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ABSTRACT
At design time, the compiler writer selects a set of optimiza-
tions and an order in which to apply them. These choices
have a direct impact on the quality of code that the compiler
can generate. They also determine, to a great extent, the
set of programs for which the compiler generates good code.
Making good choices is difficult for several reasons. The
sheer number of transformations that have been described in
the literature is daunting. The relationship between features
of the input program and improvements (or degradations)
produced by a transformation is not formally characterized.
The interactions between these transformations are poorly
understood. Finally, many of the existing transformations
have overlapping effects, either singly or in combination.


We have built a prototype adaptive compiler that changes its
selection of transformations and its application order based
on the input program, the performance characteristics of the
target machine, and an explicit external objective function.
This adaptive compiler performs a series of experiments to
find a sequence of optimizations that minimizes the objec-
tive function. This prototype compiler lets us explore the
impact of transformation selection and ordering on the code
that the compiler produces. This paper describes our pro-
totype adaptive compiler. It presents experimental results
that demonstrate the impact of program specific optimiza-
tion sequences. It begins to characterize the search space in
which the adaptive compiler operates.


1. INTRODUCTION
The Fortran Automatic Coding System, released in 1957,
was one of the earliest compilers [2]. It established a model
for organizing compilers as a series of linear passes, shown in
Figure 1. The first pass, or front end, dealt with the source
language and converted it into an internal representation
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(ir) for subsequent passes. The next two passes, called the
optimizer or middle end, analyzed and transformed that ir
form of the program. The final three passes transformed the
optimized ir program into code for the target machine—in
this case, the Ibm 704.


- - - - - - -Front
End


Index
Opt’n


Code
Merge


Flow
Anal.


Reg.
Alloc.


Final
Ass’y


Front
End


Middle End Back End


Figure 1: The Fortran Automatic Coding System


Open up a modern compiler and you will find this same
basic structure. It may have more passes; for example, the
documentation for the Suif 1 system listed eighteen distinct
transformations [15]. It may have several front ends; for
example, both Suif 2 and the Sgi Pro64 compiler provide
front ends for Fortran, C, C++, and Java. It may have
several different irs, or a single ir whose level of abstraction
is lowered as compilation proceeds. Still, the basic structure
resembles that 1957 Fortran compiler. It runs a fixed series
of passes in a predetermined order.


Modern compilers differ in the set of transformations that
they implement, in the algorithms that they use for each
transformation, in the order of application for those trans-
formations, and in the languages and machines that they
target. We have built an adaptive compiler that discov-
ers, for each input program, an optimization sequence that
will minimize a user-selected objective function applied to
the compiled code. In this paper, we describe the proto-
type system and present results from an experiment that
tries, for the first time, to characterize the search spaces in
which the prototype compiler operates. This knowledge, in
turn, will allow us to design better search and steering al-
gorithms for the adaptive compiler. We expect that it will
lead to practical applications for this style of search-based
optimization.


The next section introduces some of the problems that arise
in picking transformations. Section 3 describes our proto-
type system. Section 4 presents preliminary results from a
large-scale experiment to characterize the space of optimizer
configurations. Finally, Section 5 lays out some of the issues
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Algorithm Scope Basis Other Effects


Dvnt regional values Identities, constants
Awz global values
Gcse global names
Lcm global names Code motion


Table 1: Algorithms for Redundancy Elimination


that must be addressed before this technology can be used
in practical compilers.


2. CHOOSING TRANSFORMATIONS
In the last forty-five years, the compiler community has de-
veloped hundreds, if not thousands, of transformations. No
compiler can implement them all. In designing and building
a compiler on the classic model, the compiler writer must
choose a specific set of transformations to implement.


