Efficient Selection of Vector Instructions using Dynamic Programming

Rajkishore Barik, Jisheng Zhao, Vivek Sarkar

Rice University, Houston, Texas

E-mail: {rajbarik, jz10, vsarkar}@rice.edu

Abstract: Accelerating program performance via SIMD vector units is very common in modern processors, as evidenced by the use of SSE, MMX, VSE, and VSX SIMD instructions in multimedia, scientific, and embedded applications. To take full advantage of the vector capabilities, a compiler needs to generate efficient vector code automatically. However, most commercial and open-source compilers fall short of using the full potential of vector units, and only generate vector code for simple innermost loops.

In this paper, we present the design and implementation of an auto-vectorization framework in the backend of a dynamic compiler that not only generates optimized vector code but is also well integrated with the instruction scheduler and register allocator. The framework includes a novel compile-time efficient dynamic programming-based vector instruction selection algorithm for straight-line code that expands opportunities for vectorization in the following ways: (1) scalar packing explores opportunities of packing multiple scalar variables into short vectors; (2) judicious use of shuffle and horizontal vector operations, when possible; and (3) algebraic reassociation expands opportunities for vectorization by algebraic simplification.

We report performance results on the impact of auto-vectorization on a set of standard numerical benchmarks using the Jikes RVM dynamic compilation environment. Our results show performance improvement of up to 57.71% on an Intel Xeon processor, compared to non-vectorized execution, with a modest increase in compile-time in the range from 0.87% to 9.992%. An investigation of the SIMD parallelization performed by v11.1 of the Intel Fortran Compiler (IFC) on three benchmarks shows that our system achieves speedup with vectorization in all three cases and IFC does not. Finally, a comparison of our approach with an implementation of the Superword Level Parallelization (SLP) algorithm from [21], shows that our approach yields a performance improvement of up to 13.78% relative to SLP.
I. Introduction

Increasing demand on applications in the multimedia, graphics, embedded, and numerical computing domains have resulted in the addition of SIMD vector units in many current processor architectures. These machines range from general purpose processors [8], [26] to massively parallel supercomputers [24]. The vector units support short SIMD vector instructions that exploit data-level parallelism by performing multiple identical scalar operations in parallel. Given the mounting power constraints in processor design, upcoming architectures are expanding the size of the SIMD unit to perform more operations in parallel, e.g., the AVX extensions in the x86 SSE architectures now support vector sizes of 256 bits instead of 128 bits [4].

We believe that applications need to be automatically vectorized in a compiler framework instead of being manually rewritten for vector execution. While the productivity benefits of compiler vectorization are obvious, the performance benefits stem from the fact that SIMD vectorization needs to be tightly integrated with the register allocator and instruction scheduler phases of a compiler back-end. Some compilers like GCC, Intel C compiler and Sun JDK support only a limited set of loop-based vectorization scenarios that are driven by loop unrolling (e.g., [12]). Such loop-based vectorization techniques can not handle more complex data dependencies such as permutation of data and packing of scalar data values within the loop body.

While the compiler community has studied the problem of automatic parallelization for more than four decades, automatic short SIMD vectorization poses additional challenges that makes the task of a compiler hard. We believe that there are three key challenges: (1) permutations required for interleaved data accesses that often defeat common vectorization patterns such as packing, processing and unpacking; (2) performing vectorization in the back-end of a compiler where low-level scalar and vector instructions need to be co-optimized; (3) performing vectorization in a compile-time efficient manner for use in dynamic compilation and in fast edit-compile time development cycles.

The second challenge raises an interesting point as to whether automatic vectorization should be performed closer to the source-level or on a lower-level intermediate representation closer to the machine-level. While source-level vectorization is convenient since aliasing and alignment information are readily available at that level, the selection of vector instructions at the source-level is usually decoupled from standard back-end optimizations such as instruction scheduling and register allocation. On the other hand, vectorization as a back-end pass has the advantage of operating on optimized code and thereby leverages more accurate cost analysis while working closely with the instruction scheduling and register allocation phases. The lack of aliasing and
alignment information in a back-end can be addressed by propagating the information from the source-level down to the back-end. In contrast to past work that has focused on source-level loop-based vectorization, this paper focus on vectorization as a back-end pass in a dynamic compilation environment or any other environment where compile-time efficiency is of interest.

The key contributions of this paper include:

- a novel dynamic programming approach to automatic vector instruction selection. The dynamic programming technique is driven by a cost-model that includes both the instruction costs and register pressure of the program.
- a scalar packing optimization pass in the instruction selection algorithm that combines scalar operations into vector operations. Other optimizations including algebraic reassociation are also performed to expand the opportunities for vector code generation.
- a compile-time efficient solution to automatic vector instruction selection.
- an experimental evaluation of the auto-vectorization framework on six standard numerical benchmarks in the back-end of Jikes RVM dynamic compiler. Our results show a performance improvement of up to 57.71%, compared to the non-vectorized execution with a modest increase in compile time in the range from 0.87% to 9.992%. An investigation of the SIMD parallelization performed by v11.1 of the Intel Fortran Compiler (IFC) on three benchmarks for which Fortran versions are available shows that our system achieves speedup with vectorization in all three cases and IFC does not. Finally, a comparison of our approach with an implementation of the Superword Level Parallelization (SLP) algorithm from [21], shows that our approach yields a performance improvement of up to 13.78% relative to SLP.

