if F (x) ≡ P (x) (mod M) for all x ∈ {0, 1}n .
Similarly, P one-sidedly M -represents F if F (x) = 0 ⇐⇒ P (x) ≡ 0
(mod M) for all x ∈ {0, 1}n . Lower bounds are obtained on the degree
and the number of monomials of polynomials over ZZM , which strongly
or one-sidedly M -represent the Boolean function deciding if a given n-
bit integer is square-free. Similar lower bounds are also obtained for
polynomials over the reals which provide a threshold representation of
the above Boolean function.

1 Introduction

In this paper, we obtain lower bounds on the degree and the number of mono-
mials of polynomials over ZZM , which strongly or one-sidedly M -represent the
Boolean function deciding if a given n-bit integer is square-free. These results
provide the first non-trivial lower bounds over ZZM on the complexity of a
number theoretic problem which is closely related to the integer factorization
problem. Similar lower bounds are also obtained for polynomials over the reals
which provide a threshold representation of the above Boolean function.

We also show that some simple number theoretic observations allow us to
obtain quite strong lower bounds on several other complexity characteristics of
testing if a given integer is square-free.

We recall that an integer x is called square-free if there is no prime p such
that p2|x . Otherwise, x is called square-full . We define the function

S(x) =

{

1, if x is square-free,
0, if x is square-full.
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For a given integer n ≥ 1, we can identify x , 0 ≤ x ≤ 2n − 1, and its bit
representation x1 . . . xn (if necessary we add several leading zeroes) and consider
S(x) as a Boolean function of n variables.

We say a polynomial P over ZZM strongly M -represents S if for all 1 ≤
x ≤ 2n − 1,

P (x1, . . . , xn) ≡ S(x) (mod M), (1)

where x = x1 . . . xn is the bit representation of x .
Similarly, we say a polynomial P over ZZM one-sidedly M -represents S if

for all 1 ≤ x ≤ 2n − 1,

P (x1, . . . , xn) ≡ 0 (mod M) ⇐⇒ S(x) = 0, (2)

where x = x1 . . . xn is the bit representation of x .
For Boolean inputs we simply need to consider multilinear polynomials. Each

polynomial over ZZM is of the form

P (x1, . . . , xn) =
∑

H∈H

AH

∏

i∈H

xi, (3)

where

H ⊆ 2{1,2,...,n} and 0 6= AH ∈ ZZM .

We call the largest value of |H | in the representation (3) the degree of P
and write deg P . We call the number of coefficients AH , or equivalently |H| ,
the sparsity of P and write sprP .

In this paper, we obtain lower bounds on the degree deg P and the sparsity
sprP of polynomials over ZZM , satisfying either (1) or (2) for all inputs.

Similarly to the case of polynomials over ZZM , for a polynomial f in n
variables over the reals IR, we define the total degree deg f as the largest sum
i1 + . . . + in and the sparsity spr f as the number of coefficients Ai1...in in the
representation

f(x1, . . . , xn) =
∑

i1,...,in

Ai1,...,inxi1
1 . . . xin

n , Ai1,...,in 6= 0.

For a real w we define the sign-function as

sign w =

{

1, if w ≥ 0,
0, if w < 0.

Here we also obtain lower bounds on the degree deg f and sparsity spr f of
polynomials f providing a threshold representation of S(x) for n-bit integers
x , that is a representation of the form

sign f(x1, . . . , xn) = S(x),

where x = x1 . . . xn is the bit representation of x , 1 ≤ x ≤ 2n − 1.



Furthermore, in the case of real polynomials, the Boolean values 0 and 1 can
be interpreted as two arbitrary real values α0 and α1 , not necessarily α0 = 0 and
α1 = 1. It is easy to see that the degree of the corresponding polynomials does
not depend on the particular choice of α0, α1 because they are equivalent under
a linear transformation of variables [19]. But it is shown in [19] that the sparsity
spr f depends on the choice of α0 and α1 . In fact, there are examples of Boolean
functions demonstrating that for (α0, α1) = (0, 1) and (α0, α1) = (1,−1) the
gap between the numbers of monomials of the corresponding polynomials for
these two representations can be exponentially large [19].