To make this task harder, for any given inefficiency that the
compiler might target, the compiler writer will find multiple
algorithms that attack the problem. These algorithms often
catch different cases of the problem and produce different
results. To understand the issues, consider the problem of
eliminating redundant computations—just one of many such
problems that an optimizing compiler must attack. Four
algorithms that perform redundancy elimination are shown
in Table 1


• Dominator value numbering (Dvnt) extends local value
numbering [8] to cover acyclic subgraphs of the control-
flow graph. It uses hashing to build, bottom-up, a
model of the values computed in the region. It re-
places redundant expressions with references to earlier
results. Along the way, it folds constants and uses
algebraic identities to simplify the code [5].


• The Alpern-Wegman-Zadeck algorithm (Awz) uses a
variant of Hopcroft’s Dfa minimization algorithm to
partition the set of expressions in the program into
congruence classes [1]. Two expressions in the same
class are redundant. A subsequent pass transforms
the code to avoid recomputing equivalent expressions.


• Global common subexpression elimination based on
available expressions (Gcse) uses data-flow analysis
to find redundant expressions [7]. A subsequent pass
over the code replaces redundant computations with
references to previously computed results.


• Lazy code motion (Lcm) extends Gcse to handle ex-
pressions that are redundant on some, but not all paths.
It inserts evaluations to make these expressions redun-
dant on all paths. It finds optimal placements for these
inserted expressions and guarantees that it lengthens
no path through the code [18].


While there are many other algorithms for finding redundant
expressions and removing them, these four suffice to show
the variety that exists in both coverage and results.


• Dvnt can discover that x+x = 2*x. The others cannot.


• Dvnt and Awz can prove that x*y and x*z have the
same value when y = z. Neither Gcse nor Lcm can
find this, because they base their analysis on names
rather than values.


• Dvnt cannot find a redundancy that involves control-
flow along a back edge in the cfg. All the others can.


• Awz is optimistic; it finds some redundancies in loops
that the others cannot.


• Lcm finds partial redundancies. The others do not.


Both Dvnt and Lcm have additional effects beyond redun-
dancy elimination. A compiler that implements them might
avoid the need for other techniques to capture those effects.


Since none of these methods dominates the others, it is not
clear which one the compiler should use. Each has strengths.
Each has weaknesses. Each catches a different set of cases
that might arise in a program.


The best choice depends on the specific set of cases that
actually occur in the input program and the impact that
improving each occurrence has on overall code quality. To
complicate matters further, the passes that precede redun-
dancy elimination in the code will each rewrite the code,
creating some opportunities and destroying others. Thus,
the best choice may depend on both the input code and the
specific passes that run earlier in the compiler. In the same
way, the choice for redundancy elimination may affect the
choices for later transformations. For the same reasons, run-
ning the same set of transformations in different orders can
produce different results.


For the remainder of the paper, we assume that each trans-
formation is implemented in an independent, self-contained
pass. Each pass contains all the analysis needed to support
the transformation. Following this model, we expect that
the passes can be run in any arbitrary order.1


3. ADAPTIVE COMPILERS
To explore the impact of choice and order on the quality
of code produced by a compiler, we have built a prototype
adaptive compiler, shown in Figure 2 [11]. Like the 1957
Fortran system, it has a front end, a middle end, and a
back end. In addition, it has an explicit, external objective
function and a steering algorithm. Its middle end is not
the ordered linear sequence of passes found in a traditional
compiler; instead, the middle end has a pool of transforma-
tions that run in arbitrary orders, as chosen by the steering
algorithm.


The steering algorithm uses a series of experiments to find a
configuration, or compilation sequence, that minimizes the
objective function’s value for a given input program. The
steering algorithm selects a set of initial configurations and
directs the compiler to apply those sequences to the input


1Some transformations make strong assumptions that re-
strict reordering. For example, our implementation of par-
tial redundancy elimination requires a name space with spe-
cific properties. To handle this, we package the transforma-
tion together with a pass that transforms the ir program
into the requisite form [4].
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Figure 2: Prototype Adaptive Compiler


program. It uses the compiled code as input to the objec-
tive function and evaluates the objective function to obtain
fitness scores. The steering algorithm uses both the fitness
scores and its historical record to construct the next set of
experiments.


