COMP 640: Graduate Seminar In Machine Learning

Rice University

Anshumali Shrivastava

anshumali At rice.edu

24th August 2015
About

- Instructor: Anshumali Shrivastava
- Email: anshumali AT rice.edu

- Class Timing: Monday 3pm to 4:30 pm (Except on 28th Sept)
- Class Location: Duncan Hall 3076
- Office Hours: Monday 4:30pm - 5:30pm, Duncan Hall 3118
- Website: www.cs.rice.edu/~as143/COMP640_Fall15/index.html
- Piazza: https://piazza.com/class#fall2015/comp640
Our Focus

Learn modern techniques for scaling up Machine Learning for Massive Datasets

- We will read some cool papers!
- Some of these papers are best paper awards in recent topmost conferences.
- Some are classical and top cited papers in the field.

Three major Directions

- Use randomized algorithms for reducing the computation.
- Use of parallelizations to speed up machine learning.
- Delve more into Deep Learning.
Roadmap

Hashing Algorithms for Search and Learning
- Locality Sensitive Hashing for Sub-linear Search (8/31)
- Integrate Hashing with SVMs (9/14 and 9/28)
- Making Hashing Techniques Faster (9/21 and 10/5)
- Real Application (10/26)

Recent Advances in Deep Learning
- A Recent Successful Technique for Training Deep Networks (11/2)
- Theory for Deep Learning (11/09)

Topic Models and Scalable Inference
- Classical LDA and Variational Inference. (11/23)
- Scaling up LDA and faster Bayesian inference. (11/30)
Roadmap

Hashing Algorithms for Search and Learning
- Locality Sensitive Hashing for Sub-linear Search (8/31)
- Integrate Hashing with SVMs (9/14 and 9/28)
- Making Hashing Techniques Faster (9/21 and 10/5)
- Real Application (10/26)

Recent Advances in Deep Learning
- A Recent Successful Technique for Training Deep Networks (11/2)
- Theory for Deep Learning (11/09)
Roadmap

Hashing Algorithms for Search and Learning
- Locality Sensitive Hashing for Sub-linear Search (8/31)
- Integrate Hashing with SVMs (9/14 and 9/28)
- Making Hashing Techniques Faster (9/21 and 10/5)
- Real Application (10/26)

Recent Advances in Deep Learning
- A Recent Successful Technique for Training Deep Networks (11/2)
- Theory for Deep Learning (11/09)

Topic Models and Scalable Inference
- Classical LDA and Variational Inference. (11/23)
- Scaling up LDA and faster Bayesian inference. (11/30)
How will it work?

Read the suggested papers before coming to class, there will be a warm up quiz.

- We will discuss two (connected) papers every week. (Webpage for complete list)
How will it work?

Read the suggested papers before coming to class, there will be a warm up quiz.

- We will discuss two (connected) papers every week. (Webpage for complete list)

Presentation Logistics

- Each one of you picks a paper from the list, starting 09/14, to present. (Due by 8/31 next class)
 We will resolve conflicts by usually first come first served basis, so mail me you preference soon.

- A week before your scheduled presentation, you give a test run to me. **Example:** If the presentation is on 09/21 then in office hours of 09/14 you give me a test run.

- One paper can be presented in a group of at most two.
Grading Policies

For 1 credit
- One presentation
- Class participation

For 3 credits
- In addition, a semester long project. (In a group of at most 2)
Please read suggested papers before coming to the class.
Projects and Timelines

Components

- Semester long
- In a group of at most 2. (For larger group ask me)
- Ideally it should have connections with data mining or machine learning. Ask me if you have confusions.

Timelines

- Sept 6th, Project Proposals due by email to me.
 1-3 pages describing why it's important (motivation), problem statement and why it is feasible.
- Oct 19th, 10 min mid term project presentation in class
- Nov 30th, Final project presentation.
What can be a good ML project?

- Take a well known algorithm and try to make it faster.
 - Propose a novel fast approximate version.
 - Identify bottlenecks and opportunities to parallelize in a novel way.
- Take an interesting dataset and try to find something interesting using custom ML models.
- Propose an alternative to well known models in some real environment.
- Propose a ML (like deep learning) algorithm/model for a novel application with real data.
- Theoretical analysis of some new properties of known or proposed algorithms.

- Ideally a good project should be publishable if the goals are met.
- Project can be totally unrelated to topics covered in class.
- START EARLY.
Important Dates to Remember

- 8/31: next class: Your paper preferences.
- 9/6: Project Proposals due.
- 10/19: 10 min mid term project presentation in class
- 11/30: Final project presentation.
Class Time for 9/28

Is 5:30pm - 7pm Fine? Or any time except 3pm - 5pm.
Next Lecture: Locality Sensitive Hashing