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The Big Picture

• For 45 years, compilers have followed the Fortran model

• Structure is ingrained in our heads, our books, & our tools
> Fixed set of passes in a predetermined order
> Clear division of labor between components

• This structure has let us make progress
> New languages, new optimizations, new targets
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The Big Picture

• RISC made compilers more responsible for performance

• Subsequent architectures rely more heavily on the compiler

> In 1980, 85% or more of peak was typical
> In 2001, often it is 5% to 10% of peak

• How has the compiler community responded?
> Better analyses
> More transformations
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The Pro64 Compiler (SGI, 2000)

But, we have not changed the fundamental
structure  of compilers since 1957

*
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The Big Picture

• The time has come to re-examine fundamental assumptions

• Compiler’s organization is set long before it sees the user’s code

> Fixed set of transformations, fixed order
> Same strategy for all programs and all targets
> Same (implicit) objective function for all compilations

> Compiler writer must accurately predict the user’s needs

Front End Middle End Back End

• Compiler writers are good, but not that good!
> Need flexible structures that adapt to user’s needs

*
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The Big Picture

Maybe we should learn from other fields ...

In numerical analysis, optimization means

• Finding a (local) minimizer for some objective function

In compilation, optimization has meant

• Running a fixed series of passes & declaring victory

In benchmarking (where performance counts)

• Many flags control the compiler’s behavior

• Experts profile code and choose settings for flags

We can build compilers that automate this kind of tuning

It takes multiple rounds of trial and evaluation to find an answer

*
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We are exploring new organizing principles

• Explicit objective function              (chosen by the user )

• Steering algorithm controls optimizer and back end
> Picks & orders methods, chooses parameters
> Use multiple trials to explore the solution space

> Finds a configuration to minimize objective function

Adaptive Compilers 
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These adaptive compilers

• Adapt to the program, the target, &  the objective function

• Use power of modern computers to improve code quality

• Produce better results than their fixed-sequence siblings

Adaptive Compilers 
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• Are much more expensive (today) than fixed-sequence compilers

*
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What’s the Point?

These compiler configurations matter ...

• Choice of transformations

> Significant overlap in coverage
> Each code has different opportunities
> Best choice depends on input, target, & objective function

• Order of transformation
> They create & destroy opportunities for each other

> We see 2x variations up and down on simple codes
> Best choice depends on input, target, & objective function

• We do not know enough, today, to predict a good sequence

• Our prototype systems search the space of sequences

⇒
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Adaptive Compilation

Our goals

• Short term
> Characterize the problems, the potential, & the search space
> Learn to find outstanding sequences quickly                  (search)

• Medium term
> Develop practical adaptive compilers for scalar optimization
> Develop a framework for self-tuning optimizers
> Develop proxies and estimators for performance           (speed )

• Long term
> Apply these techniques to harder problems

→ Data distribution, parallelization schemes on real codes
→ Compiling for complex environments, like the Grid

> Build systems that use knowledge from search to make
adaptive compilation both practical & routine
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Adaptive Compilation

Research prototype

• Based on MSCP compiler

• 20 transformations
> Run in any order (not easy)

> Many options & variants

• Search-based steering algorithms
> Hill-climber

> Variations on a genetic algorithm
> Exhaustive enumeration

• Objective functions

> Run-time speed
> Code space
> Dynamic bit-transitions

Vary parameters
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• Experimental tool

> Exploring applications
> Learning about search space
> Designing better searches
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Experimental Results

Early Experiments

• Space then speed     (10 transformation subset)
> 13% smaller code than fixed sequence  (0 to 41%)
> Code was generally faster  (26% to -25%; 5 of 14 slower)

• Speed then space

>  20% faster code than fixed sequence          (best was 26%)
> Code was generally smaller     (0 to 5%)

• Genetic Algorithm

> Evaluate each sequence
> Replace worst + 3 at each generation
> Generate new strings with crossover

> Apply mutation to all, save the best

• Found “best” sequence in 200 to 300 generations of size 20

Register-relative procedure abstraction
gets  5% space, -2% speed

*

GA took many fewer
probes to find “best”
sequence than did
random sampling.
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Experimental Results

Improving the Genetic Algorithm

• Experiments aimed at understanding & improving convergence

GA now dominates
both the hill climber
and random probing
of the search space, in
results/work.