Because it uses an explicit objective function, the adaptive
compiler can attempt to optimize any measured property of
the compiled code. To optimize for program size, the objec-
tive function can use the size of the output code as its fitness
value. To optimize for speed, the objective function can ei-
ther run the code and measure the running time or use some
performance estimator to compute a fitness value. Choos-
ing the objective function changes the compiler’s behavior,
to the extent that its pool of transformations can have an
effect on the measured property of the output prorgam.


In some cases, the choice of transformations changes a pro-
gram property as an indirect effect. In one experiment, we
used the adaptive compiler to minimize the estimated inter-
operation bit transitions, a property that some authors have
related to power consumption [20, 28]. The transformations
in our prototype do not address bit-transitions directly; in-
stead, the measured bit-transitions are determined by the
pseudo-random effects of scheduling and register allocation
on the optimized code. However, because different opti-
mization sequences produce different code that feeds into
the back end, they can produce different results in the bit-
transition metric. In fact, we measured a 6% reduction in
inter-operation bit-transitions with the adaptive compiler,
comparing against the fixed-sequence version of the same
compiler. The adaptive compiler was able to optimize for
the impact that the transformations have on the pseudo-
random behavior of the back end.


Our prototype adaptive compiler includes a suite of fifteen
transformations. They can be run in, essentially, any order
(with the exception already noted for partial redundancy
elimination). To date, we have built three steering algo-
rithms: a hill-climber, a parameterized genetic algorithm,
and an exhaustive search. The current system has three
objective functions: run-time cycles, code size, and inter-
operation bit-transitions.


3.1 Steering Algorithms
We have implemented three steering algorithms to date.


Hill-climber: The hill-climbing search starts with a single
random configuration and systematically improves it. At
each step, the search tries to improve the current configura-
tion. We have experimented with a steepest ascent strategy


and a randomized strategy. The former finds the largest im-
provement from the current configuration by systematically
testing the options. It halts when no single replacement im-
proves the current configuration. The latter randomly picks
a pass to change and a replacement for it. Because it is
harder to detect a minimum in this scheme, it halts after a
specified number of trials.


Genetic algorithms: The genetic algorithm in the prototype
is parameterized to allow experimentation. Our best results,
in terms of both final outcome and trials to reach that out-
come, have used pools of 100 to 300 variable-length chromo-
somes,2 a two-point randomized crossover, and scaled fitness
values as weights in making reproductive choice.


One strategy in the genetic algorithm has proven particu-
larly important. When it generates a new chromosome from
crossover, it checks for that sequence in the existing pool.
If the new sequence is a duplicate, it mutates the new se-
quence until it is unique. (Since we are using the genetic
algorithm to search the configuration space, duplicates are
wasted effort.)


Exhaustive enumeration: To explore specific configuration
spaces, we have built a steering algorithm that exhaustively
enumerates a subspace. This simple algorithm turns the
adaptive system into a data collection device. It returns
configurations paired with their fitness values from the ob-
jective function. We have used this tool in our study with
fmin, described below.


3.2 Objective Functions
We have tested the steering algorithms with three objective
functions, as well as combinations of these three.


Speed: This objective function executes the code on a sim-
ulator with a given set of input data and returns the total
cycle count for the execution. This serves as a proxy for
actual execution speed.


Space: This objective function returns the static operation


2With fixed-length chromosomes, the genetic algorithm
“discovers” nops to pad the strings. This necessitates a
regimen of “knock-out” testing to find the substring that
actually causes the improvement. Because of overlap in op-
timization coverage, the knock-out test must consider the ef-
fects of removing single passes and combinations of passes.
It tries all the tests in both forward and backward order
over the chromosome. With variable-length chromosomes
and tie-breaking in favor of the shorter sequence, these nops
don’t appear in the winning sequences.
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count for the generated code. It tracks the code space re-
quired by the executable.