The rest of the paper is organized as follows. In Section II, we present a motivating complex number arithmetic to illustrate the effectiveness of our approach. The overall automatic vectorizer framework is described in Section III. Section IV describes the automatic vector instruction selection algorithm. Experimental evaluations are presented in Section V. We discuss related work in Section VI and conclude in Section VII.

II. Motivating Example: Complex arithmetic

Consider the innermost loop nest of a double precision complex arithmetic computation kernel of the NAS Parallel Benchmark FT code shown in Figure 1(a). The code fragment initializes the REAL and IMAG components of local complex numbers $x1I$ and $x2I$ from an input complex number (not shown for simplicity).
Fig. 1. Example: Double-precision complex floating point arithmetic in NPB-FT benchmark. Assumptions: (1) each vector register is 16 byte wide; (2) all arrays are aligned at 16 byte boundaries; (3) REAL and IMAG are compile-time constants with values 0 and 1 respectively; (4) off1 and off2 are divisible by 2 – making scr array accesses aligned.
This code uses two-element arrays for complex variables and \(2N\)-element arrays of doubles for \(N\)-element arrays of complex variables. Local variables \(x11\) and \(x21\) are used as operands for a complex add and the result is stored in complex array \(scr\). A traditional vectorization algorithm that operates close to the source-level can vectorize most of the complex number operations for array accesses in this example except for two intricate scenarios: (1) the reversed pattern of accesses to the \(u1\) complex number components in lines 7 and 8, e.g., on line 8, the imaginary component of \(u1\) is multiplied by the REAL component of \(x11 - x21\); (2) combining the subtraction and addition operations performed on scalar values within a vector register in lines 7 and 8. If we carefully observe the loop-nest, we can see that several standard compiler optimizations can be applied to this loop-nest such as scalar replacement for arrays, common subexpression elimination, loop-invariant code motion, and dead-code elimination. The resulting optimized code is shown in Figure 1(b). The only memory operations needed are stores to the \(scr\) arrays.

To vectorize this kernel in a dynamic compilation environment for a managed runtime such as Java Virtual Machine or a .NET runtime, one is faced with several other difficulties. The first and foremost difficulty is to ensure that the kernel is free of exceptions and misalignment issues. In particular, the array accesses should not result in an array-bounds-check exception. Additionally, the compiler has to check that \(scr\) and \(u1\) are not pointing to the same array (i.e., they are not aliased to each other) to ensure that the loads of \(u1\) can be safely hoisted outside the loop. Also, the runtime values of \(REAL\), \(IMAG\), \(off1\), and \(off2\) do not make the array accesses mis-aligned. We can handle these difficulties by specializing and creating an outlined version of the kernel that is aligned to 16-byte boundaries and is guaranteed to be bounds-check free and alias-free.

The 2-address intermediate back-end code generated within a compiler is shown in Figure 1(c). Existing vectorization algorithms when applied at such a low-level of the intermediate representation as in Case (c) usually only vectorize the store and load operations since they do not expend much effort on packing scalar variables. For example, the work on super-word parallelism in [21] would not be able to handle the interchange of scalar values in lines 23 and 24 with respect to lines 18 and 20, since the scalar values in the vector register need to be reversed in the next operation.

Figure 1(d) depicts the code generated by our vectorizer framework. It includes scalar packing for values held in the \(x11_REAL\) and \(x11_IMAG\) temporaries using \textit{pack} instructions that correspond to traditional move instructions on a target architecture. Now let us recall the issues/challenges in fully vectorizing the loop-nest in Figure 1(c): (1) lines 21 and 25 perform different scalar operations; (2) scalars \(u11_REAL\) and \(u11_IMAG\) are accessed in two different orders.
Case (1) can be handled if the addition and subtraction operations can be combined into a single vector operation such as VADDSUB. If so, then a scratch register can be used to rearrange/shuffle the scalar values in the vector registers so that SIMD instructions can be generated. This approach is more efficient than unpacking and packing the scalar items followed by performing individual scalar operations. If the target architecture does not support simultaneous vector addition and subtraction operations using vector VADDSUB instructions (as in Altivec and VMX), then an algebraic reassociation of the subtraction operation can be performed to generate SIMD instructions, e.g., \(t1 - t2 \) can be written as \(t1 + (-t2) \). SIMD architectures like Intel SSE support simultaneous vector addition and subtraction operations that can be leveraged to generate efficient code after shuffling the scalar data items in vector registers (as shown in line 14 of Figure 1(d)). We can use any of the above approaches mentioned above for the target architecture. The key point is that the resulting code will now not give up opportunities for vectorizing the store operations to the scr array (as shown in line 15 of Figure 1(d)). Though simultaneous addition and subtraction are fairly easy operations, more complex vectorization can be achieved via algebraic reassociation [6]. Another point to note is that the shuffling of data items before algebraic reassociation may increase register pressure of the generated code. In this paper, we present an efficient vector instruction selection algorithm that judiciously exchanges values across vector registers keeping register allocation cost in mind.

Case (2) can be handled if the vectorization unit supports permutation of data items within a vector register. As shown in line 11 of Figure 1(d), a vector swap vswap instruction can be used to shuffle the REAL and IMAG components of the complex number. Note that we use an additional vector register v6 to hold the swapped values, which also increases register pressure. However, the increased register pressure can be mitigated by swapping values back after the use.

