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1 Motivation

A Markov Chain can be considered a cornerstone of machine learning and artificial intelli-
gence, with extremely wide-ranging applications in reinforcement learning, natural language
processing, finance, weather forecasting, and speech recognition.

The phrase ”The future is independent of the past given the present” also encapsulates the
idea of Markov Chains: all past information has already been encapsulated in the current state,
and based on the present, we can predict the future.

While this might sound somewhat extreme, it can significantly simplify the complexity of
models. Therefore, Markov Chains find extensive applications in many time series models,
such as Recurrent Neural Networks (RNNs), Hidden Markov Models (HMMs), and, of course,
Markov Chain Monte Carlo (MCMC).

We will explore the Markov Chains, which will continue throughout subsequent lecture,
underscored by a challenging problem. Our motivation emerges from the challenge of sampling
from an expansive state space. Given such a state space, Ω, we wish to sample x from Ω such
that the probability of getting any x ∈ Ω is proportional to the weight associated with x, w(x).
In other words,

P [sampling x ∈ Ω] =
w(x)∑
y∈Ωw(y)

We will suppose that Ω is so large that ∑
y∈Ω

w(y)

is not easy to compute.

2 Markov Chains

2.1 Definitions:

• Stochastic Process

In simple terms, a stochastic process is a process of predicting and dealing with certain
phenomena using statistical models. For example, predicting stock prices involves using
today’s stock price movements to forecast the movements of stocks for tomorrow and the
day after tomorrow. Weather forecasting involves using today’s rainfall or lack thereof
to predict whether it will rain tomorrow or the day after. These processes can all be
quantitatively calculated using mathematical formulas. By calculating the probabilities
of events like rain or stock price fluctuations, formulas can be used to deduce the conditions
for N days into the future.
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Figure 1: Markov Process

• Markov Chain

Markov chain is a sequence of random variables, which take value in the in the states
X1, X2, ...Xt, Xt+1, ..., the conditional probability of our state at time t + 1, denoted as
Xt+1, only depends on the state at time t. In other words,

Pr(Xt+1 = y|Xt = x,Xt−1 = xt−1, ..., X0 = x0) = Pr(Xt+1 = t|Xt = x) = Pr(y|x)

Since the probability of a state transition at a given moment depends solely on its pre-
ceding state, as long as we can calculate the transition probabilities between any two
states in the system, the model of this Markov chain is determined. Thus, Markov chain
is considered to be memory less as it only needs to consider the current state to predict
the future behavior.

• State Space

State space of a Markov Chain is the set of values that Xt can take, denoted as Ω. For
example, Ω = x1, x2, ..., xn

2.2 Graph Representation

A Markov chain can represented as a directed graph G = (V,E) where V is the set of vertices
(or nodes) corresponding to the states in Ω, and E is the set of directed edges representing the
transition probabilities between the states. For example, if there is a directed edge between
node i and j, that mean there is a non-zero probability of transitioning from state i to j. In
other words, this edge will have a weight of P (j|i) or it can be written as P (i, j). Moreover,
due to the laws of probability, all the outgoing edges from any nodes must have all their weights
added up to 1. The graphical representation provides a visual and intuitive way to understand
the dynamics of the Markov Chain, especially the possible transitions between states and the
probabilities of theses transitions. Let’s represent a weather prediction of rainy vs sunny via a

17-2



weighted directed graph:
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Figure 2: Rainy vs Sunny: A 2-state Markov chain

Figure 2 is a weather prediction of rainy vs sunny via a weighted directed graph. The state
space of our example in Figure 2 can be written as Ω = sunny, rainy. Then our conditional
probability of Pr(y|x) for each transition between the states can be: Pr(sunny|sunny) = 0.9,
Pr(rainy|sunny) = 1− 0.9 = 0.1, Pr(rainy|rainy) = 0.5, Pr(sunny|sunny) = 1− 0.5 = 0.5.

This is a classic example of a simple stochastic process. In this scenario, the state of the
weather on any given day (either sunny or rainy) is predicted based on the weather of the
preceding day long, and not on the sequence of weather occurrences over multiple past days. It
simplifies the modeling of weather dynamics by reducing the need for historical data, making
predictions more efficient or memory-less.

2.3 Matrix Representation

• Transition Matrix

Now consider the following matrix representation: P =

 A B
A p1 p2
B p3 p4

 We can easily cal-

culate the probability of state after n times of shift of state by doing matrix multiplication.
(ALso note that the summation of p should be 1)

The probability of a state at t would be πt = π0 · P t

• Properties

Assume we have the initial probability distribution [p0, p1, p2], and we use it in an invariant
3 by 3 transition matrix. We will realize that no matter how p0, P1, and P2 are distributed,
the transition matrix will converge to a stable state.

• Sampling

17-3



Figure 3: Transition Matrix

Given the initial distribution π0, then the following distribution would be π1...πi, which
converge to π = πn for large enough n. Also, for each πi, we have πi = πi−1P1 = πi−2P2 =
... = π0Pi

Start from π0, sample x0. Then, sample based on P (x|x0), P (x|x1), ...
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