Inter-operation bit-transitions: This objective function mod-
els a program characteristic that affects the power consumed
by the microprocessor in executing the code [20, 28, 17]. The
function statically estimates execution frequencies and uses
that to approximate bit transitions.


3.3 Engineering the Transformations
For the prototype to work, the transformations that it uses
must work when run in arbitrary orders and combinations.
Each transformation is a separate pass of the compiler. They
consume and produce iloc, the compiler’s definitive ir. All
memory allocation is done using an arena-style allocator;
this simplifies deallocation and ensures that all such memory
is freed [16]. Each pass performs its own analysis. They
share code to implement these analyses, but they do not
share the results of compile-time analysis—except when that
information can be recorded directly in the ir.


This implementation style simplifies the design, implemen-
tation, and maintenance of the individual passes. They can
be developed, tested, and debugged independently. Once a
transformation functions in isolation, we test it in context
by inserting it into the compiler at various points. After
running literally millions of compilations with the adaptive
compiler, we have confidence that these implementations are
order independent.


Along the way, we have developed simple fault isolation tools
that take a compiler configuration and an input program
and discover the minimal set of optimizations that exhibit
the fault. We also have a tool that takes a configuration
and removes any single passes or pairs of passes that have
no effect on the fitness function’s value. These tools have
proved invaluable.


The current prototype system includes: assertion genera-
tion, logical peephole optimization, scc-based value num-
bering [29], loop peeling, global constant propagation [30],
algebraic reassociation [4], dead code elimination [12], copy
coalescing [6], partition-based value numbering [1], strength
reduction [10], partial redundancy elimination [21], local
value numbering, global renaming, lazy code motion [18],
and useless control-flow elimination.


4. EXPERIMENTAL RESULTS
Our prototype adaptive compiler is an experimental tool.
In other publications, we have described experimental re-
sults that show how the adaptive compiler can produce bet-
ter code than a fixed sequence compiler for space and for
speed [9, 10]. To summarize those results:


• For space, the adaptive compiler produced reductions
of 13.5% on average [9], where a direct approach us-
ing procedure abstraction based on suffix trees, in the
fixed-sequence version of the same compiler, produced
reductions of only 5% on average. Furthermore, since
the adaptive compiler broke ties in favor of speed, it
produced code that was marginally faster than the
code from the fixed sequence compiler. In contrast,


procedure abstraction always produces code that is
marginally slower.


• For speed, the adaptive compiler produced average im-
provements of 20% percent over the fixed sequence
compiler [27]. By breaking ties in favor of smaller code,
the adaptive compiler also produced code that was typ-
ically smaller than the fixed sequence compiler’s code.


In this paper, we report the results of a significant exper-
iment aimed at understanding and improving the behavior
of the adaptive compiler and its steering algorithms. The
questions we seek to answer are


1. Given a pool of optimizations and an objective func-
tion (possibly multi-valued) for a program, what is the
number and distribution of sequences that minimize
that function for the program? Such information, par-
ticularly for local minima, will help us design appro-
priate steering algorithms. If, for instance, 90% of the
sequences in the space minimize the chosen objective
function, repeated random walks through the space
will suffice to find a good solution.


2. What fraction of the local minima of the objective
function are within 10% of the global minimum? How
are these “good” minima distributed in the space?
That is, what is the probability that a good minimum
can be found by a search algorithm guided purely by
the local (discrete) gradient of the objective function?
Further, what is the effective diameter of the space
of optimizations? By that we mean, how many steps
will a local search algorithm need on average before
settling into a local minimum?


3. Is there a decision rule that can distinguish sequences
that lead to a good local minimum from ones that do
not? Can such a decision rule be learned from the
sampled sequences? Can we relate the decision rule to
properties of the program being optimized?


