
Adaptive Optimizing Compilers
for the 21st Century

Los Alamos Computer Science Institute

2001 Symposium

Keith D. Cooper Devika Subramanian Linda Torczon

Department of Computer Science
Rice University

Houston, Texas, USA

Adaptive Optimizing Compilers 2

The Big Picture

• For 45 years, compilers have followed the Fortran model

• Structure is ingrained in our heads, our books, & our tools
> Fixed set of passes in a predetermined order
> Clear division of labor between components

• This structure has let us make progress
> New languages, new optimizations, new targets

Front
End

Front End Middle End Back End

Index
Optimiz’n

Code
Merge

bookkeeping

Flow
Analysis

Register
Alloc’n

Final
Assembly

The FORTRAN Automatic Coding System (IBM, 1957)

Adaptive Optimizing Compilers 3

The Big Picture

• RISC made compilers more responsible for performance

• Subsequent architectures rely more heavily on the compiler

> In 1980, 85% or more of peak was typical
> In 2001, often it is 5% to 10% of peak

• How has the compiler community responded?
> Better analyses
> More transformations

Fortran

C & C++

Java

Front End
Middle End Back

End

Interpr.
Anal. &
Optim’n

Loop
Nest

Optim’n

Global
Optim’n

Code
Gen.

The Pro64 Compiler (SGI, 2000)

But, we have not changed the fundamental
structure of compilers since 1957

*

Adaptive Optimizing Compilers 4

The Big Picture

• The time has come to re-examine fundamental assumptions

• Compiler’s organization is set long before it sees the user’s code

> Fixed set of transformations, fixed order
> Same strategy for all programs and all targets
> Same (implicit) objective function for all compilations

> Compiler writer must accurately predict the user’s needs

Front End Middle End Back End

• Compiler writers are good, but not that good!
> Need flexible structures that adapt to user’s needs

*

Adaptive Optimizing Compilers 5

The Big Picture

Maybe we should learn from other fields ...

In numerical analysis, optimization means

• Finding a (local) minimizer for some objective function

In compilation, optimization has meant

• Running a fixed series of passes & declaring victory

In benchmarking (where performance counts)

• Many flags control the compiler’s behavior

• Experts profile code and choose settings for flags

We can build compilers that automate this kind of tuning

It takes multiple rounds of trial and evaluation to find an answer

*

Adaptive Optimizing Compilers 6

We are exploring new organizing principles

• Explicit objective function (chosen by the user)

• Steering algorithm controls optimizer and back end
> Picks & orders methods, chooses parameters
> Use multiple trials to explore the solution space

> Finds a configuration to minimize objective function

Adaptive Compilers

Vary parameters

Objective
function

executable
code

Front end
remains intact

Steering
Algorithm

Adaptive Optimizing Compilers 7

These adaptive compilers

• Adapt to the program, the target, & the objective function

• Use power of modern computers to improve code quality

• Produce better results than their fixed-sequence siblings

Adaptive Compilers

Vary parameters

Objective
function

executable
code

Front end
remains intact

Steering
Algorithm

• Are much more expensive (today) than fixed-sequence compilers

*

Adaptive Optimizing Compilers 8

What’s the Point?

These compiler configurations matter ...

• Choice of transformations

> Significant overlap in coverage
> Each code has different opportunities
> Best choice depends on input, target, & objective function

• Order of transformation
> They create & destroy opportunities for each other

> We see 2x variations up and down on simple codes
> Best choice depends on input, target, & objective function

• We do not know enough, today, to predict a good sequence

• Our prototype systems search the space of sequences

⇒

Adaptive Optimizing Compilers 9

Adaptive Compilation

Our goals

• Short term
> Characterize the problems, the potential, & the search space
> Learn to find outstanding sequences quickly (search)

• Medium term
> Develop practical adaptive compilers for scalar optimization
> Develop a framework for self-tuning optimizers
> Develop proxies and estimators for performance (speed)

• Long term
> Apply these techniques to harder problems

→ Data distribution, parallelization schemes on real codes
→ Compiling for complex environments, like the Grid

> Build systems that use knowledge from search to make
adaptive compilation both practical & routine

P
r
o
c
e
s
s
o
r

S
p
e
e
d

*

Adaptive Optimizing Compilers 10

Adaptive Compilation

Research prototype

• Based on MSCP compiler

• 20 transformations
> Run in any order (not easy)

> Many options & variants

• Search-based steering algorithms
> Hill-climber

> Variations on a genetic algorithm
> Exhaustive enumeration

• Objective functions

> Run-time speed
> Code space
> Dynamic bit-transitions

Vary parameters

Objective
function

executable
code

Front end

Steering
Algorithm

• Experimental tool

> Exploring applications
> Learning about search space
> Designing better searches

Adaptive Optimizing Compilers 11

Experimental Results

Early Experiments

• Space then speed (10 transformation subset)
> 13% smaller code than fixed sequence (0 to 41%)
> Code was generally faster (26% to -25%; 5 of 14 slower)

• Speed then space

> 20% faster code than fixed sequence (best was 26%)
> Code was generally smaller (0 to 5%)

• Genetic Algorithm

> Evaluate each sequence
> Replace worst + 3 at each generation
> Generate new strings with crossover

> Apply mutation to all, save the best

• Found “best” sequence in 200 to 300 generations of size 20

Register-relative procedure abstraction
gets 5% space, -2% speed

*

GA took many fewer
probes to find “best”
sequence than did
random sampling.

