
Validation of Wireless and Mobile Network Models and Simulation

David B. Johnson
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891 USA

http://www.monarch.cs.cmu.edu/
dbj@cs.cmu.edu

1 Introduction
Wireless and mobile networks present substantial challenges
in the validation of large-scale network models and simula-
tion, even beyond the already difficult problem of validation
in more conventional wired and stationary networks. These
additional challenges are due to the complications and sub-
tleties of physical movement and wireless propagation, mak-
ing the system highly variable and substantially increasing
the complex interactions between the parts of the system and
the surrounding environment. These same factors also make
wireless and mobile experiments in the real world not easily
or accurately repeatable, reducing the use of such experiments
for validation.

In particular, the position and movement of nodes in the
network can have a significant effect on the behavior and
performance of the system being modeled. The position and
possible movement of other objects in the environment around
the nodes themselves, such as buildings, hills, and trees, or
vehicles, people, and rain, can also significantly effect the
system being modeled. Furthermore, to accurately control an
entire experiment in the real world, all of these positions and
movements would need to be controlled to within a fraction
of a wavelength of the radios involved, due to differences
in the radio multipath environment even such small position
differences can cause. Having complete control over all of
these factors is simply not fully achievable in any real system,
and so models and real experiments, to some degree, can only
be approximations.

2 Simulation Environment and Related Work
In the Monarch Project1 at Carnegie Mellon University, our
work in modeling and simulation of wireless and mobile net-
works has largely been focused on the area of multi-hop ad hoc
networks, but has also expanded to other areas including in-
building wireless LAN design issues. In ad hoc networks, we
have performed extensive simulation studies, both to analyze
the performance and behavior of our own Dynamic Source
Routing protocol (DSR) [1, 4, 5] and to compare its perfor-
mance to other proposed ad hoc network routing protocols [2].

Our simulation environment consists of a set of wireless
and mobile extensions that we have created [2], based on the
publicly-available ns-2 simulator from the VINT Project [3].

1The Monarch Project is named in reference to the migratory behavior
of the monarch butterfly, and can also be considered as an acronym for
“Mobile Networking Architectures.”

These extensions provide a detailed model of the physical
and link layer behavior of a wireless network and allow arbi-
trary movement of nodes within the network. At the physical
layer, we provide realistic modeling of factors such as free
space and ground reflection propagation, transmission power,
antenna gain, and receiver sensitivity. At the link layer, we
model the complete Distributed Coordination Function (DCF)
Media Access Control (MAC) protocol of the IEEE 802.11
Wireless LAN protocol standard, along with the standard In-
ternet Address Resolution Protocol (ARP). These wireless
and mobile extensions are available from the Monarch Project
Web page, and have now been adopted as a standard part of
the VINT ns-2 release available from UC Berkeley.

The radios that we currently model in our simulation envi-
ronment are those used in the commercial WaveLAN product,
and we have also built an outdoor ad hoc networking testbed
in Pittsburgh using these radios, which we are using to eval-
uate our protocols and as a basis for validating our simula-
tion. We have operated the testbed regularly over four months
of testing and experimentation between December 1998 and
March 1999 [6].

The testbed consisted of 5 mobile nodes implemented as
cars driving at about 25 MPH over a course past two station-
ary nodes separated by a distance of about 700 m (about 2–3
radio hops). In each car, a laptop computer implemented the
DSR ad hoc network routing protocol, served as an endpoint in
different higher layer protocol connections and applications,
and allowed local logging of network events on the laptop’s
hard disk. As the cars moved, the route between the two sta-
tionary nodes was constantly changing, and the route between
any car and any other car also changed frequently as the cars
moved relative to one another. The area used for the testbed
was open to general vehicle traffic and has several Stop signs,
so the speed of each node also varies over time, just as it
would in any real, deployed network. All of the routes within
the ad hoc network were dynamically found and maintained
through our DSR ad hoc network routing protocol [1, 4, 5]. In
operating the testbed, we experimented with a wide variety of
data traffic types and network loads, including bulk file trans-
fer, telnet, constant bit rate UDP streams simulating voice or
video, and realtime position and status reporting packets.

Each car in the ad hoc network also was outfitted with a
highly accurate GPS receiver operating in Real Time Kine-
matic (RTK) mode, providing each node with its own current
position to centimeter-level accuracy. During different runs of

the testbed, we were thus able to have each mobile node log its
own current GPS position, as well as the source, destination,
and contents of each packet sent or received. To facilitate
additional position logging, the sender’s current GPS posi-
tion was piggybacked on each packet sent, which was logged
along with the data of the packet on receipt. In addition, the
signal strength and signal quality (reported by the WaveLAN
hardware) for each received packet was also logged.