To illustrate our methodology for answering these questions,
we will answer them in the context of a optimizing one par-
ticular benchmark program, fmin. While the particular re-
sults that follow pertain to fmin, we want to emphasize that
this methodology can be applied to any program of interest.
These results are a preliminary step; our real goal
is to discover enough about the structure of these
spaces so that we can design steering algorithms that
can discover excellent compilation sequences from
small samples of the configuration space.


4.1 The FMIN Experiments
We chose fmin because we observed that it displayed inter-
esting and complex behavior, even though it is just 150 lines
of Fortran [10]. Despite its size, fmin has a rather complex
control-flow graph—forty-four basic blocks.


The complete configuration space for our adaptive compiler
is too large to enumerate at current speeds. We typically
run it with a set of fifteen transformations and allow it to
use up to fifteen passes. This configuration space contains
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1515, or 437,893,890,380,859,000 possible sequences. If we
restrict it to ten passes, the configuration space still contains
an impractical 576,650,390,625 distinct sequences. Compu-
tationally, we felt that 10,000,000 sequences was an upper
bound on what we could reasonably explore. This suggested
a configuration of ten passes drawn from five different trans-
formations, for 510 or 9,765,625 sequences.


To identify a promising subspace, we ran the adaptive com-
piler, with a hill-climbing search, from a large set of randomly-
generated starting points. We took the five transformations
that occurred most frequently in those “winning” sequences
and set up an experiment to enumerate the results of all
sequences of ten passes drawn from these five.


To date, we have enumerated 5,597,161 individual config-
urations at roughly 30,000 experiments per dedicated cpu
day. By the time the experiment finishes in December 2001,
it will have consumed over eleven cpu months.


The best sequence to date produced code that took 1,002
cycles to execute. So far, we have found only one sequence
that achieves this result. The worst sequence takes 3,316 cy-
cles to execute. We have found 8,212 sequences that achieve
this result. In contrast, code compiled without optimization
takes 1,716 cycles to execute. Using the twelve optimization
sequence that was the default in our fixed-sequence compiler
for years yields code that runs in 1,122 cycles. (Note that
the default sequence includes transformations that are not
included in the fmin experiment.)


Thus, the five transformations in the fmin experiment can
improve the code by 42% from the unoptimized code or
they can make it 93% slower. The difference between these
outcomes is a matter of picking the transformations and
the order in which to apply them. Even with this lim-
ited transformation repertoire, the adaptive compiler finds
sequences that improve on the fixed sequence compiler by
11%. If we add dead code elimination to the sequence that
produced 1,002 cycles, the sequence produces code that re-
quires 822 cycles to execute—an improvement of 27% over
the fixed sequence compiler and 52% over the unoptimized
code. Adding this transformation to the fmin experiment,
however, would increase the search space from just under
ten million sequences to over sixty million sequences.


Distribution of the Solutions: The space explored by
the fmin experiment contains sequences whose fitness value
ranges from 1,002 to 3,316. Before we can improve the steer-
ing algorithms, we must understand some of the character-
istics of the search space.


Figure 3 shows the number of solutions per fitness value
across the configurations that have been tested so far. This
picture makes clear the discrete nature of the space in which
the adaptive compiler operates. For example, there is only
one sequence with a fitness value between 1,152 (15% worse
than the best) and 1,202 (20% worse than the best).


The table in Figure 4 summarizes this same data. The cen-
tral column shows the number of solutions that lie within
the specified distance from the best solution. The rightmost
column shows that figure expressed as a percentage of the
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Figure 3: Distribution of fmin Solutions


experiments to date (5,597,161). Note that the numbers
are cumulative; for example, the one sequence difference be-
tween 15% and 20% is precisely the gap seen between 1,152
and 1,202 in Figure 3.


Both Figure 3 and 4 make clear that only 10% of the se-
quences yield objective function values within 10% of the
known global optimum of 1002. A steering algorithm per-
forming a random walk in the space of all sequences will
yield a sequence with value within 10% of the global opti-
mum with a probability of 0.1.


