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Abstract

We propose a new approach to computationally reverse-

engineer models of biological systems from data. Our goal

is to construct models for normal cells and for diseased

cells, so that we can explain changes in gene expression

levels as a function of changes in the underlying biological

processes. Limited data availability makes it challenging

to learn accurate process models ab initio on a genome-

wide scale. Our method — Predicting Altered Pathways

using Extendable Scaffolds (PAPES) — compensates for

the lack of data by exploiting available knowledge of ge-

netic and metabolic processes. There are two key ideas

in this paper. First, instead of working with individual

genes, we use sets of genes that occur in a known biolog-

ical pathway—not restricted to those that are differen-

tially expressed—to construct component process mod-

els. Each component process model is represented as a

Bayesian network with nodes for both the observed gene

expression levels and the unobserved metabolites in the

pathway. The structure of each component model is de-

rived from pathway databases. Second, we compose these

models in a novel manner to construct process represen-

tations for both normal and diseased cells. This com-

position yields larger scale networks that capture inter-

actions among pathways in complex diseases. Using pub-

licly available gene expression data on prostate cancer, we

show that the method can learn process modifications in

two coupled metabolic pathways (glutathione and urea)

in prostate cancer cells.

1 Introduction

There is increasing evidence that disease progression
in complex diseases, especially solid tumors, does not
arise from an individual molecule or gene, but from
complex interactions between a cell’s numerous con-
stituents and its environment.While numerous stud-
ies identify genes and proteins differentially expressed
in diseased cells [4, 6, 8], they are yet to yield detailed
understanding of the underlying genetic and/or regu-

latory events that lead to the initiation and progres-
sion of diseases such as cancer. Our goal is to use
computational learning methods to elucidate from
high-throughput gene expression data and additional
proteomic or metabolic data, the nature of the altered
interactions that characterized diseased cells.

A significant obstacle to the application of compu-
tational learning methods for solving this problem is
the extremely small amount of data—a few hundred
samples in a typical study—which effectively elimi-
nates ab initio methods. Our approach, therefore,
combines known information about the genetic and
metabolic pathways affected by a disease with the
available gene expression and proteomic data, and
attempts to reverse-engineer the most plausible mod-
ifications to these pathways.

This paper is organized as follows. Section 2 de-
scribes related work in applying machine learning
to expression data. Section 3 describes our itera-
tive method for incrementally constructing a disease
model incorporating gene expression data and biolog-
ical pathway information. Our approach is generally
applicable to a variety of complex genetic diseases.
Section 4 presents results obtained by applying our
approach to two pathways that have been implicated
in prostate cancer, and makes testable predictions
about the levels of a number of significant metabolites
involved. With our clinical collaborator, we plan to
validate the structures of the learned networks. Sec-
tion 5 summarizes the contributions of this paper and
outlines our plans for subsequent research.

2 Related Work

2.1 Representing networks

Pathways can be represented at several levels of ab-
straction ranging from network models which em-
phasize the fundamental components (genes and
metabolic products) and connections between them
(the L1 models as defined in [5]), to detailed differ-
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ential equation models of the kinetics of specific re-
actions (the L2 models). The choice of abstraction
level is generally a function of the biological problem
being addressed and the type and quantity of data
available.

Bayesian networks are directed acyclic graphs
which can be viewed as factored representations of
the joint probability distribution on the values (or
levels) of all the nodes in the network. They have
been used in a wide variety of models generated from
gene expression data. Unlike purely qualitative mod-
els, Bayesian networks represent quantitative infor-
mation in the form of conditional probabilities of
nodes given their parent nodes in the network.

Given a Bayesian network and its parameters, the
network can be queried to obtain the probability dis-
tribution of unobserved nodes conditional on the val-
ues of the observed nodes. For most machine learning
applications, the goal is to learn the network param-
eters and often the network structure itself from the
data.

