Lecture 11: Count-Min and Count Sketches

Lecturer: Anshumali Shrivastava
Scribers: Alan Liu, Eric Breyer, Noah Spector

September 26, 2023

1 Count-Min Sketches

Count-min sketches are a probabilistic data structure that allow us to track the occurrences of
an event given a stream of data. The structure of a count-min sketch is a 2D matrix M with d
rows and R columns. It also maintains a set of d hash functions h;, one per row. When an event
of type i occurs, the count-min sketch stores this occurrence by determining h;(i) Vj =1, ...,d,
which will increment the values at the buckets that are the outputs of the hash functions.
One can query the total number of occurrences ¢; of an event ¢ by taking the minimum of
the values stored in the buckets for the outputs of h;(i). This is given by the formula below:

é = minlj, hj(i)] (1)

Note that ¢; is an estimate for ¢; since we can clearly observe that the count-min sketch
can return a value greater than the true number of occurrences of i. This is the key difference
between count-min sketches and count sketches. Unlike count sketches, count-min sketches will
always overestimate the count. However, it guarantees that the estimate will be within the
following range with probability 1 — 6,

N
G <¢G=c¢+ Z ¢ - Lin@y=n(in- (2)
J=1j#i

where 1 ;)=n(j)) is an indicator variable such that

1, if h(i) = h(j)
Lin(i)=h()y = 0

otherwise

We also get that
G <cite-k, (4)

where X is the total number of events that were passed in to the sketch.

2 Count Sketches

Count sketches are another variant of the sketch data structure to track event occurrences. In
this case, every bucket in the count sketch has a sign s;(i) € {—1, 1}, rather than buckets only

adding to the count. Thus, we obtain a different guarantee for the estimate of the occurrences
for an event i, given by

N
¢ = sp(i)e; + Z sk(d)es - Lyngy=n()y - Sk (7) (5)
=1,
Vk =1,...,d. In a table with one row.
Querying for the total occurrences of an event ¢ will return

median

k

[sx(2) - MK, hy.(4)]]- (6)

2.1 Expected Value of ¢;

We can derive an important result for ¢;,
Sk<Z)E[éZ] = C;. (7)

We know that E[s;(i)] = 0 since it takes the value —1 or 1 at random, so we can write

N
El¢] = s(i)ci + E| Z sk(J) - sk(d) - ¢ - Lycy] (8)
=1
where Lycy = Lini)=n(;)}
as
N
Elé) = se(i)ei+ E[Y ¢+ Liey]
J=1,j#i
= s,(1)c;
We can then multiply by sk (i) to get
E[é¢] = si(i)e;
sk(i)E[G] = (sk(i))?es
Sk(i)E[AZ] =1 C;
Sk(Z)E[éZ] = C;

2.2 Variance Analysis of ¢;

We first note that E[¢;?] is a dependency for determining the variance. We have

Thus,

T
—dip Y @-d
J=Lj#i
1 N
2 A
J=17]751
which gives us a bound on the variance
1 & 1
. 2
Var(é) < = Zc RZ (10)

[y

J

Where [1, N] is the possible values of an event and R is the number of rows in the table

2.3 Using the power of k£ choices

We can make the variance even better by repeating the above process k times and taking the
median.

We want to find the probability that a median estimator is farther away than e. Using Cheby-
shev’s inequality, we find

Var(é)
Pr(léi— ol =€) £ —55— 11
(6 —al >) < o 1)
Now put f = Z] 165 c?/c2. We now observe
Var(é) f
< == 12
€22~ Ré? (12)

Now, we choose 2k items and take the median. In order for the estimator to be off, at
least k£ items must be outside the range to one side. Without observing anything about the
distribution of ¢é;, we find

i)k‘ _
Re?’ — Rke2k
Therefore, if 2 < 1, as one increases the number of hash functions, the probability of the
median estimator falhng outside of a given fraction e falls exponentially. If ¢; is a heavy hitter,
then f is an appreciable fraction, so we can choose R to be large enough to counterbalance e.

Pr(Mediany(|é; — c;| > ec;)) < ((13)

References

[1] Anirban Dasgupta (2018) Frequent Element: Count Sketch, Youtube.

[2] Shusen Wang Count Sketch, Github