Comparison with the Full Transformation Set: If we
compile fmin with the full set of fifteen transformations,
the results are encouraging. Using a genetic algorithm for
steering, the adaptive compiler discovered sequences at 822
cycles (in 184 generations of population size 100) and at 825
cycles (in 152 generations of population size 100). Using a
hill-climber for its steering algorithm, the adaptive compiler
found sequences at 830 cycles (in 750 rounds) and at 833 (in
2,232 rounds). This demonstrates that the potential for im-
provement exists. Equally important, the adaptive compiler
can discover that improvement.


Score Sequences % of Solutions
Best 1 0.000018%
1% 14,696 0.26%
2% 91,437 1.6%
5% 480,421 8.6%
10% 576,193 10.3%
15% 640,222 11.4%
20% 640,223 11.4%
25% 708,034 12.6%
Worst 8,212 0.15%


Figure 4: FMIN Solutions Ranked by Quality
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Figure 5: Minimum depth vs. frequency for fmin


4.2 Learning from FMIN
To answer our first question (number and distribution of lo-
cal minima), we found all sequences with the property that
no single-position change produces a better solution. Knowl-
edge of the density of local minima is significant for designing
hill climbing steering algorithms that follow the gradient of
the objective function. The fmin data contains 23,258 local
minima; they comprise about 0.42% of the space.


This encouraging news suggests that hill climbing might
work well in this space. However, we need to determine
if the local minima are strict or not. (A strict local mini-
mum has a value strictly smaller than all of its neighbors.)
When there are non-strict local minima, the steering algo-
rithm may need to make several moves on a flat mesa where
the objective function value does not change. Figure 5 shows
the distribution of depths for each local minima, measured
against its lowest neighbor. This illustrates that most local
minima are non-strict. This may make it hard to formulate
a termination criteria for steepest descent hill climbers.


Figures 6 shows the distribution of depths for each local min-
ima, measured against the average depth of all its neighbors.
This chart indicates that, on average, a neighbor of a local
minimum is well above it in objective function value. The
distribution is bimodal with peaks at roughly 186 and 400.
(This is about 18.6% to 40% of the global optimum). The
“sides” of each local minimum are, on average, quite steep,
which again suggests the value of using hill climbing as the
steering algorithm of choice for the problem.


Figures 7, 8 and 9 summarize the performance of a steep-
est descent hill climber with randomized restarts for the
fmin problem. The hill climber starts with a random se-
quence, generates all neighbors involving one change in the
sequence (there are 40 possible neighbors in our configura-
tion), and picks the lowest valued among them as the next
search point. It stops when there is no change in the ob-
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Figure 6: Average depth vs. frequency for fmin


jective function value with a unit change in sequence. We
ran the hill climber with 100,000 randomly chosen starting
points. Figure 7 shows the distribution of the number of
steps before the hill climber settled into a local minimum.
For a space of over 5 million sequences, the maximum num-
ber of hill climbing steps did not exceed 11! The average
number of steps is between 5 and 6. The distribution of
start values for the objective function is shown in Figure 8;
note how closely it resembles the overall distribution of so-
lutions in Figure 3.


Figure 9 shows the final values achieved by the hill climber
from these 100,000 random starts. It demonstrates the ef-
fectiveness of steepest descent hill climbing for this problem.
94.97% of the final solutions are within 10% of the global
minimum. This means that we can expect the hill climber
to find one of these solutons with a probability of 0.9497.


Figure 10 shows that there is no correlation between the
number of steps taken by the hill climber and the choice of
starting point, while Figure 11 makes the same observation
from the point of view of ending point of the search. This
shows that the height of the initial starting point does not
offer any clues as to the number of steps needed to reach a
local minimum. There as many good solutions located a few
steps away from a random initial starting point as there are
solutions far away.