2.2 Learning interaction networks

Algorithms for learning the structure of a Bayesian
network from data use a scoring function that evalu-
ates the probability of a given network G with respect
to the data D: P (G|D) = α ∗ P (D|G) ∗ P (G), where
P (G) is a prior on the network structure and P (D|G)
is the likelihood of the data given the network; that
is, how well the data is explained by the network. An
optimal network maximizes this scoring function.

Learning Bayesian network models from gene ex-
pression microarrays raises many computational and
representational challenges. The number of possible
Bayesian networks on n nodes is super-exponential
in n, and learning an optimal Bayesian network from
data is NP-hard. Considerable research is devoted
to finding good approximations to optimal networks,
although many of these approximation methods are
themselves computationally infeasible for problems
involving several thousand genes. The sparse can-
didate algorithm [3] is suitable for problems involving
up to a few hundred nodes.

Even so, learning a Bayesian network for an en-
tire microarray experiment is computationally infea-
sible, so the question of which nodes to include in the
network construction process is very important. In
ab initio construction of gene regulatory networks, a
starter set of differentially expressed genes obtained
from a pre-processing phase (such as by clustering

or correlational analyses followed by thresholding on
p-values) is used [3].

A significantly greater problem with current data
sets is that although gene expression microarrays
measure the expression levels of many thousands of
genes simultaneously, a typical study includes at most
a few hundred different samples. This is far too few
to reliably reconstruct a unique network model. In
fact, it is not unusual for an exponential number of
different networks on a given set of nodes to have
the same high score! To circumvent this fundamental
limitation on the amount of data needed to learn net-
work structures with high confidence, two approaches
have been considered. One is to extract common fea-
tures (such as edges between nodes) in all high scoring
networks as suggested in [2]. Even common features,
however, may simply be artifacts of noisy data and
its preprocessing (such as discretization), since there
is so little data.

A different approach for overcoming the problems
created by the small number of samples is to incorpo-
rate known biological information and incrementally
add additional genes into the network using existing
knowledge about gene interactions. Segal et al. [7]
have combined gene expression data and promoter
sequence data to identify transcriptional modules in
Saccharomyces cerevisiae.

3 Predicting Altered Pathways
using Extendable Scaffolds

Can we begin with data on gene expression and pos-
sibly protein levels from both normal and cancerous
tissue of various grades of prostate cancer, and derive
network models that explain the differences in the
observed data? The most straightforward approach
would be to gather huge amounts of gene expression
and proteomic data on large samples of tissues and
cells, and infer discriminative Bayesian network mod-
els directly. This is not feasible because we simply do
not have enough data on normal and tumor samples,
and ab initio learning of pathway networks with thou-
sands of genes is computationally infeasible.

Figure 1 shows our approach—Predicting Altered
Pathways using Extendable Scaffolds (PAPES)—for
finding disease-affected cellular pathways. PAPES
begins with a set of differentially expressed genes and
the pathways to which they belong. Component net-
works are generated from portions of the pathways
in which the differentially expressed genes occur, and
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Figure 1: The extendable scaffold method for pre-
dicting altered pathways. It begins with an initial
Bayesian network representing a pathway. The net-
work parameters are optimized with respect to the
available data. This network serves as a scaffold onto
which additional genes and gene products are added,
guided by the set of differentially expressed genes and
the pathways in which they participate.

contain not just differentially expressed genes, but
also other genes and gene products with which they
interact. The component networks are the pieces in
the network scaffold, and each is represented as a
Bayesian network. The pieces will be composed by
adding genes and gene products that link pathways.

Our Bayesian network models differ from standard
models in two key ways. Our goal is to use expres-
sion data from normal and diseased cells to discover
structural and/or parametric perturbations in path-
ways that are attributable to disease. We therefore
work with sets of genes, including those that are dif-
ferentially expressed, requiring them to be part of a
single pathway. Second, we enrich our network with
nodes that represent the levels of metabolites that
occur in the pathway. The placement and selection
of these hidden (i.e., unobserved) metabolite nodes is
constrained by our knowledge of the pathway.