III. Overall Framework

Figure 2 depicts the components of our vectorization framework along with their interaction with other components of the dynamic compiler. The dynamic compiler selectively chooses methods for higher level of optimization including auto-vectorization optimization proposed in this paper. As with other optimizations, the selection criteria for vectorization is guided by profiling information, i.e., based on the profiling information of calling contexts.

The auto-vectorization framework is invoked as a back-end pass after the intermediate code has been
specialized and optimized at a higher level. The higher-level optimizations include standard alignment-specific optimizations such as loop peeling, scalar expansion, scalar replacement, and loop-unrolling. The vectorization pass is followed by other back-end passes like scheduling and register allocation. Additional aliasing and alignment information are passed down from the high-level intermediate representation to disambiguate memory references in the vectorization framework.

Within the vectorization framework, we build a dependence graph for each region of straight-line code (currently at a basic block level). The dependence graph is then used to perform cost-based vector instruction selection. The instruction selection phase expands opportunities for generating vector code by performing aggressive scalar packing, code shape optimizations like algebraic reassociation, and scalar expansion. The generated vector and scalar instructions are then scheduled on the target system. The scheduler needs to pay special attention to various architectural considerations, e.g., the Intel SSE unit supports two register ports that can be simultaneously read and written. Finally the register allocation phase is invoked before generating the assembly code for the target SIMD architecture.

IV. Automatic Vector Instruction Selection using Dynamic Programming

Given the data dependence graph of the intermediate code that represents the flow of values in a straight-line code of a basic block and the underlying SIMD architecture specific instructions, the goal of optimal vector instruction selection is to find an optimal covering of the dependence graph nodes using both scalar and vector instructions. The nodes in the dependence graph consist of individual intermediate 2-address instructions. The edges in the dependence graph consists of flow dependencies\(^1\). Memory dependencies are represented conservatively in the dependence graph such that they do not reorder load and store IR instructions. From now on, we will refer to a “scalar tile” as a scalar IR instruction that has a one-to-one mapping with a machine

\(^1\)Anti- and output- dependencies on scalar operations can be eliminated by a renaming phase before the instruction selection.
instruction and a “vector tile” as a sequence of scalar IR instructions that can be replaced by a single vector
machine instruction. The nodes in a dependence graph can have at-most two incoming edges since the IR is
assumed to be in 2-address code form, but a node can have several outgoing edges indicating sharing of values.
This yields a DAG structure for the dependence graph. For convenience, we add a dummy nop sink node in
the dependence graph to make it connected.

In this section we describe a vector instruction selection algorithm to select both scalar and vector tiles in a
compile-time efficient manner. Our vector instruction selection algorithm uses a dynamic programming based
approach that computes minimum cost at every node of the dependence graph. Unlike, normal instruction selec-
tion, we consider several possibilities to pack scalar values into vector registers. We also expand opportunities
for vector instruction selection using the optimizations described in Section IV-A.

The dependence graph for a straight-line code is denoted by $D = \langle N, E \rangle$, where N consists of the set
of IR instructions and $E = \{ (e_1, e_2) \}$, where (e_1, e_2) denotes a flow-dependence of $e_2 \in N$ on $e_1 \in N$. As
mentioned earlier, other forms of register dependencies such as anti and output are handled by SSA-renaming
phase before our instruction selection pass. The dependency graph, D is preprocessed to be made single-sink
by adding a nop node.

Let k denote the width of the underlying SIMD vector unit. Let T be the set of scalar and vector tiles
enumerating the machine instructions. We say a scalar tile $t \in T$ matches a node $n \in N$ in D if n can be
performed using the machine instruction t (i.e., there is one-to-one correspondence between an IR instruction
and a tile) and the direct-predecessors of n match with those in t. Similarly, we say a vector tile $t \in T$ matches
a tuple of k nodes $\langle n^1, n^2, \ldots, n^k \rangle$, if $\langle n^1, n^2, \ldots, n^k \rangle$ can be performed using the machine instruction t.
We denote the operation specified at a node $n \in N$ as $\text{op}(n)$ and the cost of performing the operation as
$\text{op_cost}(n)$. We define scalar cost map, $\text{scost} : N \rightarrow \mathbb{Z}^+$ as the cost of performing a node $n \in N$ using a
matched scalar tile.

We define $\text{vecost} : (N \times N \times \cdots \times N) \rightarrow \mathbb{Z}^+$ as the cost of performing a vector tuple $\langle n^1, n^2, \ldots, n^k \rangle$ of
instructions in a vector tile. Let $\text{pack_cost} : (N \times N \cdots \times N) \rightarrow \mathbb{Z}^+$ be the cost of packing $\langle n^1, n^2, \ldots, n^k \rangle$
into a vector register. Let $\text{unpack_cost} : (N \times N \cdots \times N) \times N \rightarrow \mathbb{Z}^+$ be the cost of unpacking a node n^i from
a vector register containing $\langle n^1, n^2, \ldots, n^k \rangle$. Let $\text{shuffle_cost} : (N \times N \cdots \times N) \rightarrow \mathbb{Z}^+$ be the cost of shuffling
the contents of a vector register containing $\langle n^1, n^2, \ldots, n^k \rangle$. We assume uniform cost for shuffling any number
of scalar values within a vector register. A tuple of IR instructions $v = \langle n^1, n^2, \ldots, n^k \rangle$ is vectorizable if
there exists a vector tile that can combine the scalar operations in the vector tuple. Let the predicate $\text{vect}(n^i)$
indicate true if \(n^i \) is packed with other IR instructions in a vector tile. Let \(\text{shuffle}(\langle n^1, n^2, \cdots, n^k \rangle) \) represent any desired shuffled combination of \(\langle n^1, n^2, \cdots, n^k \rangle \).