Threshold representations of Boolean functions via real polynomials have
been studied in a number of works [8, 9, 14, 19, 24, 28]. These papers contain
many general estimates together with lower bounds for some particular Boolean
functions. However, these Boolean functions are usually specially constructed
examples which are not related to any particular number theoretic or combina-
torial problem.

Representations of Boolean functions via polynomials over ZZM have been
studied in [2, 3, 15, 30]. In these papers, lower and upper bounds are obtained
for polynomials representing the OR, MODM (that determines if the sum of the
inputs is not divisible by M ), and ¬MODM Boolean functions. We note that
a polynomial of degree d over ZZM is represented by a circuit consisting of an
unbounded fan-in MODM gate at the top where each input wire is a function
of no more than d variables. In [12, 29], some lower bounds are obtained for
polynomials over ZZ2 strongly 2-representing the Boolean function deciding the
quadratic residuacity of an n-bit integer x .

In the series of papers [4–7] lower bounds have been obtained on the circuit
complexity, sensitivity, degree of polynomial representation and other complex-
ity characteristics of testing square-free numbers and computing the greatest
common divisor. As in [12, 29] the method of [4–7] is based on the uniformity
of distribution of long patterns of 0, 1 in the values of S(x). For the quadratic
residuacity a similar property has been established in [12, 29] by using the very
powerful Weil estimate, in [4–7] a sieve method has been used for this purpose.
In particular, for a strongly 2-representing polynomial P the lower bound

deg P ≥ 0.165 . . . n

has been obtained in [5]. It has also been applied to obtain a lower bound of
order n1/2 on the degree of real polynomials P which approximate S in the
following sense: for all 1 ≤ x ≤ 2n − 1,

|S(x) − P (x1, . . . , xn)| ≤ 1/3

where x = x1 . . . xn is the bit representation of x . These lower bounds are de-
rived from the asymptotic formula for the sensitivity of the function S obtained
in [5]. Unfortunately, there is no link between the sensitivity and the degrees of
M -representing polynomials, M ≥ 3, and of threshold representations.

Alternative methods of [1] and [32] yield stronger but less explicit complexity
results (which apply to primality testing as well). However these approaches work
neither for M -representing polynomials nor for threshold representations.



Here we use the technique of [4–7] to obtain several new results about poly-
nomial representation of the function S(x).

Throughout the paper we denote by log x the binary logarithm of x , by lnx
the natural logarithm of x , and exp(x) = ex .

2 Auxiliary Results

Let P denote the set of primes.
We use the following well known asymptotic formulas (see [13] for example)

ln







∏

p≤x
p∈P

p






= x + O

( x

lnx

)

, x → ∞. (4)

and

π(x) =
x

lnx
+ O

(

x

ln2 x

)

, x → ∞, (5)

for the number of primes p ≤ x .
The following estimate can be found in [20], Section 10.11.

Lemma 1. For any integers L and N with 0 ≤ L < N/2 the bound

L
∑

K=0

(

N

K

)

≤ 2H(L/N)N

holds, where H(γ) = −γ log γ − (1 − γ) log(1 − γ), 0 < γ < 1, is the binary

entropy function.

Now we prove the following quite technical statement.

Lemma 2. Let m ≥ 1 be an integer and let us define k from the inequalities

2k ≥ m2 > 2k−1.

Let m < p1 < . . . < pm be the first m primes which are greater than m . Then,

for any m-dimensional binary vector (σ1, . . . , σm) exists an integer y , such that

0 ≤ y ≤ exp (4m lnm + O(m ln lnm)) and

S(2ky + pi) = σi, i = 1, . . . , m.

Proof. Put

Q =
∏

p≤m
p∈P

p and R = 2kQ.

From (4) we see that Q = exp (O(m)) . Thus it is enough to show that there
exists an integer u such that 0 ≤ u ≤ exp (4m lnm + O(m ln lnm)) and

S(Ru + pi) = σi, i = 1, . . . , m. (6)



We remark that gcd(pi, R) = 1, i = 1, . . . , m .

Let I be the set of subscripts i for which σi = 0 and let J be the set of
subscripts j for which σj = 1. Put

q =
∏

i∈I

p2
i .