The structure of the Bayesian networks for nor-
mal cells is derived from pathway databases, and the
parameters of the networks are learned by expecta-
tion maximization (EM). For modeling diseased cells,
we adopt a two-stage approach. We initially use the
same network structure for diseased cells as for nor-
mal cells. A low likelihood for the data given the
structure tells us that the network choice is incor-
rect. Thus, we let the data dictate the need for new
structural models. We then use structure learning

methods to determine the most biologically plausi-
ble perturbations of the nominal pathways that are
consistent with the data. By optimizing component
networks separately for both the normal and dis-
eased cells, we aim to identify whether the differen-
tial gene expression is simply the pathway’s response
to the diseased state, or whether the pathway has
been disrupted by disease. We compare the parame-
ters learned for normal and diseased networks and use
the networks to predict metabolite levels. Predicted
differences in metabolite levels between normal and
diseased cells are hypotheses that can be verified in
the laboratory.

To explain complex diseases we may need to con-
sider interactions between pathways. We merge two
component Bayesian network models by taking the
union of their nodes and edges, as in Figure 1. Ad-
ditional hidden metabolite nodes are added to link
nodes between the component models in a biolog-
ically consistent manner, as dictated by pathway
databases. We only re-estimate the conditional prob-
ability tables for newly added nodes and nodes com-
mon to the two networks. We re-use the parameters
learned during component modeling for the rest of
the nodes. The data requirements for this local re-
estimation are far smaller than ab initio learning of
the merged network. Our approach to composition
mitigates the problem of small sample sizes and yields
robust larger scale networks that capture interactions
among pathways.

4 An application of PAPES:
prostate cancer pathways

In this section, we apply PAPES to the prostate gene
expression data of Singh et al. [8]. This data set com-
prises gene expression measurements for 12,625 genes
across 102 prostate samples, 50 normal and 52 can-
cer. We identified the top 50 differentially expressed
genes using Fisher scores and mutual information,
and mapped these genes to over 20 known metabolic
and signaling pathways in the KEGG database. To il-
lustrate how PAPES works, we selected two of these
pathways that interact with one another—the glu-
tathione (GSH) metabolism and the urea cycle—and
which are known to be implicated in prostate can-
cer. The differentially expressed gene GSTP1 in the
GSH mechanism is believed to be epigenetically si-
lenced in prostate cancer. The polyamines ornithine
and putrescene in the urea cycle are overexpressed
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Figure 2: Component network representing a portion
of the GSH metabolism (left), and its composition
with the urea cycle via a hidden metabolite node
(right). The blue nodes in the networks represent
metabolite fluxes; they are hidden nodes, because we
do not have observed metabolite data.

in prostate cancer, due to the overexpression of the
enzyme ODC which regulates the conversion of or-
nithine to putrescene [1]. The two pathway seg-
ments interact through the metabolite L-glutamate
as shown in Figure 2.

4.1 GSH component network

In conjunction with GSH S-transferases (GST*),
GSH participates in detoxification of organic halides,
fatty acid peroxides, and products derived from
radiation-damaged DNA. When the GST enzymes
are underexpressed, as has been observed in prostate
cancer cells, the detoxification process is disrupted.

The metabolites in this portion of the GSH path-
way include the oxidized and reduced forms of GSH,
R-S-glutathione and L-γ-glutamylcysteine. Since
metabolite levels are not observed, they are hidden
nodes in the Bayesian network representation of this
pathway component. The other nodes in the network
shown in Figure 1 correspond to expression levels of
genes that code for the named enzymes.