Definition 4.1: Let us now describe the legal rules for combining scalar operations to generate a vector tuple \(v = \langle n^1, n^2, \cdots, n^k \rangle \):

- no pair of scalar operated nodes, \(n^i \) and \(n^j \) in \(v \) are dependent on each other, i.e., there exists no path of flow dependency between them in the dependency graph;
- Replacing \(\langle n^1, n^2, \cdots, n^k \rangle \) by a single node in the full dependency graph (including anti, output dependency) does not create a cycle [28];
- \(v \) is vectorizable;
- if each operation \(n^i \) in \(v \) is a memory operation such as load and store IR instructions, then the memory operations must be from contiguous memory locations and aligned;

Let \(V \) denote the set of vector tuples generated from the instruction selection algorithm. Given the above definitions, now let us describe the steps to compute costs for scalar nodes in the dependence graph. The cost of matching a dependence graph node \(n \) of the form shown in Figure 3 with a scalar tile is given in Figure 4.

The scalar cost computation involves considering several scenarios and choosing the minimum cost among them: (1) if the predecessors of \(n \) were paired in a vector register already, then we consider the cost of performing horizontal operation on the vector register using a matched tile; (2) if the predecessors of \(n \) were paired in a vector register in a reversed order, then we shuffle the values in the vector register and perform horizontal operation on the vector register; (3) if any of the predecessors was packed with another node in a vector register already, then extract the scalar value from the vector register; (4) if none of the predecessors were packed in any vector register – then add up the individual scalar cost of each predecessor. Note that cases

![Fig. 3. Scalar Cost Computation Scenario](image-url)

![Fig. 4. Cost computation for scalar tile selection](image-url)
(1) and (2) are special cases of the more general case (3) in 2-way SIMD unit. Finally this cost is added to the cost of the matched scalar tile to generate the cost of covering a scalar tile for a node \(n \) in \(D \).

The cost of covering a set of dependence graph nodes (as shown in Figure 5) with a vector tile is shown in Figure 6. The notation \(n_i \) used in Figure 6 denotes the \(t \)-th operand of a scalar operation at node \(n_i \). The cost computation involves a series of possibilities for packing and unpacking individual scalar operations. The equations also take into account for shuffle operations in vector register. The final vector tile cost is obtained by taking a minimum of all the possibilities.

![Fig. 5. Vector cost computation scenario](image)

![Fig. 6. Computation of cost for vector tile selection](image)

Using the \(scost \) and \(vcost \) equations from Figure 4 and Figure 6, the dynamic programming algorithm is
presented in Figure 7. There are three passes to the algorithm. The first pass walks over the dependence graph in a top down fashion (source to sink) and computes minimum scalar and vector costs for every possible scalar and vector operation in the dependence graph respectively. The cost of the designated sink node is the best cost estimation of generating machine code for the set of IR instructions. In a second pass, the best cost is used to determine the best scalar or vector tile at every node in the dependence graph. This obtained by making a bottom-up pass (sink to source) over the dependence graph. Finally, a top down pass over the dependence graph is performed and best tile for each dependence graph node is used to generate code.

In Figure 8, we show the steps of applying Algorithm 7 to the example program in Figure 1(c). The final vector code is shown in Figure 1(d).

A. Additional Optimizations

Algorithm 7 judiciously uses shuffle instructions to choose best estimates for scalar and vector cost. However, there are several other optimization scenarios which can easily be incorporated into our auto-vectorization algorithm. These scenarios are depicted in Figure 9. Case 1 is the scenario where values are shuffled across multiple vector registers. Case 2 shows the standard scenario of swapping values within a vector register using shuffle instructions. Cases 3 and 4 depict scenarios where scalar expansion technique can be used to expand either the same scalar operation or multiple scalar operations into a vector register. Case 5 is the case where algebraic reassociation is used to reshape the code for vectorization. In particular, we use algebraic reassociation for the following scenarios: (1) \(t_1 - t_2 \) is transformed to \(t_1 + (-t_2) \) for expanding the opportunity for another ”+” operation to be vectorized; (2) \(t_1 * (t_2 + t_3) \) is rewritten as \(t_1 * t_2 + t_1 * t_3 \) using distributivity – this scenario is shown in Case 5. Reshaping of code requires that the operations be commutative, associative, and distributive. Special care must be taken while dealing with floating point values i.e., if strict conformance is required, then standard algebraic reassociations can not be performed, e.g., rewriting \(a/b \) to \(a * (1/b) \).