From the Chinese Remainder Theorem we conclude that there exists an integer
a , 0 ≤ a ≤ q − 1, such that Ra ≡ −pi (mod p2

i ), for all i ∈ I . Therefore,
R(qz +a)+pi ≡ 0 (mod p2

i ), for all i ∈ I and any integer z . Now we show that
one can select a not too large z for which

S (R(qz + a) + pj) = 1, j ∈ J .

For Z ≥ 1, we denote by Lj(Z) the number of square-full numbers of the
form R(qz + a)+ pj with 1 ≤ z ≤ Z , j ∈ J . To prove the lemma it is sufficient
to show that for some appropriate Z ,

∑

j∈J

Lj(Z) < Z. (7)

First of all, we remark that, for i ∈ I and j ∈ J ,

R(qz + a) + pj 6≡ 0 (mod p2
i ).

Otherwise, we have p2
i |(pj − pi) which is impossible.

For any prime p ∈ P with gcd(p, q) = 1, the congruence

R(qz + a) + pj ≡ 0 (mod p2), 1 ≤ z ≤ Z,

has at most Z/p2 + 1 solutions. Obviously, it does not have solutions for p2 >
Rq(Z + 1) + R . Put V = (3RqZ)1/2 .

The smallest prime divisor of any number R(qz + a)+ pj exceeds m . There-
fore,

Lj(Z) ≤
∑

m<p≤V
gcd(p,q)=1

(

Z

p2
+ 1

)

≤ Z
∑

p>m

1

p2
+ O

(

V

lnV

)

≤ Z
∑

ν≥blog mc

∑

2ν+1>p≥2ν

1

p2
+ O

(

V

lnV

)

≤ Z
∑

ν≥blog mc

π(2ν+1)

22ν
+ O

(

V

lnV

)

≤ O



Z
∑

ν≥blog mc

1

2νν
+

V

ln V



 = O

(

Z

m lnm
+

V

lnV

)

.



Putting Z = m2Rq we obtain the inequality (7), provided that m is large
enough. Therefore, there exists an integer u satisfying condition (6) and 0 ≤
u ≤ q(Z + 1) ≤ 2m2Rq2 .

Now, from (5) we conclude that pm = m lnm + O(m). Therefore, we have
q ≤ exp (2m lnm + O(m ln lnm)) . Finally, from (4) we see that R = exp (O(m)) ,
and the result follows. ut

The result of Lemma 2 can be improved by means of some more sophisticated
sieve methods, see [17] for example. However, this does not improve our main
results.

3 Main Results

First of all we consider deciding the property of being square-free via polynomials
in ZZM [X1, . . . , Xn] .

Theorem 1. Assume that a polynomial

P (X1, . . . , Xn) ∈ ZZM [X1, . . . , Xn]

strongly M -represents S(x) , that is, it is such that for any x, 1 ≤ x ≤ 2n − 1 ,

P (x1, . . . , xn) ≡ S(x) (mod M),

where x = x1 . . . xn is the bit representation of x. Then, for sufficiently large

n , the bounds

deg P ≥ 0.14 lnn and sprP ≥
n

5 lnn

hold.

Proof. Assuming that n is large enough, we put

m =
⌈ n

5 lnn

⌉

.

Let p1, . . . , pm and k be defined as in Lemma 2.
We denote by τ the number of monomials µj(w), j = 1, . . . , τ , in w =

(w1, . . . , wk), such that for every k -dimensional vector

w = (w1, . . . , wk) ∈ {0, 1}k

we have a representation of the form

P (Y1, . . . , Yn−k, w) =

τ
∑

j=1

µj(w)fj(Y1, . . . , Yn−k)

with some polynomials fj(Y1, . . . , Yn−k) ∈ ZZM [Y1, . . . , Yn−k] .



Obviously,

τ ≤

deg P
∑

l=0

(

k

l

)

and τ ≤ sprP. (8)

As in the proof of Lemma 2, we note that p1 < . . . < pm < m2 ≤ 2k . For
every i = 1, . . . , m , we add several leading zeroes to the binary representation
of pi to obtain binary strings si of length k .

If τ < m , then there exist m integer coefficients c1, . . . , cm , not all equal to
zero, with

m
∑

i=1

ciµj(si) = 0, j = 1, . . . , τ.