In related work, we have also recently created a system
for emulating an ad hoc network on a stationary, wired net-
work. Since the validation needs and possible approaches for
network emulation are quite similar to those for network simu-
lation, we are attempting to develop techniques that will work
for both. Network emulation allows some real network (for
example, a stationary, wired network) to be made to behave in
the same way as some other network of interest (for example,
a wireless network) by altering the one network’s behavior, as
seen by packets on the network, to perform like the other’s.
Network emulation for simple wireless networks (essentially,
with all user communication through a centralized base sta-
tion) has been demonstrated in the trace modulation work at
Carnegie Mellon and UC Berkeley [7].

We have extended the trace modulation concept to create
two alternate approaches to the emulation of ad hoc networks.
In the “trace emulation” approach, we generate a trace of the
desired network’s behavior using simulation, and then use this
trace to drive the standard trace modulation system in the op-
erating system kernel of the real machines on the real network;
each packet is then delayed or dropped under control of trace
modulation. In the “direct emulation” approach instead, each
packet from a real machine is sent to a centralized machine
on which a simulation of the desired network is running, and
the packet is delayed or dropped according to the behavior
determined wholly inside the simulation, for each individual
packet; if the packet is not dropped within the simulation, it
is then resent on the real network at the appropriate time to
its real destination. In either approach, the behavior of the
emulated network is thus correct if the underlying simulation
is correct, and if no unwanted artifacts are introduced in the
emulation process.

3 Approaches to Validation
Our initial approaches to the validation of our simulation work
were to check the operation of the system according to a num-
ber of logical consistency checks. For example, we analyzed
the power and simulated radio behavior as a function of dis-
tance between small groups of nodes in the simulation, to
ensure that the propagation, capture effect, and carrier sense
models were working as designed. The IEEE 802.11 MAC
model was studied in a variety of scenarios, including ex-
perimentally testing that when all nodes are within wireless
transmission range of each other, no data packets experience
collisions (regardless of offered traffic load), and that each
node is able to make progress sending packets. This verified
that the carrier sense, RTS/CTS, and back-off mechanisms of
the 802.11 model appeared to be working correctly.

In addition, the simulator can log traces of various events
that occur during the simulation, and these log files were
manually verified for each logged event in a large number
of short simulation runs or portions of longer runs. Finally,
the results of each simulation were internally checked to be
sure that no packets were “lost” by the simulator. That is,
those packets originated by the “application layer” sources
that were not logged as either received or dropped at the end
of the simulation run were exactly those packets that were in
transit at the end of the simulation.

Although these initial validation checks gave us substantial
confidence in our results, they do not actually validate that
any run from the simulator is “equivalent” to any run of the
same system configuration in the real world. Given the sub-
stantial logging information provided by our ad hoc network
testbed implementation, however, we believe we have enough
information to simulate the identical movement and commu-
nication scenarios experienced in these real implementation
experiments. We will then be able to assess the degree to
which the results from the simulator match those from the
real world.

However, we are just beginning to develop methods that
will allow us to compare the results between a simulation run
and a corresponding real experiment in a meaningful way.
We believe that simply comparing the typical type of high
level performance metrics that might normally be the output
of such runs, such as the average user-level TCP throughput
or the percentage data packets successfully delivered by the
routing protocol,will not provide enough information and may
indeed produce an incorrect conclusion from the comparison.
If these metrics match between a simulation run and a real
experiment, it does not necessarily mean that the models and
simulation are working correctly. In addition, in some cases,
even small, otherwise insignificant differences between the
two systems can result in possibly quite large differences in
the two performance metrics. For example, TCP’s congestion
control and recovery algorithms can significantly change the
timing of TCP’s packet transmissions (and retransmissions)
and thus may have a large effect on the TCP throughput and
on the overall load placed on the network under test.

One approach to comparing the results from simulations and
real measurements (or emulations) that we are considering is
a comparison based on the progression of some performance
metric as a function of time. For example, rather than simply
comparing TCP throughput at the end of the simulation run
and at the end of the measurements from the real world, it is
possible to compare the simulated and measured systems using
graphs of TCP data bytes transferred over time. Such graphs,
which are also known as time-sequence number plots, show
not only the total TCP throughput, but also show the change
in the “speed” at which the TCP connection operates over
time. Similar graphs could be produced for other performance
metrics of interest.