B. Moderating register pressure

One of the key considerations in optimized machine code generation is to utilize the register files efficiently. To that end, we can extend our cost model to support register pressure. Let \(R \) be the set of available scalar and vector registers. We redefine scalar cost, \(scost : N \times R \rightarrow Z^+ \) as the cost of performing a node \(n \in N \) using a matched scalar tile and \(r \in R \) number of registers. Similarly, we redefine \(vcost : (N \times N \times \cdots \times N) \times R \rightarrow Z^+ \) as the cost of performing a vector tuple \(\langle n^1, n^2, \cdots, n^k \rangle \) in a vector tile using \(r \in R \) number of registers.
Function AutoVectorize

Input: IR for method \(m \) and its dependence graph \(D = \langle N, E \rangle \) (\(D \) is made connected by a dummy \(\text{nop} \) node – \(\text{op_cost} \) of a \(\text{nop} \) node is 0)

Output: IR with vector instructions

1. FindBestCost \((D)\); //First Pass
2. \(\text{bestTile} := \text{FindBestTile} (D); \) //Second Pass
3. Generate code using a topological sort over \(D \) and \(\text{bestTile} \) choice for each node; //Third Pass
4. return :

Function FindBestCost \((D)\)

1. \(W := \text{all the root nodes of } D; \) //nodes with no incoming edges
2. \(\text{scost} := \varnothing; \) //\(\text{scost} \) not yet computed
3. \(\text{vcost} := \varnothing; \) //\(\text{vcost} \) not yet computed
4. \(\text{visited} := \varnothing; \) //no node is visited yet
5. \(\text{vecSet} := \varnothing; \) //set of vector tuples generated
6. while \(!W.\text{empty}()\) do
7. \(n^k := \text{remove a node from } W; \)
8. Compute \(\text{scost}(n^k) \) using Figure 4;
9. Save the tile selection that yields the minimum value for \(\text{scost}(v) \);
10. \(\text{visited}(n^k) := \text{true}; \)
11. for each vector tuple \(\langle n^1, \ldots, n^k \rangle \) do
12. if \(\text{visited}(n^i) == \text{true}, \forall i = 1..k \) and \(\langle n^1, \ldots, n^k \rangle \) can be legally combined using Definition 4.1 then
13. \(v := \langle n^1, \ldots, n^k \rangle; \)
14. add \(v \) to \(\text{vecSet}; \)
15. Compute \(\text{vcost}(v) \) using Figure 6;
16. Save the tile selection that is used to compute minimum value for \(\text{vcost}(v) \);
17. end if
18. end for each vector tuple \(\langle n^1, \ldots, n^k \rangle \)
19. for each \(s \in \text{succ}(n^k) \) do
20. //each successor of \(n^k \)
21. if all the pred\((s)\) are visited then
22. add \(s \) to \(W; \)
23. end if each \(s \in \text{succ}(n^k) \)
24. end for each \(s \in \text{succ}(n^k) \)
25. end while
26. return :

Function FindBestTile \((D)\)

1. \(W := \text{leaf node of } D; \)
2. while \(!W.\text{empty}()\) do
3. \(n := \text{remove a node from } W; \)
4. \(\text{bestTile}[n] := \text{Find the scalar or vector tile that produced lowest cost for } n; \) //Resolve ties arbitrarily
5. for each \(p \in \text{pred}(n) \) do
6. add \(p \) to \(W; \)
7. end for each \(p \in \text{pred}(n) \)
8. end while
9. return :

Fig. 7. Dynamic programming-based automatic vector tile selection.
Scalar and Vector instruction cost estimates:

- mem mov = 4
- reg mov = 1
- vector mem mov = 4
- vector reg mov = 1
- packing = 2
- unpacking = 2
- shuffle within vector register = 2
- shuffle across vector registers = 5
- vector add/sub = 5
- vector mult = 10
- vector addsub = 5

vcost(<3,4>) = 4
vcost(<5,6>) = 4
vcost(<7,10>) = 4
vcost(<8,11>) = 14
vcost(<9,12>) = 18
vcost(<13,15>) = 5
vcost(<14,16>) = 14
vcost(<17,19>) = 15
vcost(<18,20>) = 29
vcost(<21,25>) = 69
vcost(<22,26>) = 73

scost(<Nop>) = 91

Fig. 8. Final cost estimates obtained by applying method FindBestCost of Algorithm 7 to Example 1(c). We assume that the mov instructions on lines 3,4,5 and 6 in Figure 1(c) are memory load operations. We also assume that the instructions on lines 1 and 2 are vectorized in a predecessor block and are used in the loop-nest.

These new scost and vcost cost functions are incorporated into our algorithm in Figure 7 on lines 14 and 20 respectively.

C. Discussion

It is well-known that the optimal instruction selection on DAG data structure is NP-complete [7], [3]. We presented a dynamic programming based approach to perform both scalar and vector instruction selection simultaneously. The algorithm ignores the fact that there can be shared nodes in the dependence graph whose cost estimation may not yield optimal results due to sharing across multiple paths. Several approaches have been proposed in the literature to improve the instruction selection of DAG – (1) the DAG can be broken into a series of trees and each individual tree can be selected individually [28]; (2) the shared nodes can be separately processed after normal instruction selection to take the common subexpression costs into account [16]. For this paper, we use approach (1) in our implementation.

Scheduling of the generated scalar+vector code is important. After the algorithm in Figure 7 is performed, we schedule the code using a list scheduler that schedules basic blocks based on critical path length.
critical path length is computed using the dependence graph and relative cost estimates of each scalar and vector instruction.

