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Embedded Systems

System 

EnvironmentEnvironment

actions

observations

Observation driven, task-specific decision making

Machine Learning

Learning
algorithmTraining data

Prior knowledge
Predictive model

Embedded Adaptive Systems

System for
a task

EnvironmentEnvironment

actions

observations

Calculate decisions on the basis of learned models of systems

Learning
algorithm

Prior knowledge
Model

Why embed learning?
We cannot calculate and implement an 
action-choice/decision-making 
strategy for the system at design 
time.

System dynamics are unknown/partially 
known.
System dynamics change with time.
A one-size-fits-all solution is not 
appropriate – customization is needed.

Research questions in adaptive 
embedded system design

Representation: What aspects of the task, 
environment and system dynamics do we 
need to observe and model for decision 
making? 
Learning: How can we build and maintain 
embedded models in changing environments?
Decision making/acting: How can we use 
these models effectively to make decisions 
with scarce resources in changing 
environments?
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Approach
Design and validate 
algorithms for large-scale 
real world, socially relevant 
problems.
Publish in the application 
community journals; get 
community to routinely use 
the methods.
Abstract task-level 
analysis and present 
methods to the AI 
community.

Roadmap of talk
Two case-studies

Unknown system, changing dynamics
Tracking human learning on a complex visual-
motor task. 
Predicting the evolution of international 
conflict.

Submarine School 101
The NRL Navigation Task 

50% of class weeded out by this game!

•Pilot a submarine  to a goal through  
a minefield in a limited time period

•Distance to mines revealed via 
seven discrete sonars

•Time remaining, as-the-crow-flies 
distance to goal, and bearing to goal 
is given

•Actions communicated via a joystick 
interface

The NRL Navigation Task

Mine configuration
changes with every
game.

Game has a strategic
and a visual-motor
component!

Learning curves
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Successful 
learners
look similar: 
plateaus
between 
improvements

Unsuccessful
learners are
DOA!

Navy takes 5 days to tell if a person succeeds/fails.

Task Questions
Is the game hard? What is the source of 
complexity?
Why does human performance plateau out at 80%? 
Is that a feature of the human learning system or 
the game? Can machine learners achieve higher 
levels of competence?
Can we understand why humans learn/fail to learn 
the task? Can we detect inability to learn early 
enough to intervene?
How can we actively shape human learning on this 
task?
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Mathematical characteristics 
of the NRL task

A partially observable Markov decision 
process which can be made fully observable 
by augmentation of state with previous 
action.
State space of size 1014, at each step a 
choice of 153 actions (17 turns and 9 
speeds).
Feedback at the end of up to 200 steps.
Challenging for both humans and machines.

Reinforcement learning

Learner

Task

action

Feedback/reward

state

s1,a1,r1,s2,a2,r2,……….

Reinforcement Learning, Barto and Sutton, MIT Press, 1998.

Reinforcement learning/NRL 
task

Representational hurdles
State and action spaces have to be manageably 
small.
Good intermediate feedback in the form of a 
non-deceptive progress function needed.

Algorithmic hurdles
Appropriate credit assignment policy needed to 
handle the two types of failures (timeouts and 
explosions are different).
Q-learning is too slow to converge (because 
there are up to 200 steps in a single training 
episode).

State space design

Binary distinction on sonar: is it > 50?
Six equivalence classes on bearing: 12, 
{1,2}, {3,4}, {5,6,7},{8,9}, {10,11}
State space size = 27 * 6 = 768.
Discretization of actions

speed: 0, 20 and 40.
turn: -32, -16, -8, 0, 8, 16, 32.

Automated discovery of abstract state spaces for reinforcement learning,
Griffin and Subramanian, 2001.

