
Lecture 09/07/23 1

Lecture 09/07/23
Scribed by: Ben Leebron (bhl2), John Lynch (jbl5), Daniel Li (djl15)

Bloom Filters
Referring back to our previous problem of a malicious URL detector for Chrome

Given a database of 1 million malicious URLs, storing all of them with the
browser is prohibitively expensive (50mb)

We need a local solution under 2 MB

We discussed membership checking, i.e. you are given a set and you are
questioned whether or not an element e belongs in a Set, for this problem whether
or not a URL belongs in the set of malicious URL. If we store all the objects and use
all the memory, we could do it, but the data is too ‘heavy’. How can we do
membership testing efficiently?

The question we are trying to answer: is our URL in our set of malicious URLs ?

Review of Hashing + Example
Okay, here’s a potential solution:

Let’s hash every string and put it in a bitmap (an array of 1’s and 0’s).

Given a query , if , we’ve “seen” , otherwise we haven’t

Chance of reaching a false positive assuming there are strings?

, where R is the size of the bit map

This is still a pretty high rate. Say we have a bitarray of size , we have a
false positive rate ~50%

At the end of the day, false positives are inevitable, we are simply trying to minimize
the probability of a false positive

The false positive rate is the resource, and we want to minimize it but understand
the No Free Lunch principle

e S

q h(q) = 1 q

N

< 1 − (1 −)
R
1 N

2N

Lecture 09/07/23 2

Chance of false positive goes down exponentially as you double, triple your
resources; a linear cost for exponential gain

A better solution: Bloom filters
This relies on the “Power of K choices” principle. Let’s use k-independent hash
functions instead of just 1

All we need to get k-independent hash functions is to select our seeds
independently.

Using the same bitmap principle, membership checking is now just seeing that all of
our k hashing functions are set in the bitmap.

Example

To start, we have an empty bitmap:

0 1 2 3 4

0 0 0 0 0

Then, lets insert 3 into the bloom filter:

So, we set 3 and 4 in the bitmap:

0 1 2 3 4

0 0 0 1 1

Now, if we query for 1, we can see that . Even though 3 is in the
bitmap, 1 is not. So, we can say with certainty that we have not seen 1.

Like with using a single hash function, there are no false negatives. If the query was
inserted before, bloom filters always return true.

However, it can return true for an element which was not inserted (False positive)

A bit (haha) of analysis

h (x) =1 x mod 5,h (x) =2 (2x+ 3) mod 5

h (3) =1 3,h (3) =2 4

h (1) =1 1,h (1) =2 3

Lecture 09/07/23 3

Given strings are inserted:

Again, is the size of the bitmap, is the number of hash functions

Probability that all the bits is set WITHOUT seeing q
(false positive):

This is the rate that we want to make as small as possible.

Minimized at If R is say 10N, then K = 6.9 or 7

Optimum false positive is approx. which is < 0.008 given the above
numbers

Compare that with 0.1 at k =1

So with N strings we need 10N bits space. Compare with hash table of N * 8 * 50 →
A reduction of 40x in memory

 - can’t really control this number. But we can control and .

Generic Set Compression
Given a set S of n objects with each object being heavy such as strings, etc.

Bloom filter can compress S to less memory around 10 bit per object and still
answer membership queries efficiently with rare chances of false positives

It can up updated dynamically on the fly

How about deletions?

One of the malicious URLs is not malicious anymore!

Deleting is disallowed because unsetting these bits can create false negatives
for other functions!

Bloom Filters In The Wild (Source: Wikipedia)
All over the place. Literally everywhere

N

P(a bit is not set) = (1 −)R
1 KN

P(a bit is set) = 1 − (1 −)
R
1 KNPr(a bit is set) = 1 − (1 −)

R
1 KN

R K

h (q),h (q),⋯ ,h (q)1 2 K

(1 − (1 −)) ≈
R
1 KN K (1 − e)R

KN K

K = ln(2) ∗ .
N
R

0.618 N
R

N R K

https://en.wikipedia.org/wiki/Bloom_filter

Lecture 09/07/23 4

Any CDN using caching, e.g. Akamai

If an object is only requested once, it shouldn’t be cached. Akamai uses a
bloom filter to keep track of the first request. Then, if its requested again, its
cached.

Single-hit requests make up about 66% of their requests

Database systems use them to reduce disk lookups for nonexistent rows.

Chrome, obviously, to lookup malicious URLs

Squid web proxy cache uses bloom filters for cache digets

Bitcoin uses bloom filters to speed up wallet synchronization

The venti archival storage system uses Bloom filters to detect previously stored
data

The SPIN model checker uses boom filters to track the reachable state space for
large verification problems

The Exim mail transfer agent (MTA) uses bloom filters in its rate-limit feature

Ethereum uses bloom filters for quickly finding logs on the Ethereum blockchain

Cascading analytics framework using bloom filters to speed up asymmetric joins,
where one of the joined datasets is significantly larger than the other set. This is
often referred to as a bloom join.

Deletion
Deletion: Option 1

Use two bloom filters

One to keep track of added elements

One to keep track of deleted elements

What are the chances of false negatives?

Yes. You could hit a false positive in the deleted filter, thus making a false
negative

What are the chances of false positives?

Lecture 09/07/23 5

They have actually decreased a bit, since the false negative rate has increased

A popular alternative
Counting filters

Fan, Li; Cao, Pei; Almeida; Jussara; Broder, Andrei (2000), “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol”

Basically, instead of using a bitarray, use, e.g. a byte array to store a counter.
+1 when inserting an item, -1 when removing.

Union of two bloom filters?
Given Bloom filter for set and another bloom filter of set with same
hash functions.

What is the bloom filter of ?

Let’s say you Region 1 has a bloom filter with n objects and Region 2 has a bloom
filter with m objects, when you take the union you have just increased the chance of
false positive. You will never know what n is in practice. I will build a bloom filter for
as much as I can allocate.

Bloom filters can be organized in distributed data structures to perform fully
decentralized computations of aggregate functions. Decentralized aggregation
makes them ideal for several application by avoiding costly communication.

Bloom filters must be of same size and same hash function.

Shrink size of bloom filters?
Can we shrink the bloom filter to half its size?

I.e. we don’t know what was inserted into our current one and want to shrink it

We can just modify the hash function: , where is the
previous number of bits of the hash.

Then, we can just chop off the MSB of everything currently in the set. (That is,
just move every element in the bit array to half its current index)

How about doubling its size (without inserting more)?

B1 S1 B2 S2

S ∪1 S2

h (x) :′ h(x) mod 2k−1 k

Lecture 09/07/23 6

That would reduce the false positive rate- repeated halving of the size means
FP rate approaches zero, allowing us to recover the whole set

This is obviously impossible, so no, we can’t double the size of a bloom filter

Weaknesses of Bloom filters
Big limitation: we are relying on having independent hash functions

Uses 1.44x more space than we theoretically should

Food for thought: sharing friends on Facebook
Do two people share friends on Facebook?

We are only given a compressed bloom filter of their friend network graph

Example: person A has 5 friends, those 5 people are hashed into their own
network graph, so, if hash functions return 1, person
A is friends with person

Notes for HW1 Problem 3
Computing is easy

 is a little harder. But we can use expansion to get

. If the and are pairwise independent, and their expected
value is 0, then those terms go away and we just get . This can be
extended to the 3rd, 4th, etc. moments

k

h (x),h (x),⋯ ,h (x)1 2 k

x

E[x +1 x +2 x]3

E[(x +1 x +2 x)]3
2

E[x +∑ i
2 x x]∑ i j xi xj

E[x]∑ i
2