V. Experimental Results

In this section, we present an experimental evaluation of the automatic vectorization framework described in Sections III and IV in the Jikes RVM dynamic optimizing compiler [11]. We describe the overall compilation environment and then present results on performance improvement compared to an implementation of the vectorization approach described in [21]. We also report on compilation time overheads, and reductions in static code size.

Benchmarks: In this paper, we study the impact of automatic vector instruction selection on numerical applications. The benchmarks we consider include three serial Java numeric applications (FT, CG, and MG)
obtained from the NAS Parallel Benchmark (NPB) Suite [10] and three additional serial Java applications (SOR and LUFact from Section 2 and MolDyn from Section 3) from the Java Grande Forum (JGF) [14] benchmark suite. The other benchmarks in these two suites did not offer much scope for performance improvement using automatic vectorization. Our choice of Java benchmarks follows from the use of Jikes RVM, which executes Java programs; however, the techniques in this paper should be applicable to C and Fortran programs as well. The scientific kernels in both JGF and NPB use double-precision floating-point operations. Note that our proposed algorithm in Section IV applies to any vector length.

Implementation Details: The vectorization framework described in Section IV was implemented in version 3.0.0 of the Jikes RVM Research Java Virtual Machine [1]. The boot image for Jikes RVM used a 32-bit x86 production configuration. Like other JVMs, this version of Jikes RVM uses SSE registers for both scalar single and double precision arithmetic (instead of using the x86 Floating Point unit). The main reason for doing so is the runtime improvements achieved from using the SSE unit instead of the normal floating point unit. There are 8 (XMM0-XMM7) SSE registers that are exposed in a 32-bit configuration, out of which (XMM7) is used as a scratch register. Effectively there are seven XMM registers available for scalar single and double precision arithmetic operations and also, for vector operations. In future, when the 64-bit configuration of Jikes RVM becomes more stable, we should be able to obtain results in 64-bit mode with 16 SSE registers.

We extend the Jikes RVM IA32 assembler generator to support generation of SSE instructions used for swap, shuffle, horizontal arithmetic, packing, and unpacking operations [13] in XMM registers. The alignment offset of each array object is chosen so that element 0 is aligned on a 16-byte boundary.

For the dynamic compilation configuration, we set the initial compiler as the optimizing compiler with -O2 for the optimization level to enable a standard set of optimizations to be performed prior to vectorization, including Common Subexpression Elimination (CSE), Dead Code Elimination (DCE) and Scalar Replacement (SR) 2.

A set of preprocessing transformations is performed at the bytecode level within the Soot Java Bytecode Transformation Framework [29] prior to program execution and dynamic compilation. These include Loop Unrolling (LU), Code Specialization (CS), Scalar Expansion (SE), and Loop Peeling (LP). The specialized code is ensured to be free of alignment issues, aliasing dependencies, and exception problems that includes bounds-check and null-pointer exceptions.

2 The public release version of Jikes RVM 3.0.0 enables Scalar Replacement transformation at the highest optimization level (-O3). We changed this setting by enabling Scalar Replacement at optimization level -O2 for our framework.
Table I summarizes the optimizations that were actually performed on each benchmark.

Experimental Platform: All results except Figure 11 were obtained on a Quad-Core Intel E5430 Xeon 2.66GHz system with 8GB memory, running Red Hat Linux (RHEL 5). For Figure 11 we use a Quad-Core Intel E5440 Xeon 2.83GHz system due to the availability of Intel’s Fortran compiler on the system. The execution times reported were the best of three runs within a single JVM instance for each benchmark. Since all benchmarks studied in this paper are sequential, the results are not impacted by the number of cores.

Experimental Results: We compared our automatic vectorization algorithm (described in Section IV) with a prototype implementation of the superword-level vectorization algorithm from [21]. We refer to our approach as SP (for Scalar Packing) and superword level vectorization as SLP. For both approaches, we include liveness-based dead-code elimination and copy propagation passes (referred to as Opt) after register allocation pass to eliminate redundant scalar packing and unpacking instructions. This pass produces more tighter vector code. We measured the impact of Opt on both SP and SLP algorithms.

Experimental results are reported for the following five cases:

- **Sequential**: without vectorization, but with unrolling (see below);
- **SLP**: Superword vectorization algorithm from [21];
- **SLP+Opt**: Superword vectorization with register allocator level Opt pass;
- **SP**: Our approach described in Section IV;
- **SP+Opt**: Our approach with register allocator level Opt pass;

Since loop unrolling is a common compiler transformation for enabling SIMD parallelism, we performed loop unrolling on all innermost loops in all benchmarks and studied its impact for unroll factors 2, 4, 8, and 16.