*

• Larger population helps
> Tried pools from 50 to 1000, 100 to 300 is about  right

• Use weighted selection in reproductive choice              (vs. random)
> Fitness scaling to exaggerate late, small improvements

• Crossover
> 2 point, random crossover
> Apply “mutate until unique” to each new string

• Variable length chromosomes
> With fixed string, GA discovers NOPs
> Varying string rarely has useless pass
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Experimental Results

Characterizing the Search Space

• Took one application, FMIN

> 150 lines of Fortran, 44 basic blocks
> Exhibited complex behavior in other experiments

• Ran hill-climber from many random starting points
> Picked the 5 most used passes from winners

• Generating all strings of length 10 from those 5

> About 10,000,000 combinations
> 34,000 to 37,000 experiments/machine/day
> Produces sequence & number of cycles to execute

> Finished 2.8 million to date

• We’re learning from the results
FMIN
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Experimental Results

After 2,800,099 sequences

• Best sequence is 1002 cycles

• Worst sequence is 3316

• Unoptimized code takes 1765

• Range of - 43% to + 88%

• GA found better sequences            (using full set of transformations)

> GA found 822 in 184 generations of 100
> Another run found 825 in 152 generations of 100

• Hill climber finds local minima fairly quickly

> 833 at round 2232
> 830 at round 750 }Sensitive to starting point

(best runs)

Score Sequences % of Solutions
Best 1 0.000036%
1% 14,968 0.53%
2% 84,926 3%
5% 213,674 8%

10% 299,582 11%
15% 354,762 13%
20% 354,762 13%
25% 372,413 13%

Worst 3,874 0.14%

*
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Adaptive Optimizing Compilers

What problems remain?

• Convergence

> Better steering algorithms
> Good starting points
> Stopping criteria

• Speed
> Estimators for speed & other performance criteria
> Shrinking the search space          (one result of FMIN )

• Pragmatism
> Engineering systems that trade compile time against results
> Designing & engineering components that can be re-ordered

⇒



Adaptive Optimizing Compilers 16

The 21st Century Optimizing Compiler

We are building a new generation of flexible, self-tuning optimizers
that reorganize to match the source, target, & objective

• Harness code quality to Moore’s law

• Automatically adapts behavior to changing situation

• Puts control in the user’s hands  ♦
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EXTRA SLIDES START HERE
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Experimental Results

Optimizing for new criteria

• Bit-transitions between successive operations

> Represents one component of processor power consumption
> May be significant on DSP chips

• Built an objective function that measures transitions & turned the
GA loose on the problem

> Saw 6 to 7% reductions from fixed sequence
> Using vendor’s simulator to estimate actual power savings

• The GA is optimizing over compiler’s pseudo-random behavior
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Details on FMIN

The transformations

• Logical peephole optimization

• partial redundancy elimination

• dead code elimination

• copy coalescing

• loop peeling
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Adaptive Optimizing Compilers

Making it practical

• Algorithm needs good stopping criteria
> Stop when it ceases to make progress, or ∆ is tiny

> Stop after a specified amount of time
> Stop when it reaches some actual goal         (k bytes of code)

Other options for mitigating the cost

• Use k best sequences for routine compilation

• Find program-specific sequence, then reuse it

• Distribute the search over many compiles
> Start from previous best sequences & improve

This should be fertile ground for research & experimentation

⇐
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Why is this Problem Hard?

Consider one optimization - eliminating redundancy

• Many techniques have been proposed

• Each catches a different set of cases

And, there are many others ...

SCCVN
& VDCM

Balke

DVNT
Balke - Value Numbering

DVNT - Dominator VN

SCCVN & VDCM - Global VN
LCM

AVAIL
AVAIL - Classic CSE

LCM - Lazy Code Motion

AWZ

AWZ - Partitioning algorithm

SSC

SCC

SSC - Sparse Simple Constant

SCC - Sparse Cond. Constant

⇐