For example, Figure 1 shows three time-sequence number
plots for the same TCP connection between the same two
nodes in a 16-node ad hoc network. The top curve shows the

2

50 100 150 200
0

2M

4M

6M

8M

10M

12M

14M

16M

time (s)

by
te

s
tr

an
sf

er
ed

FTP − simulation
FTP − trace emulation
FTP − direct emulation

Figure 1 Time-sequence number plots for a TCP connection
between two nodes in a 16 node ad-hoc network with TCP and
CBR cross-traffic.

connection’s behavior in a completely simulated ad hoc net-
work using our simulator, while the other two curves show the
same connection’s behavior when run on an emulated ad hoc
network, using the two different techniques for emulation that
we have developed.

In order to evaluate how closely the emulations come to
reproducing the simulation results, we must be able to quanti-
tatively answer the question: “how similar are these curves?”
To a human, the curves all clearly have the same shape, but the
differences are interesting. Due to the experimental setup, the
direct emulation curve is shifted approximately 10 seconds
earlier in time than the other two curves — an effect for which
the comparison function will need to correct. The shape of the
direct emulation curve tracks the the simulation curve more
tightly than the trace emulation curve, although the absolute
RMS error is significantly greater.

Such comparisons can be made over different time scales,
depending on the application of the network, and the time
scale chosen may affect the comparison results. For example,
when measured over intervals of 10 seconds, the slope of the
simulation and the direct emulation results are substantially
more similar than are the simulation and trace emulation re-
sults. For some protocols and applications (e.g., a background
file transfer), a fairly coarse time scale may be reasonable, but
for other protocols and applications (e.g., new wireless MAC
protocols), a much finer granularity may be necessary. We
imagine that the time scale, and the performance metrics of
interest, could thus be parameters chosen by the modeler.

An alternative approach to validation could be to record a
trace of all significant events (e.g., all packets sent, received,
or forwarded) during the experiment in the real network, and
to create a similar trace during a corresponding simulation
run. The two trace files could then be compared, somewhat
in the spirit of the standard Unix “diff” program. That is,
matching sections of the two trace files could be identified
and lined up, and the differing sections could then be iden-
tified. Each such match or difference could contribute to an

overall “score” indicating the degree to which the two traces
were the same. However, such a comparison seems to be
extremely difficult to perform, since each trace represents the
intertwined events caused by many different nodes and traffic
streams in the network. Each of these events possibly influ-
ences other events in the trace and may also be independent of
yet other events. Many events in the trace may even be able to
be ignored, but it seems hard to identify which without risking
too much abstraction and introducing inaccuracy. We are cur-
rently considering possible methods for turning this general
trace comparison approach into a more concrete algorithm.

4 Conclusions
The validation approaches suggested in this paper can be used
to compare different runs using simulation,emulation, or mea-
surements from the real world. They seem to be appropriate at
least for small- or medium-scale networks, and should be able
to be applied to large-scale networks given suitable choices by
the modeler. Each validation achieved for a given simulation
environment or model also adds to the basis for confidence in
other results from the same tools.

Acknowledgements
The ideas presented in this paper are a product of the Monarch Project
at Carnegie Mellon, whose members currently include Josh Broch,
Yih-Chun Hu, Jorjeta Jetcheva, David B. Johnson, Qifa Ke, and
David A. Maltz. This work was supported in part by the National
Science Foundation (NSF) under CAREER Award NCR-9502725,
and by the Air Force Materiel Command (AFMC) under DARPA
contract number F19628-96-C-0061. The views and conclusions
contained here are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, ei-
ther express or implied, of NSF, AFMC, DARPA, Carnegie Mellon
University, or the U.S. Government.

References
[1] Josh Broch, David B. Johnson, and David A. Maltz. The Dynamic

Source Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft,
draft-ietf-manet-dsr-01.txt, December 1998. Work in progress.

[2] Josh Broch, David A. Maltz, David B. Johnson, Yih-chun Hu, and Jor-
jeta Jetcheva. A Performance Comparison of Multi-Hop Wireless Ad
Hoc Network Routing Protocols. In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Net-
working, pages 85–97, Dallax, TX, October 1998.

[3] Kevin Fall and Kannan Varadhan, editors. ns Notes and Documentation.
The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC,
January 1999. Available from http://www-mash.cs.berkeley.edu/ns/.

[4] David B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, pages 158–163, December 1994.

[5] David B. Johnson and David A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. In Mobile Computing, edited by Tomasz
Imielinski and Hank Korth, chapter 5, pages 153–181. Kluwer Academic
Publishers, 1996.

[6] David A. Maltz, Josh Broch, and David B. Johnson. Experiences design-
ing and building a multi-hop wireless ad hoc network testbed. Technical
Report CMU-CS-99-116, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, March 1999.

[7] Brian Noble, M. Satyanarayanan, Giao Nguyen, and Randy Katz. Trace-
Based Mobile Network Emulation. In Proceedings of SIGCOMM ’97,
pages 51–61, September 1997.

3