For all the benchmarks shown in Table I, we measured the speedup relative to the serial execution of the benchmark without vectorization. In Figure 10, we show the speedups of each benchmark relative to non-

\[\text{TABLE I. List of benchmarks and the optimizations applied on each benchmark} \]

<table>
<thead>
<tr>
<th>Optimizations Performed</th>
<th>FT</th>
<th>CG</th>
<th>MG</th>
<th>SOR</th>
<th>LUFact</th>
<th>MolDyn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar Expansion (Soot)</td>
<td>×</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Loop Unrolling (Soot)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Loop Peeling (Soot)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Code Specialization (Soot)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Common Subexpression Elimination (Jikes)</td>
<td>√</td>
<td>×</td>
<td>√</td>
<td>×</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Dead Code Elimination (Jikes)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Scalar Replacement (Jikes)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
</tbody>
</table>

\[\text{We implemented this superword vectorization algorithm in Jikes RVM 3.0.0 for the purpose of this research.} \]
unrolled sequential execution of the five cases listed above. In FT, SOR, and MolDyn benchmarks, the SP introduced more opportunities for packing the scalars into vector than SLP (The FT benchmark uses complex numbers and can benefit from vectorization even when the unroll factor is 1). For FT, the SP algorithm introduces the vector swap and horizontal computations that result in fully vectorizing the innermost loop body using SSE instructions, as discussed in Section II. For benchmarks that contain regular patterns for vector code.
generation (e.g. LUFact, CG, MG), both SP and SLP show similar speedups. The Opt post-pass provides a performance improvement in all cases, since it eliminates most of the redundant scalar variable packing and extraction instructions after the register allocator assigns physical vector registers to the operands. These redundant instructions may include vector register moves, e.g., moves between IA32 SSE registers. The copy propagation pass eliminates any remaining redundant copy statements in the generated vector code.

To summarize individual benchmark performance improvements of Sp+Opt compared to Sequential versions, for FT, we observe a maximum improvement of 57.71% (using unroll factor 16). For SOR, we observe a maximum improvement of 52.91% (using unroll factor 8). For LUFact, we observe a maximum improvement of 17.60% (using unroll factor 4). For Moldyn, we observe a maximum improvement of 25.06% (using unroll factor 2). For CG, we observe a maximum improvement of 27.63% (using unroll factor 4). Finally for MG, we observe a maximum improvement of 23.41% (using unroll factor 2). When comparing SP+Opt with SLP, we achieve a maximum speedup of 13.78% (in SOR using unroll factor 16). When comparing SP+Opt with SLP+Opt, we achieve a maximum speedup of 6.74% (in SOR using unroll factor 8).

Automatic Selection of Unroll Factor: In addition to performance speedups for benchmarks, we use the cost model to predict the unroll-factor that gives the best performance for a benchmark within the dynamic compiler. For every unroll factor of the vectorizable innermost loop-nest in a specialized method, we create a clone of the IR. The cloned copies of the IR subsequently undergo the same standard compiler optimizations including our vector instruction selection pass. Our vectorization algorithm produces a unique cost for each such cloned copy of the IR. Based on the best cost, we choose the corresponding IR for execution and discard the others. Note that our cost model captures both the register pressure and relative cost of both scalar and vector instructions.

The best unroll factors according our cost model are indicated by “*” in Figure 10. Except for SOR benchmark, we are able to predict the correct unroll factor within the Jikes RVM dynamic compiler. The reason for misprediction in SOR benchmark can be attributed to the cache memory effects on the cost model, which is a subject of future work.

Compile-time Overhead: SP is implemented within the Jikes RVM dynamic compilation system, which means that the vectorization is invoked during runtime. In this section, we report the compile-time overhead for dynamic compilation. Table II presents the compile-time for the vector instruction selection algorithm described in Section IV (Vec) and the total compilation time (Total) for each benchmark using different unroll factors. For the non-unrolled version of FT, the compile-time overhead of vectorization is 23 msec and the total
The cost of compilation is correlated with the increase in code. Hence, an unroll factor of 16 results in larger compilation time than smaller unroll factors. In all the cases we studied, the compile-time overhead of SP+Opt ranges from 0.87% to 9.92% of the total compilation time. This modest increase in compilation time indicates that a dynamic compiler can use our dynamic programming based vector selection algorithm in order to achieve the runtime benefits shown in Figure 10.

Static Code Size Reduction: By applying vectorization, the machine code size can also be reduced, since more instruction level parallelism (ILP) are employed. Table III compares the static number of x86 instructions generated by the SP+Opt vectorization algorithm (Vec) and the sequential execution (Seq) for each benchmark using different unroll factors. The data listed in this table shows the total number of instructions for only those methods that are vectorized by SP+Opt in each benchmark (i.e., the specialized methods). The reductions in the number of instructions range from 0.627% (MolDyn with unroll factor 16) to 35.3% (FT with unroll factor 16). For the non-unroll FT, the size of vectorized code is 100 and non-vectorized version is 118.

Comparison with Intel Compiler auto-vectorization: We now report on an investigation of the SIMD parallelization performed by v11.1 of the Intel Fortran Compiler (IFC) on three NAS parallel benchmarks for which Fortran versions are available (MG, CG, FT). We compiled and executed each benchmark in the SER version of the NPB benchmark suite. Figure 11 reports on the absolute performances of these benchmarks and compares them with their corresponding Java versions executed using Jikes RVM on an Intel Xeon E5440.
2.83GHz system. IFC-Seq and IFC-Vec refer to the versions compiled with the `-O3 -no-vec` and `-O3` options respectively. The performance gaps between the Fortran and Java versions are clearly visible in Figure 11. However, the FORTRAN benchmarks surprisingly did not show any noticeable performance improvements due to vectorization, whereas the Java versions showed improvements of 17.5% for MG, 9.6% for CG, and 15.54% for FT, when using our approach. A vectorization report obtained by using the `-vec-report(3)` option showed that many loops were vectorized by IFC, but they unfortunately did not contributed to any speedup.