The dense reward function

r(s,a,s’) =  0  if s’ is a state where player hits mine.
= 1 if s’ is a goal state
= 0.5 if s’ is a timeout state

= 0.75 if s is an all-blocked state and s’ is a not-all-blocked state
= 0.5 + Diff in sum of sonars/1000 if s’ is an all-blocked state
= 0.5 + Diff in range/1000 + abs(bearing - 6)/40 otherwise

Credit assignment policy

Penalize the last action alone in a sequence 
which ends in an explosion.
Penalize all actions in sequence which ends 
in a timeout.
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Simplification of value 
estimation

Estimate the average local reward for each 
action in each state. 

s
s’

t

Q(s,a) = is the sum of rewards from s to terminal state. 

r1
r2 r3
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Instead of learning Q

We maintain an approximation
sasasQ  from  winsofpct *)for  at  rewards of avg running(),(' =

Open question:
When does this
approx work?

Results of learning complete policy

Blue: learn turns
only

Red: learn turn
and speed

Humans make
more effective
use of training
examples. But
Q-learner gets to
near 100% success.

Griffin and Subramanian, 2000

Full Q learner/1500 episodes Full Q learner/10000 episodes

Full Q learner/failure after 10K Why learning takes so long

States
where
3 or fewer
of the 153
action choices
are correct!

Griffin and Subramanian, 2000
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Lessons from machine learning
Task level

Task is hard because states in which action choice is 
critical occur less than 5% of the time.
Staged learning makes task significantly easier
A locally non-deceptive reward function speeds up 
learning.

Reinforcement learning
Long sequence of moves makes credit assignment 

hard; a new cheap approximation to global value 
function makes learning possible for such problems.
Algorithm for automatic discretization of large, 
irregular  state spaces.

Griffin and Subramanian, 2000, 2001

Task Questions
Is the game hard? Is it hard for machines? What 
is the source of complexity?
Why does human performance plateau out at 80%? 
Is that a feature of the human learning system or 
the game? Can machine learners achieve higher 
levels of competence?
Can we understand why humans learn/fail to learn 
the task? Can we detect inability to learn early 
enough to intervene?
How can we actively shape human learning on this 
task?

Tracking human learning

(sensor panel,
joystick action)

Learning
algorithm

Prior knowledge
Model

Strategy mapping
sensor panels
to joystick
action

(time course
data)

Interventions
to aid
learning

Extract strategy and study its evolution over time

Challenges
High-dimensionality of visual data (11 dimensions 
spanning a space of size 1014)
Large volumes of data
Noise in data
Non-stationarity: policies change over time

Embedded learner design
Representation

Use raw visual-motor data stream to induce 
policies/strategies.

Learning
Direct models: lookup table mapping sensors at 
time t and action at t-1 to distribution of 
actions at time t. (1st order Markov model)

Decision-making
Compute “derivative” of the policies over time, 
and use it (1) to classify learner and select 
interventions, (2) to build behaviorally 
equivalent models of subjects

Strategy: mapping from sensors 
to action distributions

w

Window of
w games
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Surely, this can’t work!

There are 1014 sensor configurations 
possible in the NRL Navigation task.
However, there are between 103 to 104 of 
those configurations actually observed by 
humans in a training run of 600 episodes.
Exploit sparsity in sensor configuration 
space to build a direct model of the 
subject.

How do strategies evolve over 
time?

Distance function between strategies: KL-
divergence

)2,(),,(( swiswiwiiP −+−+Π+ΠΔ

w
w

Overlap = s

Results: model derivative

Siruguri and Subramanian, 2002

Before shift (episode 300)

After shift (episode 320)
Model derivative for Hei

Siruguri and Subramanian, 2002
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How humans learn

Subjects have relatively static 
periods of action policy choice 
punctuated by radical shifts.
Successful learners have conceptual 
shifts during the first part of 
training; unsuccessful ones keep 
trying till the end of the protocol!

Behaviorally equivalent models
Model

NRL task

Generating behaviorally 
equivalent models

To compute action a associated with 
current sensor configuration s in a given 
segment,

take 100 neighbors of s in lookup table.
perform locally weighted regression 
(LWR) on these 100 (s,a) pairs.