Adaptive Optimizing Compilers 12

Experimental Results

Improving the Genetic Algorithm

• Experiments aimed at understanding & improving convergence

GA now dominates
both the hill climber
and random probing
of the search space, in
results/work.

*

• Larger population helps
> Tried pools from 50 to 1000, 100 to 300 is about right

• Use weighted selection in reproductive choice (vs. random)
> Fitness scaling to exaggerate late, small improvements

• Crossover
> 2 point, random crossover
> Apply “mutate until unique” to each new string

• Variable length chromosomes
> With fixed string, GA discovers NOPs
> Varying string rarely has useless pass

Adaptive Optimizing Compilers 13

Experimental Results

Characterizing the Search Space

• Took one application, FMIN

> 150 lines of Fortran, 44 basic blocks
> Exhibited complex behavior in other experiments

• Ran hill-climber from many random starting points
> Picked the 5 most used passes from winners

• Generating all strings of length 10 from those 5

> About 10,000,000 combinations
> 34,000 to 37,000 experiments/machine/day
> Produces sequence & number of cycles to execute

> Finished 2.8 million to date

• We’re learning from the results
FMIN

Adaptive Optimizing Compilers 14

Experimental Results

After 2,800,099 sequences

• Best sequence is 1002 cycles

• Worst sequence is 3316

• Unoptimized code takes 1765

• Range of - 43% to + 88%

• GA found better sequences (using full set of transformations)

> GA found 822 in 184 generations of 100
> Another run found 825 in 152 generations of 100

• Hill climber finds local minima fairly quickly

> 833 at round 2232
> 830 at round 750 }Sensitive to starting point

(best runs)

Score Sequences % of Solutions
Best 1 0.000036%
1% 14,968 0.53%
2% 84,926 3%
5% 213,674 8%

10% 299,582 11%
15% 354,762 13%
20% 354,762 13%
25% 372,413 13%

Worst 3,874 0.14%

*

Adaptive Optimizing Compilers 15

Adaptive Optimizing Compilers

What problems remain?

• Convergence

> Better steering algorithms
> Good starting points
> Stopping criteria

• Speed
> Estimators for speed & other performance criteria
> Shrinking the search space (one result of FMIN)

• Pragmatism
> Engineering systems that trade compile time against results
> Designing & engineering components that can be re-ordered

⇒

Adaptive Optimizing Compilers 16

The 21st Century Optimizing Compiler

We are building a new generation of flexible, self-tuning optimizers
that reorganize to match the source, target, & objective

• Harness code quality to Moore’s law

• Automatically adapts behavior to changing situation

• Puts control in the user’s hands ♦

Vary parameters

Objective
function

executable
code

Front end

Steering
Algorithm

Adaptive Optimizing Compilers 17

EXTRA SLIDES START HERE

Adaptive Optimizing Compilers 18

Experimental Results

Optimizing for new criteria

• Bit-transitions between successive operations

> Represents one component of processor power consumption
> May be significant on DSP chips

• Built an objective function that measures transitions & turned the
GA loose on the problem

> Saw 6 to 7% reductions from fixed sequence
> Using vendor’s simulator to estimate actual power savings

• The GA is optimizing over compiler’s pseudo-random behavior

Adaptive Optimizing Compilers 19

Details on FMIN

The transformations

• Logical peephole optimization

• partial redundancy elimination

• dead code elimination

• copy coalescing

• loop peeling

Adaptive Optimizing Compilers 20

Adaptive Optimizing Compilers

Making it practical

• Algorithm needs good stopping criteria
> Stop when it ceases to make progress, or ∆ is tiny

> Stop after a specified amount of time
> Stop when it reaches some actual goal (k bytes of code)

Other options for mitigating the cost

• Use k best sequences for routine compilation

• Find program-specific sequence, then reuse it

• Distribute the search over many compiles
> Start from previous best sequences & improve

This should be fertile ground for research & experimentation

⇐

Adaptive Optimizing Compilers 21

Why is this Problem Hard?

Consider one optimization - eliminating redundancy

• Many techniques have been proposed

• Each catches a different set of cases

And, there are many others ...

SCCVN
& VDCM

Balke

DVNT
Balke - Value Numbering

DVNT - Dominator VN

SCCVN & VDCM - Global VN
LCM

AVAIL
AVAIL - Classic CSE

LCM - Lazy Code Motion

AWZ

AWZ - Partitioning algorithm

SSC

SCC

SSC - Sparse Simple Constant

SCC - Sparse Cond. Constant

⇐