![Comparison of vectorization in Intel Fortran Compiler v11.1 and Jikes RVM 3.0.0 (SP+Opt)](image)

Fig. 11. Comparison of vectorization in Intel Fortran Compiler v11.1 and Jikes RVM 3.0.0 (SP+Opt)

VI. Related Work

Most of the techniques for automatic vectorization are based on either traditional loop-based vectorization [15], [19] or use instruction packing to explore data parallelism within basic lock level. Several compilers employ loop-level vectorization techniques to perform automatic vectorization for innermost loop-nest, *e.g.*, Intel Compiler [5], IBM XL compiler [9] and GNU Compiler [2]. This paper focuses on straight-line code vectorization in the back-end of a dynamic compiler.

Larsen and Amarasinghe [21], [22] introduced the Superword-level parallelism algorithm which initiates the vectorization process by identifying memory operations that operate on contiguous addresses, forms groups, and then packs the relevant instructions and merges small groups until each group’s size reaches the size of SIMD vector. To improve the vectorization, they also suggested techniques to increase the number of contiguous memory operations in [23]. This Superword technique shows good scalability to adapt to different SIMD widths. One of the key limitations of this algorithm is that it may not uncover vectorization opportunities for complicated interleaved data accesses, which our paper addresses. Additionally, their algorithm can not vectorized pure scalar code which our algorithm can vectorize using *scalar packing*.

Page 20 of 22
Kudriavtsev and Kogge [20] built a generalized approach for handling the permutation issue during vectorization. The foundation of this method is again driven by contiguous memory accesses as in [21]. It does bi-directional search on the data flow graph (DFG) to pack instructions into SIMD groups. One direction is starting from store operation and another from load operations. Once it identified mismatched SIMD groups, if enumerates all permutation solutions and uses an Integer Linear program approach to select the best one. This technique can solve the problem of vector instruction selection with permutation, but it can’t handle scalars in the case when no contiguous memory operations exist in the data flow graph. Also, this bi-directional approach may generate some redundant mismatch operations compared with the single-direction packing. Integer Linear programming approach incurs significant compile-time overhead and may not be preferred in a dynamic compiler, such as ours.

In [25], Leupers introduced vector instruction selection based on the Data Flow Tree (DFT) and Integer Linear Programs (ILP). For each DFT, the parser generate a set of DFT covers, including both SIMD and non-SIMD covers. The ILP approach is applied to choose the best cover for generating SIMD instructions. This approach also has difficulty to handle permutations, and is not practical for dynamic compilation.

The authors in [18], [17] propose a vectorization technique based on rewriting rules using the dependence graph that requires depth-first search, backtracking, and branch-and-bound techniques to generate vector code. In contrast, our paper introduces a cost-driven dynamic programming algorithm for vector instruction selection that obtains a solution with best cost that includes register pressure and peephole optimization considerations during instruction selection. Additionally, our approach only requires three passes over the dependence graph and avoids the need for any search, back-tracking, and branch-bound techniques. Our approach is compile-time efficient since it increases the compile-time by less than 10%. Searching, backtracking, and branch-bound techniques will undoubtedly incur significant compile-time overheads.

The main focus of [27] is to perform interprocedural compiler analysis to determine alignment of pointers during compile-time. They also describe a vector code generation algorithm that is tightly integrated with scheduling. The key difference between our approach and their vector code generation algorithm is that their approach combines multiple scalar operations using a heuristic which is based on both the number of resulting vector instructions and the number of adjacent subwords in the vector instruction, where as our approach uses a profitability based approach that uses estimated instruction costs to perform vector instruction selection. Their approach does not necessarily yield the best cost vector code as scalar operations are combined on-the-fly and scheduled during a single pass of the dependence graph. It does not pay attention to the overall cost of
generating vector code, which our approach does.

VII. Conclusion and Future Work

In this paper, we presented the design and implementation of an auto-vectorization framework integrated in the IA32 back-end of the Jikes RVM dynamic compiler. Our approach includes a novel dynamic programming based vector instruction selection algorithm that is compile-time efficient. Our approach also expands opportunities for generating vector code in the following ways: (1) **scalar packing** explores opportunities for packing multiple scalar variables into short vectors; (2) judicious use of **shuffle** and **horizontal** vector operations; and (3) **algebraic reassociation** expands opportunities for vectorization by algebraic simplification. For the six benchmarks studied in this paper, our results show performance improvement of up to 57.71% (in FT benchmark using unroll factor 16), compared to the non-vectorized code, with a modest increase in compile time in the range from 0.87% to 9.992%. An investigation of the SIMD parallelization performed by v11.1 of the Intel Fortran Compiler (IFC) on three benchmarks shows that our system achieves speedup with vectorization in all three cases and IFC does not. Finally, a comparison of our approach with an implementation of the Superword Level Parallelization (SLP) algorithm from [21], shows that our approach yields a performance improvement of up to 13.78% relative to SLP.

For future work, we plan to port our framework to the PPC back-end in the Jikes RVM compiler, and evaluate our approach on the new VSX extensions in the POWER7 architecture. We would also like to study the impact of various scheduling algorithms, such as trace and modulo scheduling, on vectorization. Early experimental results for loops with conditionals show promise in exploring scheduling and vectorization beyond a single basic block.

References

