
Lecture 11: Count-Min and Count Sketches

Lecturer: Anshumali Shrivastava
Scribers: Alan Liu, Eric Breyer, Noah Spector

September 26, 2023

1 Count-Min Sketches

Count-min sketches are a probabilistic data structure that allow us to track the occurrences of
an event given a stream of data. The structure of a count-min sketch is a 2D matrix M with d
rows and R columns. It also maintains a set of d hash functions hj , one per row. When an event
of type i occurs, the count-min sketch stores this occurrence by determining hj(i) ∀j = 1, ..., d,
which will increment the values at the buckets that are the outputs of the hash functions.

One can query the total number of occurrences ĉi of an event i by taking the minimum of
the values stored in the buckets for the outputs of hj(i). This is given by the formula below:

ĉi = min[j, hj(i)] (1)

Note that ĉi is an estimate for ci since we can clearly observe that the count-min sketch
can return a value greater than the true number of occurrences of i. This is the key difference
between count-min sketches and count sketches. Unlike count sketches, count-min sketches will
always overestimate the count. However, it guarantees that the estimate will be within the
following range with probability 1− δ,

ci ≤ ĉi = ci +
N∑

j=1,j ̸=i

cj · 1{h(i)=h(j)}, (2)

where 1{h(i)=h(j)} is an indicator variable such that

1{h(i)=h(j)} =

{
1, if h(i) = h(j)

0, otherwise
(3)

We also get that
ĉi ≤ ci + ϵ · Σ, (4)

where Σ is the total number of events that were passed in to the sketch.

2 Count Sketches

Count sketches are another variant of the sketch data structure to track event occurrences. In
this case, every bucket in the count sketch has a sign sj(i) ∈ {−1, 1}, rather than buckets only

1

adding to the count. Thus, we obtain a different guarantee for the estimate of the occurrences
for an event i, given by

ĉi = sk(i)ci +

N∑
j=1,j ̸=i

sk(j)cj · 1{h(i)=h(j)} · sk(i) (5)

∀k = 1, ..., d. In a table with one row.
Querying for the total occurrences of an event i will return

median

k
[sk(i) ·M [k, hk(i)]]. (6)

2.1 Expected Value of ci

We can derive an important result for ĉi,

sk(i)E[ĉi] = ci. (7)

We know that E[sk(i)] = 0 since it takes the value −1 or 1 at random, so we can write

E[ĉi] = sk(i)ci + E[
N∑

j=1,j ̸=i

sk(j) · sk(i) · cj · 1{C}] (8)

where 1{C} = 1{h(i)=h(j)}
as

E[ĉi] = sk(i)ci + E[

N∑
j=1,j ̸=i

cj · 1{C}]

= sk(i)ci.

We can then multiply by sk(i) to get

E[ĉi] = sk(i)ci

sk(i)E[ĉi] = (sk(i))
2ci.

sk(i)E[ĉi] = 1 · ci
sk(i)E[ĉi] = ci

2.2 Variance Analysis of ci

We first note that E[ĉi
2] is a dependency for determining the variance. We have

E[ĉi
2] = c2i +

1

R

N∑
j=1,j ̸=i

c2j . (9)

2

Thus,

V ar(ĉi) = E[ĉi
2]− E[ĉi]

2

= E[ĉi
2]− (sk(i)ci)

2

= c2i +
1

R

N∑
j=1,j ̸=i

c2i − c2i

=
1

R

N∑
j=1,j ̸=i

c2i ,

which gives us a bound on the variance

V ar(ĉi) ≤
1

R

N∑
j=1

c2i =
1

R
Σ2. (10)

Where [1, N] is the possible values of an event and R is the number of rows in the table

2.3 Using the power of k choices

We can make the variance even better by repeating the above process k times and taking the
median.
We want to find the probability that a median estimator is farther away than ϵ. Using Cheby-
shev’s inequality, we find

Pr(|ĉi − ci| ≥ ϵci) ≤
V ar(ĉi)

ϵ2c2i
(11)

Now put f =
∑N

j=1 c
2
j/c

2
i . We now observe

V ar(ĉi)

ϵ2c2i
≤ f

Rϵ2
(12)

Now, we choose 2k items and take the median. In order for the estimator to be off, at
least k items must be outside the range to one side. Without observing anything about the
distribution of ĉi, we find

Pr(Mediank(|ĉi − ci| ≥ ϵci)) ≤ (
f

Rϵ2
)k =

fk

Rkϵ2k
(13)

Therefore, if f
Rϵ2

< 1, as one increases the number of hash functions, the probability of the
median estimator falling outside of a given fraction ϵ falls exponentially. If ci is a heavy hitter,
then f is an appreciable fraction, so we can choose R to be large enough to counterbalance ϵ.

References

[1] Anirban Dasgupta (2018) Frequent Element: Count Sketch, Youtube.

[2] Shusen Wang Count Sketch, Github

3

