
Optimizing for Reduced Code Space using Genetic Algorithms

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian
Department of Computer Science

Rice University
Houston, Texas, USA

{keith | phisch | devika}@cs.rice.edu

Abstract

Code space is a critical issue facing designers of software
for embedded systems. Many traditional compiler optimiza-
tions are designed to reduce the execution time of compiled
code, but not necessarily the size of the compiled code. Fur-
ther, different results can be achieved by running some opti-
mizations more than once and changing the order in which
optimizations are applied. Register allocation only com-
plicates matters, as the interactions between different op-
timizations can cause more spill code to be generated. The
compiler for embedded systems, then, must take care to use
the best sequence of optimizations to minimize code space.

Since much of the code for embedded systems is compiled
once and then burned into ROM, the software designer will
often tolerate much longer compile times in the hope of re-
ducing the size of the compiled code. We take advantage
of this by using a genetic algorithm to find optimization
sequences that generate small object codes. The solutions
generated by this algorithm are compared to solutions found
using a fixed optimization sequence and solutions found by
testing random optimization sequences. Based on the re-
sults found by the genetic algorithm, a new fixed sequence
is developed to reduce code size. Finally, we explore the
idea of using different optimization sequences for different
modules and functions of the same program.

1 Introduction

For years the compiler community has been developing “op-

timizations”, or transformations, whose ultimate goal is to

improve the quality of the code generated by the compiler.

For example, constant propagation attempts to find all reg-

isters whose values at run time are provably constant. The

computations of these values can be replaced by a less costly

load immediate operation. Later, an optimization to elimi-

nate useless code can remove all the load immediate opera-

tions whose result is never used.

With so many optimizations available to the compiler, it

is virtually impossible to select the best set of optimizations

to run on a particular piece of code. Historically, compiler

writers have made one of two assumptions. Either a fixed

optimization order is “good enough” for all programs, or

giving the user a large set of flags that control optimization

is sufficient, because it shifts the burden onto the user.

Interplay between optimizations occurs frequently. A

transformation can create opportunities for other transfor-

mations. Similarly, a transformation can eliminate oppor-

tunities for other transformations. These interactions also

depend on the program being compiled, and they are of-

ten difficult to predict. Multiple applications of the same

transformation at different points in the optimization se-

quence may produce further improvements. With all these

possibilities, it is unlikely that a single fixed sequence of op-

timizations will be able to produce optimal results for all

programs.

The focus of this work is discovering optimization se-

quences that result in small code sizes. Small code sizes are

increasingly important as the number of embedded appli-

cations increases. Since code for these systems is typically

burned into a rom, the embedded systems software designer

may be willing to tolerate substantially longer compile times

(on the “final” compile) in the hopes of reducing the size of

the object code.

A genetic algorithm (or ga) is essentially a biased sam-

pling search technique. Instead of merely choosing solutions

at random, the ga evolves solutions by merging parts of dif-

ferent solutions and making small mutational changes to so-

lutions, to produce new solutions. Genetic algorithms have

a rich history in the literature on artificial intelligence. The

idea is generally attributed to Holland [14]. Other excellent

sources of information on ga’s are books by Goldberg [13],

Davis [9], and Mitchell [17].

Genetic algorithms have been applied to other compiler

problems with some success. In his thesis, Beaty tried ge-

netic algorithms for instruction scheduling [1]. Nisbet is cur-

rently investigating genetic algorithms that discover trans-

formation sequences for parallelizing Fortran loops [19].

Ga’s appear to be a good fit to the problem of find-

ing compiler optimization sequences to minimize code size.

First, the space of possible sequences is quite large when

several optimizations are at the compiler’s disposal. This

space is too large to search completely. Second, we have a

very good evaluation function to assess the quality of a so-

lution. We simply perform the optimizations and compute

the size of the compiled code. Our objective function is dis-

crete and nonlinear, making the problem difficult to address

with more classical combinatorial optimization techniques.

Finally, the amount of time spent by the ga is flexible. More

computation time may result in better solutions, but the al-

gorithm can be interrupted at any time to return the best

solution found.

Our experiments show that ga’s are well suited to the

problem of finding good optimization sequences. For each

program in our set of benchmarks, the ga discovered a se-

quence that produces smaller codes than the hand-designed

sequence used in our compiler for many years. In many

cases, the resulting code is also faster. These results showed

us how to design a different fixed sequence that produces

smaller code than our default sequence. Finally, we show

that additional savings in space of up to five percent can be

obtained by running the ga on a program-by-program basis

versus a single fixed sequence for all programs. This sug-

gests the potential of designing optimization sequences that

are custom-fitted for a program, rather than constructing a

universal, one-size-fits-all sequence.

In Section 2, we give the necessary details of our research

compiler and describe the optimizations used in our experi-

ments. Section 3 gives an overview of genetic algorithms and

provides the details of the ga we used in our experiments. In

Section 4, we present some experimental results for several

benchmark programs. We compare code sizes for compil-

ing with no optimization, fixed optimization sequences, and

optimizing using sequences found by the genetic algorithm.