Subject Cea: Day 5: 1

Subject                                Model

Subject Cea: Day 5: 2

Subject                              Model

Subject Cea: day 5: 3

Subject                                 Model
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Subject Cea: Day 5: 4

Subject                                Model

Subject Cea: Day 5: 5

Subject                                 Model

Subject Cea: Day 5: 6

Subject                                  Model

Subject Cea: Day 5: 7

Subject                                  Model

Subject Cea: Day 5: 8

Subject                              Model

Subject Cea: Day 5: 9

Subject                                  Model
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Comparison with global methods

Siruguri and Subramanian, 2002

Summary
We can model subjects on the NRL task in 
real-time, achieving excellent fits to their 
learning curves, using the available visual-
motor data stream.
One of the first in cognitive science to 
directly use objective visual-motor 
performance data to derive evolution of 
strategy on a complex task.

Where’s the science? Lessons 
Learn simple models from objective, low-
level data!
Non-stationarity is commonplace, need to 
design algorithms robust with respect to it.
Fast new algorithms for detecting change-
points and building predictive stochastic 
models for massive, noisy, non-stationary, 
vector time series data.

Neural correlates

Are there neural 
correlates to 
strategy shifts 
observed in the 
visual-motor data?

Task Questions
Can we adapt training protocols in the NRL 
task by identifying whether subjects are 
struggling with strategy formulation or 
visual-motor control or both?
Can we use analysis of EEG data gathered 
during learning as well as visual-motor 
performance data to correlate ‘brain 
events’ with ‘visual-motor performance 
events’? Can this correlation separate 
subjects with different learning 
difficulties?
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The (new) NRL Navigation Task Gathering performance data

256 channel EEG recording

Fusing EEG and visualmotor data

EEG
Data

Artifact 
Removal

Coherence 
computation

Visualization 
Mechanism

Performance
Data

The coherence function
Coherence provides the means to 
measure synchronous activity 
between two brain areas
A function that calculates the 
normalized cross-power spectrum, a 
measure of similarity of signal in the 
frequency domain
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Frequency bands
Coherence map of connections in 
each band 

Δ (0-5 Hz)
θ (5-9 Hz)
α (9-14 Hz)
β (14-30 Hz)
γ (40-52 Hz)

Topological coherence map

Front

Back
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Target

Target - control Target - control

Target

Control Control

Subject moh progression chart

Results (subject moh) Results

Subject bil progression chart

Results (subject bil)

Baluch, Zouridakis, Stevenson and Subramanian, 2005, 2006

Subject G

Subject is in
skill refinement
phase

Subject is a near-
expert performer

Baluch, Zouridakis, Stevenson and Subramanian, 2005, 2006
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Subject V
Subject
never
learned a
good strategy

It wasn’t
for lack 
of trying..

Baluch, Zouridakis, Stevenson and Subramanian, 2005, 2006

There are distinct EEG coherence map signatures 
associated with different learning difficulties

Lack of strategy 
Shifting between too many strategies

Subjects in our study who showed a move from a 
low level of performance to a high level of 
performance show front to back synchrony in the 
gamma range or long range gamma synchrony 
(LRGS). 
We are conducting experiments on more subjects 
to confirm these findings. (14 subjects so far, and 
more are being collected right now.)

Results

What else is this good for?
Using EEG readouts to analyze the 
effectiveness of video games for relieving 
pre-operative stress in children (A. Patel, 
UMDNJ).
Using EEG to read emotional state of 
players in immersive video games (M. Zyda, 
USC).
Analyzing human performance on any 
visualmotor task with significant strategic 
component. 