This analysis has helped answer the first two questions raised
at the start of the section. Such an analysis can be used to
study any program of interest. However, the daunting cost
of data collection to help perform such an analysis raises
doubts about the practicality of the technique. We now
present evidence to show that sparse random sampling of
the entire space of over 5 million sequences is sufficient to
build predictive models of performance. In particular, we
have used three kinds of performance models: two based
on classification learning which discriminate sequences that
yields solutions within 10% of the global optimum from
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Figure 7: Distribution of number of steps taken by a
steepest descent hill climber starting from a random
sequence before settling into a local minimum


those that do not, and a probabilistic model of the suc-
cessful and unsuccessful sequences that separates the two
categories cleanly. The number of samples of the underly-
ing sequence space needed to robustly learn these models is
10,000 (about 0.2% of the entire space).


The two classification technqiues used were decision trees
and support vector machines. For both these techniques,
labeled sequences are provided and the goal is learn a func-
tion that discriminated “good” from “bad” sequences. 5000
good and 5000 bad sequences were sufficient to learn com-
pact decision trees with error rates of 3.9% (trained in a
leave-out-test-set mode). The decision tree identifies posi-
tions in the sequence and the optimization needed at that
position to make a sequence good. Support vector machines
were trained on the problem and they yielded predictive
models with accuracies of 94% with a polynomial kernel of
degree 4 [?]. The use of polynomial kernels of degree 4 sug-
gests that interactions between 4 of the 10 positions in the
sequence shape whether or not a sequence is good. The de-
cision tree was able to identify these particular interactions.


We used the c4.5 program [?] implementing the induction
algorithm in [?] to construct a decision tree classifier. The
tree is derived from 5,000 good and 5,000 bad sequences from
fmin. A decision tree is a representation of a disjunction of
conjunctions of elementary expressions of the form (position
i in sequence = one of the five available optimizations). The
number of leaves in the decision tree is the number of dis-
junctions, and the depth of the tree shows the maximum
number of conjuncts in each disjunction. Our learned de-
cision tree contains 96 leaves and has a depth of 4. 37 of
the leaves encode the description of the function that identi-
fies good sequences. One of these disjuncts is (position 2=0
and position 3=3 and position 10=4). This disjunct demon-
strates that there are long range dependencies in the data
between positions 2, 3 and 10 in the optimization sequence.
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Figure 8: The distribution of initial objective func-
tion values for the steepest descent hillclimber when
started from 100,000 randomly chosen start states


The decision tree has an estimated error of 3.9% on unseen
examples, making it an accurate model of sequence costs.


Even for a program as small as fmin it is clear that we could
not have analytically discovered these interactions. How-
ever, we have demonstrated that a methodology based on
sparse sampling coupled with inductive machine learning
can build models of interactions between optimizations for
particular programs. The algorithms are fast enough and
their sample requirements modest enough to make them part
of a pre-compilation analysis for importnat programs.


To understand how probabilistic models will work on these
problems, we trained two hidden markov models (hmms):
one for good sequences and the other for bad sequences [?]
An hmm is a Markov chain where each state generates an
output. Only the outputs are observable, and the goal is
to infer the underlying state sequence. Hmms are useful for
modeling of sequences and time-series data, since the dis-
crete state-space of the Markov chain can be used to capture
long-range dependencies in the underlying data. Given se-
quences that yield solutions to within 10% of the optimum,
we use expectation maximization [?] to learn a four state
left-to-right hmm that generates those sequences.
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Figure 9: The effectiveness of the steepest descent
hillclimber for fmin. The distribution of final val-
ues obtained by the hill climber when started from
100,000 randomly chosen start states.