Therefore we have the identity:

m
∑

i=1

ciP (X1, . . . , Xn−k, si) = 0.

Without loss of generality we can also assume that

gcd (c1, . . . , cm) = 1.

Then, for some 1 ≤ i0 ≤ m we have ci0 6≡ 0 (mod M).
One easily verifies that 2n−k = exp (5m lnm + O(m)) . Hence, from Lemma 2

we derive that there exists y , 0 ≤ y ≤ 2n−k , such that for i = 1, . . . , m,

P (y1, . . . , yn−k, si) ≡ S(2ky + pi) ≡

{

1, if i = i0,
0, if i 6= i0,

(mod M)

where y = y1 . . . yn−k is the bit representation of y (with several leading zeroes,
if necessary, to make it of length n − k ). Hence,

m
∑

i=1

ciP (y1, . . . , yn−k, si) ≡ ci0 6≡ 0 (mod M).

From the obtained contradiction we see that τ ≥ m ≥ 2(k−1)/2. Taking into
account that H(0.1) < 1/2 and 0.1/ ln 2 ≥ 0.14, from the inequalities (8) and
Lemma 1 we obtain the desired result. ut

Theorem 2. Let M = pν be a prime power. Assume that a polynomial

P (X1, . . . , Xn) ∈ ZZM [X1, . . . , Xn]

one-sidedly M -represents S(x) , that is, it is such that for any x, 1 ≤ x ≤ 2n−1 ,

P (x1, . . . , xn) ≡ 0 (mod M) ⇐⇒ S(x) = 0,

where x = x1 . . . xn is the bit representation of x. Then, for sufficiently large

n , the bounds

deg P ≥ 0.14 lnn and sprP ≥
n

5 lnn

hold.



Proof. As in the proof of Theorem 1 we obtain that, for some 1 ≤ i0 ≤ m, and
some u 6≡ 0 (mod M),

P (y1, . . . , yn−k, si) ≡

{

u, if i = i0,
0, if i 6= i0,

(mod M).

Also ci0 6≡ 0 (mod p), and hence, gcd(ci0 , M) = 1. Therefore,

m
∑

i=1

ciP (y1, . . . , yn−k, si) ≡ ci0u 6≡ 0 (mod M),

and as in the proof of Theorem 1 we obtain the desired result. ut

Now we consider deciding if a given n-bit integer is square-free via real
polynomials.

Theorem 3. Let α0 , α1 be two distinct real numbers, and n ≥ 1 be an integer.

Suppose that a polynomial

f(X1, . . . , Xn) ∈ IR[X1, . . . , Xn]

is such that for any x, 1 ≤ x ≤ 2n − 1 ,

sign f (αx1 , . . . , αxn) = S(x),

where x = x1 . . . xn is the bit representation of x. Then, for sufficiently large

n , the bounds

deg f ≥ 0.14 lnn and spr f ≥
n

5 lnn

hold.

Proof. We proceed as in the proof of Theorem 2. Assuming that n is large
enough, we put

m =
⌈ n

5 lnn

⌉

.

Let p1, . . . , pm and k be defined as in Lemma 2.
We denote by τ the number of monomials µj(w), j = 1, . . . , τ , in w =

(w1, . . . , wk), such that for every k -dimensional vector

w = (w1, . . . , wk) ∈ {α0, α1}
k

we have a representation of the form

f(Y1, . . . , Yn−k, w) =

τ
∑

j=1

µj(w)fj(Y1, . . . , Yn−k)

with some polynomials fj(Y1, . . . , Yn−k) ∈ IR[Y1, . . . , Yn−k] .



Obviously,

τ ≤

(

deg f + k

deg f

)

and τ ≤ spr f. (9)

As in the proof of Lemma 2, we note that p1 < . . . < pm < m2 ≤ 2k . For
every i = 1, . . . , m , we add several leading zeroes to the binary representation
of pi to obtain a binary string of length k . In this string we replace 0 by α0

and 1 by α1 and denote by si ∈ {α0, α1}
k this new vector.

If τ < m , then there exist m real coefficients ci , i = 1, . . . , m , not all equal
to zero, at least one of them negative, and such that

m
∑

i=1

ciµj(si) = 0, j = 1, . . . , τ.