Details, please……

Publications
Human Learning and the Neural Correlates of Strategy Formulation, F. Baluch, D. Subramanian and G. 
Zouridakis, 23rd Annual Conference on Biomedical Engineering Research, 2006.
Understanding Human Learning on Complex Tasks by Functional Brain Imaging, D. Subramanian, R. 
Bandyopadhyay and G. Zouridakis, 20th Annual Conference on Biomedical Engineering Research, 2003.
Tracking the evolution of learning on a visualmotor task Devika Subramanian and Sameer Siruguri, 
Technical report TR02-401, Department of Computer Science, Rice University, August 2002. 
Tracking the evolution of learning on a visualmotor task Sameer Siruguri, Master's thesis under the 
supervision of Devika Subramanian, May 2001. 
State Space Discretization and Reinforcement Learning, S. Griffin and D. Subramanian, Technical 
report, Department of Computer Science, Rice University, June 2000.
Inducing hybrid models of learning from visualmotor data , Proceedings of the 22nd Annual 
Conference of the Cognitive Science Society, Philadelphia, PA, 2000. 
Modeling individual differences on the NRL Navigation task, Proceedings of the 20th Annual 
Conference of the Cognitive Science Society, Madison, WI, 1998 (with D. Gordon). 
A cognitive model of learning to navigate, Proceedings of the 19th Annual Conference of the Cognitive 
Science Society, Stanford, CA, 1997 (with D. Gordon). 
Cognitive modeling of action selection learning, Proceedings of the 18th Annual Conference of the 
Cognitive Science Society, San Diego, 1996 (with D. Gordon) 

Roadmap of talk
Four case-studies

Unknown system, changing dynamics
Tracking human learning on a complex visual-
motor task. 
Predicting the evolution of international 
conflict.
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Adaptive Systems

System

The worldThe world

Early warning
of conflict

Wire news
Learning
algorithm

Prior knowledge
Model

Models of
conflict evolution

Task Question
Is it possible to monitor news media from 
regions all over the world over extended 
periods of time, extracting low-level events
from them, and piece them together to 
automatically track and predict conflict in 
all the regions of the world? 

The Ares project

Online
Information
Sources

Online
Information
Sources

Rice
Event
Data

Extractor

Singularity
detection

Hubs &
Authorities

Models

AP, AFP,
BBC, Reuters,
…

Over 1 million
articles on the
Middle East from
1979 to 2005 (filtered 
automatically)

http://ares.cs.rice.edu

Analysis of wire stories

Date Actor Target W eis Code Wies event Goldstein scale
790415 ARB ISR 223 (MIL ENGAGEMENT) -10
790415 EGY AFD 194 (HALT NEGOTIATION) -3.8
790415 PALPL ISR 223 (MIL ENGAGEMENT) -10
790415 UNK ISR 223 (MIL ENGAGEMENT) -10
790415 ISR EGY 31 (MEET) 1
790415 EGY ISR 31 (MEET) 1
790415 ISRMIL PAL 223 (MIL ENGAGEMENT) -10
790415 PALPL JOR 223 (MIL ENGAGEMENT) -10
790415 EGY AFD 193 (CUT AID) -5.6
790415 IRQ EGY 31 (MEET) 1
790415 EGY IRQ 31 (MEET) 1
790415 ARB CHR 223 (MIL ENGAGEMENT) -10
790415 JOR AUS 32 (VISIT) 1.9
790415 UGA CHR 32 (VISIT) 1.9
790415 ISRGOV ISRSET 54 (ASSURE) 2.8

Singularity detection
on aggregated events
data

Hubs and authorities
analysis of events
data

Relevance filter

Embedded learner design
Representation 

Identify relevant stories, extract event data 
from them, build time series models and graph-
theoretic models.

Learning
Identifying regime shifts in events data, 
tracking evolution of militarized interstate 
disputes (MIDs) by hubs/authorities analysis of 
events data

Decision-making
Issuing early warnings of outbreak of MIDs

Identifying relevant stories
Only about 20% of stories contain events that 
are to be extracted.