The structure of the Bayesian network model of the
pathway component departs where necessary from a
causal model in favor of one that can be learnt from
the limited data available. Specifically, we desire a
model in which each node has at most two (or pos-
sibly three) parents, all hidden nodes have at least
one parent and one child, and no hidden node has
two or more hidden nodes as parents. Subject to
these constraints, a node representing a metabolite
has the raw material metabolites needed for its syn-

GPX GSH-O (normal)

low med high

low 0.67±0.25 0.23±0.24 0.10±0.24
med 0.33±0.40 0.65±0.40 0.00±0.01
high 0.04±0.07 0.13±0.10 0.83±0.09

GPX GSH-O (tumor)

low med high

low 0.74±0.35 0.11±0.16 0.14±0.32
med 0.68±0.34 0.09±0.13 0.23±0.27
high 0.02±0.02 0.02±0.02 0.96±0.02

Figure 3: Stochastic process models for the produc-
tion of oxidized and reduced GSH in normal cells
(top), and tumor cells (bottom). Oxidized GSH is
catalyzed by GPX. When GPX levels are medium,
the probability distribution of GSHO is skewed to the
left in tumor cells. These stochastic models account
for individual variation as well as incompleteness of
our understanding of the process.

thesis as parents. Thus, there is an edge from GSHO
to GSHR. Metabolites such as GSHO which are gen-
erated from metabolites not included in the analysis
have as parents the catalyzing enzymes that gener-
ate them. Therefore, there is an edge from GPX4 to
GSHO. Enzymes such as GSTP1 which convert one
metabolite to another have as parents the metabo-
lites they consume and the ones they produce. Thus,
GSTP1 has GSHR and R-S-GSH as parents. GSS is a
parent of GSH-R to avoid a model in which a hidden
node has more than one hidden node as a parent. The
interpretation of the conditional probability tables of
such nodes becomes difficult, because we have to as-
sign semantics to the discretized levels of these nodes.
Enzymes such as GGT1 which consume a modeled
metabolite, and produce an unmodeled one, have as
parents the input metabolites they convert. Thus we
have an edge from R-S-GSH to GGT1.

While the KEGG pathway constrains the structure
of our Bayesian network, we still need to represent the
quantitative part of the model. These parameters are
probability distributions of each node as a function
of its parents in the network. For nodes with no par-
ents, such as GPX4, GCLC and GCLM, we learn
unconditional probability distributions of the form
P (node = value), over the range of values that these
nodes take. To simplify the specification of these dis-
tributions, we discretize gene expression levels and
metabolite levels, into three categories: low, medium
and high. For each gene, the discretization points
were chosen by exhaustively searching for the two
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values that maximized the weighted average of the
sample’s self-information (Is) and the mutual infor-
mation (Im) between the sample and its type (tumor
or normal) using the following formula: 0.425Is +
Im. We found that by including the weighted self-
information, the tendency to select very narrow dis-
cretization levels was reduced. For all other nodes, we
learn conditional probability distributions of the form
P (node = value|Parents(node) = value vector).

4.2 Learning network parameters

The algorithms that learn network parameters find
values of the probability distributions of the nodes to
maximize the likelihood of the given data. Since not
all nodes are observable, we use the expectation max-
imization (EM) method which uses the distributions
of values of the hidden nodes computed by standard
Bayesian inference. When EM is applied multiple
times to the same network, there is significant vari-
ation in the resulting network likelihoods, which we
ascribe to the EM procedure finding local maxima,
perhaps because of the comparatively high propor-
tion of hidden nodes and the small number of data
points. To reduce the resulting variability, we repeat
the EM procedure multiple times (30) and average
the top few (6) sets of network parameters, where
the best networks are those that best discriminate
between normal and tumor samples. The learned pa-
rameters for oxidized GSH for normal and tumor cells
are shown in Figure 3. The models are very similar
except for a skew to the left in the tumor distributions
for medium GPX levels.

Having determined the structure and parameters
of the nominal GSH network, we can calculate using
standard Bayesian network inference the probabilities
of metabolite levels induced by a specific configura-
tion of observed gene expression levels. For every
normal sample in our gene expression data, we calcu-
late the probability distributions over the metabolite
nodes. As shown in Figure 4, we predict that tumor
cells have lower levels of reduced GSH than normal
cells, and that a higher proportion of tumor samples
will have high oxidative stress (the ratio of reduced
to oxidized GSH).