The hmm can be treated as a compact stochastic description
of all the example sequences. The hmm parameters appear
to be remarkably robust for hmms learned from the good as
well as bad sequences.3 The following hmm was generated
for the bad sequences:


n n n n- - -0.986 0.665 0.615R


0.014


R


0.335


R


0.385


R


1


0 1 0.18 0 0.25
1 0 0.22 0.21 0.17
2 0 0.6 0.41 0.19
3 0 0.0 0.16 0.22
4 0 0 0.26 0.17


Hierachical Markov Model for Bad Sequences


The remarkable fact is how different these two hmms are.
This shows that good and bad sequences can be stochasti-
cally discriminated with great precision for fmin.


5. OPEN QUESTIONS
Our work with adaptive compilation has raised as many
questions as it has answered.


5.1 Stopping Criteria
A significant practical problem with the both the genetic
algorithm and the hill-climbing search is the difficulty that
they have recognizing success. To make these techniques


3We used the same sequences to learn the decision tree, the
support vector machines and the hmms.
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Figure 10: The relationship between the number
of steps needed by steepest descent hill climber to
reach a local minimum and the objective function
value at the randomly picked start state, for fmin.


practical, we need a way to decide that the current solution
is likely to be within ε of optimal, for reasonable values of ε.


A major motivation for experiments like the fmin experi-
ment is the hope that we can discover enough about the
search space to let the algorithm recognize good local min-
ima. Characterizations of the depth of local minima, both
in terms of objective function values and in terms of the
number of moves required to escape, may prove helpful.
For example, if we know that most local minima require
a three-position replacement to escape, then the algorithm
might discontinue a search (and restart) when it discovers
that three-sequence replacements are not generating better
fitness values.


5.2 Proxies and Estimators
The adaptive compiler works, effectively, by conducting a
series of small experiments and using the results to guide
its search for a configuration that minimizes the objective
function. The speed of these experiments is a serious limit
on our ability to use the adaptive search. When it finishes
in December, 2001, the fmin experiment will have consumed
under one cpu year.


To speed up these experiments, we are investigating the use
of proxies and estimators for evaluating objective functions.
For example, what is the impact on final code quality of us-
ing static estimates of run-time behavior? Can we develop
simple models for memory accesses and computation that
are close enough for the steering algorithm? Good estima-
tors and proxies may go a long way toward making these
ideas practical for routine use—even if they are only used in
the initial stages of the search.
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Figure 11: The relationship between the number
of steps needed by steepest descent hill climber to
reach a local minimum and the objective function
value at the final local minimum state, for fmin.


6. RELATED PRIOR WORK
Early work on adaptive compilers [22] have focused on feed-
ing dynamic profile information from program execution back
into the compiler to guide optimization. Other attempts to
use search in optimization include Nisbet’s system, which
used genetic algorithms in an attempt to parallelize loop
nests [23, 13], and Massalin’s Superoptimizer, which used
exhaustive search in an attempt to perform optimal instruc-
tion selection [19]. Nisbet’s system was ineffective, probably
because search was not a good fit to his problem. Massalin’s
technique produced good results, but was too expensive for
routine use. Granlund and Kenner adapted Massalin’s ideas
to produce a design-time tool that generates assembly se-
quences for use in Gcc’s code generator [14].


Schielke used iterative repair with random restart to study
instruction scheduling [27]; his work shows the value of using
large-scale, computationally-intense studies to derive knowl-
edge about hard problems in compilation.


Our preliminary work using a genetic algorithm to find com-
pilation sequences suggests that search is a good fit to the
problem and that adaptive randomized sampling can yield
good results in a reasonable amount of time [9, 11].


A few authors have written on the interactions between op-
timizations in a specific way. In the context of performing
incremental global optimization, Pollock and Soffa encoun-
tered such interaction; they characterized the interactions
among the set of transformations in their system [25, 26].
Whitfield and Soffa characterized the interactions between
a set of optimizations, including their ability to enable and
disable opportunities for each other [31]. Later, they de-
signed a systematic way of describing interactions between
optimizations and for analyzing and working with those in-


teractions [32]. Padua et al. have studied the impact of
different transformations on the ability of their Polaris com-
piler to parallelize loops [3, 24].
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