The rest are interpretations, (e.g., op-eds), or are 
events not about conflict (e.g., sports)

We have trained Naïve Bayes (precision 86% 
and recall 81%), SVM classifiers (precision  
92% and recall 89%) & Okapi classifiers 
(precision 93% and recall 87%) using a labeled 
set of 180,000 stories from Reuters. 
Surprisingly difficult problem!

Lack of large labeled data sets; 
Poor transfer to other sources (AP/BBC)
The category of “event containing stories” is not well-
separated from others, and changes with time

Lee, Tran, Singer, Subramanian, 2006



14

Okapi classifier
Reuters data set: 
relevant categories 
are GVIO, GDIP, G13; 
irrelevant categories: 
1POL, 2ECO, 3SPO, 
ECAT, G12, G131, 
GDEF, GPOL

Irr

Rel
New article

Decision rule: sum of top N Okapi scores in Rel set >
sum of top N Okapi scores in Irr set
then classify as rel; else irr

Okapi measure takes
two articles and gives
the similarity between them.

Event extraction

Parse sentence

Klein and Manning parser

Pronoun de-referencing

Sentence fragmentation

Correlative conjunctions

Extract embedded sentences (SBAR)

Conditional random fields
We extract who (actor) did what (event) to whom (target) 

Not exactly the same as NER 
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Results

200 Reuters sentences; hand-labeled with actor, target,
and event codes (22 and 02).

TABARI
is state
of the art
coder
in political
science

Stepinksi, Stoll, Subramanian 2006

Events data

177,336 events from April 1979 to October 2003 in Levant
data set (KEDS). 

Date Actor Target Weis Code Wies event Goldstein scale
790415 ARB ISR 223 (MIL ENGAGEMENT) -10
790415 EGY AFD 194 (HALT NEGOTIATION) -3.8
790415 PALPL ISR 223 (MIL ENGAGEMENT) -10
790415 UNK ISR 223 (MIL ENGAGEMENT) -10
790415 ISR EGY 31 (MEET) 1
790415 EGY ISR 31 (MEET) 1
790415 ISRMIL PAL 223 (MIL ENGAGEMENT) -10
790415 PALPL JOR 223 (MIL ENGAGEMENT) -10
790415 EGY AFD 193 (CUT AID) -5.6
790415 IRQ EGY 31 (MEET) 1
790415 EGY IRQ 31 (MEET) 1
790415 ARB CHR 223 (MIL ENGAGEMENT) -10
790415 JOR AUS 32 (VISIT) 1.9
790415 UGA CHR 32 (VISIT) 1.9
790415 ISRGOV ISRSET 54 (ASSURE) 2.8

What can be predicted?
Singularity detection

Stoll and Subramanian, 2004, 2006

Singularities = MID start/end
biweek Date 

range
event

17-35 11/79 to 
8/80

Start of Iran/Iraq war

105-111 4/83 to 
7/83

Beirut suicide attack, end of Iran/Iraq war

244 1/91 to 2/91 Desert Storm

413-425 1/95 to 7/95 Rabin assassination/start of Intifada

483-518 10/97 to 
2/99

US/Iraq confrontation via Richard Butler/arms 
inspectors

522-539 4/99 to 
11/99

Second intifada Israel/Palestine

Interaction graphs
Model interactions between countries 
in a directed graph.

Date Actor Target Weis Code Wies event Goldstein scale
790415 ARB ISR 223 (MIL ENGAGEMENT) -10
790415 EGY AFD 194 (HALT NEGOTIATION) -3.8
790415 PALPL ISR 223 (MIL ENGAGEMENT) -10
790415 UNK ISR 223 (MIL ENGAGEMENT) -10
790415 ISR EGY 31 (MEET) 1

ARB                       ISR

EGY                 UNK

AFD                    PALPL
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Hubs and authorities for 
events data

A hub node is an important initiator of 
events.
An authority node is an important target of 
events.
Hypothesis: 

Identifying hubs and authorities over a 
particular temporal chunk of events data tells 
us who the key actors and targets are.
Changes in the number and size of connected 
components in the interaction graph signal 
potential outbreak of conflict.