4.3 Urea-cycle component network

The portion of the urea cycle of interest to us is the
conversion of ornithine into putrescene catalyzed by
the enzyme ODC, which is known to be overexpressed
in prostate cancer. Using the same network design
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0.4
Oxidized Glutathione

normal tumor
0
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0
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Figure 4: The predictions made by the learned normal

and tumor GSH networks. We predict that the levels of

reduced GSH will be reduced in tumor cells. The ox-

idative stress, measured as the ratio of oxidized GSH to

reduced GSH, is also significantly greater in tumor cells

than normal cells.

principles as in the GSH metabolism, we derived a
Bayesian network for this portion of the urea cycle.
The network parameters were learnt for normal and
tumor cells, using the same algorithm as the GSH
metabolism.

4.4 Component Composition

To build the combined network, we fix the parameters
of all nodes that also occur in a component network,
and have the same parents, to those learned for the
component network. The EM procedure applied to
the combined network therefore only learns the pa-
rameters for a small number of nodes. In our exam-
ple, the parameters for the hidden metabolite node
glutamate which unites the GSH and urea networks,
is learned.

4.5 Robustness and sensitivity

To ensure that our EM network learning procedure
is not overfitting the data, we checked the method’s
classification accuracy using leave-one-out cross val-
idation. The results, see Figure 5, are in broad ac-
cord with the classification accuracy obtained using
all samples, giving us confidence in the robustness of
the EM learning process.

5 Conclusions

We introduced a knowledge-based approach for infer-
ring pathway modifications that explain differences
in gene expression data gathered from normal and
tumor samples. Our method — Predicting Altered
Pathways using Extendable Scaffolds (PAPES) —
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GSH Urea Combined
Network Network Network

Actual Actual Actual
Predicted N T N T N T

N 41 8 42 13 45 7
T 9 44 8 39 5 45

Figure 5: Results for leave-one-out cross validation.
The results are broadly in accordance with the clas-
sification accuracy obtained using all samples, giving
us confidence in the robustness of the EM learning
process.

builds on available pathway knowledge to build com-
ponent networks based on subsets of differentially ex-
prssed genes. We explicitly model metabolite fluxes
in our network scaffold which is represented as a
Bayesian network. We use expectation maximiza-
tion to learn optimized parameters for the network
from available data. We obtained models that predict
differences in metabolite levels in normal and tumor
cells. Such differences are directly testable in the lab-
oratory. We propose to extend such biologically val-
idated networks with genes known to interact with
those in the scaffold. This incremental construction
of models that explain differences between metabolic
process in normal and tumor cells with limited gene
expression data forms the first step in elucidating the
molecular basis of complex diseases.

We illustrated our approach using portions of the
GSH metabolism and the urea cycle with which it
interacts. We computationally reconstructed the pa-
rameters of the GSH metabolism for normal and tu-
mor cells by the EM procedure on Bayesian networks.
We used the models to show that levels of reduced
GSH are lower in tumor than in normal cells and
that a much larger proportion of tumor cells have
high oxidative stress compared to normal cells. We
also reconstructed a portion of the urea cycle involv-
ing the metabolites ornithine and putrescene. Our
computational reconstruction allowed us to to infer
that while ornithine levels are similar for normal and
tumor cells; the levels of putrescene in tumor cells
are markedly higher. This prediction is borne out
in the literature [1]. We composed these two com-
ponent networks into a single network and used it
to classify the samples in a leave-one-out setting.
We showed that the combined network has higher
classification accuracy than either component net-
work. Our composition method could be extended
to cover metabolic processes on a genome-wide scale.

As metabolic data becomes more readily available,
we can extend our methods to learn new network
structures to better explain differences in function-
ing between normal and tumor cells.
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