Therefore, we have the identity:

m
∑

i=1

cif(X1, . . . , Xn−k, si) = 0.

One can easily verify that

2n−k = exp (5m lnm + O(m)) .

Hence, from Lemma 2 we derive that there exists y , 0 ≤ y ≤ 2n−k , such that:

cif(αy1 , . . . , αyn−k
, si) > 0, for every ci < 0,

cif(αy1 , . . . , αyn−k
, si) ≥ 0, for every ci ≥ 0,

where y = y1 . . . yn−k is the bit representation of y (with several leading zeroes,
if necessary, to make it of length n − k ). Thus,

m
∑

i=1

cif(αy1 , . . . , αyn−k
, si) > 0.

From the obtained contradiction we see that τ ≥ m ≥ 2(k−1)/2 and as in the
proof of Theorem 1 we obtain the desired result. ut

4 Remarks

It is not hard to see that the constants in our estimates can be improved.
On the other hand, we do not know how to obtain more substantial improve-

ments of our lower bounds. In particular, they are exponentially weaker than
those which are known for polynomials over ZZ2 , see [5].

In addition, it would be very interesting to obtain analogues of the results
of this paper for other Boolean functions related to various number theoretic
problems. For example, for Boolean functions deciding primality or the parity



of the number of prime divisors of x . Unfortunately, even more advanced sieve
techniques than those used in Lemma 2 are still not powerful enough to produce
such results, even under the assumption of the Extended Riemann Hypothesis.

Finally, it would be very interesting to extend Theorem 2 to arbitrary com-
posite moduli M .

Several more lower bounds on some other important complexity characteris-
tics can be obtained from quite simple considerations.

Let us define the additive complexity C± (f) of a polynomial f over reals
as the smallest number of ‘+’ and ‘− ’ signs necessary to write down a polyno-
mial [11, 16, 18, 26, 27]. Obviously, for any univariate polynomial f

C± (f) ≤ spr (f) − 1 ≤ deg f

but neither spr (f) nor deg f can be estimated in terms of C± (f). However, it
is shown in [18, 26, 27] that if a non-zero polynomial f(X) ∈ IR[X ] has at least
N real zeroes, then

C± (f) ≥

(

1

5
log N

)1/2

.

The notion of additive complexity is related to the straight-line complexity of
f , see [11, 16, 18, 26, 27]

Now, let f(x) ∈ IR(x) be such that

sign f(x) = S(x), 0 ≤ x ≤ 2n − 1.

If 4x + 1 is a square-full number and p > 1 is a prime number such that
p2|(4x + 1), then p2 ≡ 1 (mod 4) and 4x + 1 = (4q + 1)p2 for some positive
integer q . For a fixed prime p , there are at most 2n/p2 + 1 integers q that
satisfy the above condition. Hence, the number of square-full numbers of the
form 4x + 1 is bounded above by

∑

3≤p≤(2n−1)1/2

(

2n

p2
+ 1

)

≤ 2n−1.

It follows then, that there is a constant c > 0 such that there are at least c2n

square-free numbers of the form 4x+1 and, thus, f(4x)f(4x+1) ≤ 0 for them.
Therefore, f(x) has at least c2n zeroes. This immediately provides the same
bound on the degree of f and the lower bound

C± (f) ≥ (0.2n)
1/2

+ O(1).

Following [22], for a function

f : IR → {0, 1}

we define the Mf (n)-invariant as the smallest integer M , such that for any
λ < M there are two n-bit integers 0 ≤ x1 < x2 ≤ 2n − 1, both divisible by λ ,



and such that f(x1) 6= f(x2); see also [10, 21–23] for applications to complexity
theory.

It is easy to show that, for any integer λ , there exists u ≤ p2 such that
λu + 1 is square-full, where p is the smallest prime number with gcd(λ, p) = 1.
Thus p = O (log(λ + 1)). It has been shown in [17] that, for any ε > 0, there
exists a square-free number of the form λv + 1 with v = O(λ4/9+ε), where the
implied constant depends only on ε .

Therefore, if f(x) = S(x + 1) for 0 ≤ x ≤ 2n − 1, then, for any ε > 0 the
bound

Mf ≥ C(ε)29n/13−ε

holds where C(ε) > 0 depends only on ε .
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