Hubs/Authorities picture of 
Iran Iraq war

2 weeks prior to Desert Storm Validation using MID data
Number of bi-weeks with MIDS in Levant data: 41 
out of 589.
Result 1: Hubs and Authorities correctly identify 
actors and targets in impending conflict.
Result 2: Simple regression model on change in  
hubs and authorities scores, change in number of 
connected components, change in size of largest 
component 4 weeks before MID, predicts MID 
onset.
Problem: false alarm rate of 16% can be reduced 
by adding political knowledge of conflict.

Stoll and Subramanian, 2006

Current work
Extracting economic events along 
with political events to improve 
accuracy of prediction of both 
economic and political events.
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Publications
An OKAPI-based approach for article filtering, Lee, Than, Stoll, Subramanian, 2006 
Rice University Technical Report.
Hubs, authorities and networks: predicting conflict using events data, R. Stoll and D. 
Subramanian, International Studies Association, 2006 (invited paper). 
Events, patterns and analysis, D. Subramanian and R. Stoll, in Programming for Peace: 
Computer-aided methods for international conflict resolution and prevention, 2006, 
Springer Verlag, R. Trappl (ed). 
Four Way Street? Saudi Arabia's Behavior among the superpowers, 1966-1999, R. Stoll 
and D. Subramanian, James A Baker III Institute for Public Policy Series, 2004. 
Events, patterns and analysis: forecasting conflict in the 21st century, R. Stoll and D. 
Subramanian, Proceedings of the National Conference on Digital Government Research, 
2004.
Forecasting international conflict in the 21st century, D. Subramanian and R. Stoll, in 
Proc. of the Symposium on Computer-aided methods for international conflict 
resolution, 2002. 

The research team

Embedded Adaptive Systems

System for
a task

EnvironmentEnvironment

actions

observations

Calculate decisions on the basis of learned models of systems

Learning
algorithm

Prior knowledge
Model

The fine structure of adaptive 
embedded systems

SystemBase
decisions
on 
objective
data.

Extract Segment

Non-stationarity is pervasive. Robust algorithms for detection.

Model Adapting 
complex
models is
expensive; 
lightweight 
local models
are right 
choice.

actions

observations

Prior knowledge

The vision
“System 
identification” for 
large, non-stationary 
(distributed) systems.
Off-the-shelf 
components for 
putting together 
feedback controllers 
with performance 
guarantees for such 
systems.

Collaborators

Tracking human learning
Diana Gordon, ONR/University of 
Wyoming and Sandra Marshall, San Diego 
State University, George Zouridakis, 
University of Houston

Tracking conflict
Richard Stoll, Rice University
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Students
Human learning

Richard Thrapp, National 
Instruments
Peggy Fidelman, PhD in 
CS/UT Austin
Igor Karpov, PhD in CS/UT 
Austin
Paul Ramirez
Gwen Thomas, Green Hills
Tony Berning
Gunes Ercal (CRA mentee)
Deborah Watt (CRA 
mentee)

Scott Griffin, Rational
Scott Ruthfield, 
Microsoft
Chris Gouge, Microsoft
Stephanie Weirich (Asst. 
Prof. at UPenn)
Sameer Siruguri, MS 
Lisa Chang, MS, IBM
Nuvan Rathnayake, Rice 
junior
Ian Stevenson, PhD 
neuroscience, 
Northwestern
Farhan Baluch, University 
of Houston, MS 2006

Students
Conflict

Michael Friedman, Rice sophomore
Adam Larson, Rice senior
Adam Stepinski, Rice sophomore
Clement Pang, Rice junior
Benedict Lee, MS 2007
Derek Singer, Rice junior

Sponsors
Conflict analysis: NSF ITR 0219673
Human learning: ONR  N00014-96-1-0538