Finally, in Section 5, we present some conclusions, observa-

tions, and directions for future work.

2 Our compiler framework

Our research compiler includes front ends for C and For-

tran. The front ends translate the source code into our

low-level intermediate language, called iloc. Iloc is an

assembly-level language and is risc-like; operands for all

computational operations must be in registers. Several fla-

vors of load and store operations transfer values between

registers and memory.

Once the code has been transformed into iloc, we have

various optimization passes that can be applied. Each opti-

mization is an iloc-to-iloc transformation designed to im-

prove the code in some way. In the experiments for this

paper, the following 10 program transformations were used:

1. Constant propagation (cprop): This pass is an imple-

mentation of Wegman and Zadeck’s sparse conditional

constant propagation technique [22]. We run cprop

with an option (-m) that disables conversion of multi-

plies into shifts and adds. That conversion forestalls

some subsequent optimizations and increases code size.

We also enable the option (-f) that performs propa-

gation on symbolic constants.

2. Dead Code Elimination (dead): Our dead code elim-

inator is based on Kennedy’s work [15] and uses ssa

form [8].

3. Empty Basic Block Removal (clean): This pass re-

moves basic blocks that contain only a single control-

flow operation.

4. Global Value Numbering (valnum): Value numbering

is done using the Scc-based value numbering described

by Cooper, Briggs, and Simpson [6, 3]. The valnum

implementation has many options. The work in this

paper used the following settings: perform constant

folding (-f), trace values through memory (-m), re-

move some redundant computations (-a), perform al-

gebraic simplification (-s), and perform value driven

code motion (-c).

5. Lazy Code Motion (lazy): This pass performs code

motion using techniques described by Drechsler and

Stadel [11], and Knoop, et al. [16].

6. Partial Redundancy Elimination (partial): This pass

implements Morel and Renvoise’s technique for partial

redundancy elimination [18], following Drechsler and

Stadel [10].

7. Peephole Optimization (combine): This pass is an ssa-

based peephole optimizer that combines iloc opera-

tions according to a Power-PC 601 architectural model.

8. Reassociation (shape): This pass reorders expressions

using commutativity and associativity to expose op-

portunities for other optimizations [2]. It reassociates

complex expressions to expose loop invariant subex-

pressions.

9. Register Coalescing (coalesce): This pass coalesces

register-to-register copies using the interference graph

of a Chaitin style register allocator [5].

10. Operator Strength Reduction (strength): This pass

performs operator strength reduction using an ssa-

based algorithm due to Cooper, Simpson, and Vick [7].

The algorithm differs from prior work in that it finds

secondary effects in a single pass—it need not be re-

peated in an iterative fashion.

It should be noted that a simple global value-numbering pass

that renumbers registers is run before partial and lazy to

ensure that the input iloc conforms to the naming require-

ments of these passes. Additionally, shape is run before

partial to enforce other code shape requirements.

To gather execution statistics and test for correctness.

the iloc code is translated into C code. This C code is

instrumented to tabulate statistics, including the number of

operations executed during a run of the program. The C

code is then compiled and run.

This work focuses on finding optimization sequences that

result in reduced code size. Typically, this would refer to

the number of bytes required to store the object code. The

analog to this in our iloc framework is the static operation

count. That is, the number of iloc operations in the opti-

mized code. A reasonable approximation to the number of

bytes the code requires can be made by assuming each iloc

operation occupies a four byte word.

3 The genetic algorithm

Genetic algorithms are basically search algorithms designed

to mimic the process of natural selection and evolution in

nature. To begin, we need to define a few terms. A popula-

tion consists of a fixed number of members, or chromosomes.

Each chromosome is a fixed-length string of genes. The fit-

ness of a chromosome is some measure of how desirable it is

to have that chromosome in the population. A generation is

a time step in which several events occur. Some of the most

“unfit” chromosomes die and are removed from the popula-

tion. To replace these, some number of crossover operations

are applied to the population. A crossover is an operation

analogous to mating or gene splicing. It combines part of

one chromosome with part of another chromosome to create

a new chromosome. Finally, some amount of mutation oc-

curs in the population, in which genes are changed randomly

with some (typically low) probability. It is also possible to

have elitism in the population in which some of the most fit

genes are immune from mutation between generations.

Using these definitions, we define a ga to find customized

compiler optimization sequences. As described in the pre-

vious section, we have ten optimizations at our disposal.

An optimization is analogous to a gene. We have selected

a chromosome length of twelve genes. This corresponds to

performing a sequence of twelve optimizations. (The se-

lection of twelve is arbitrary. The fixed sequence used as

a default in our system has length 12. We describe it in

Section 4.) We have ten different genes and chromosomes

of length twelve for a total solution-space size of 1012. We

set a population size of twenty chromosomes. Larger pop-

ulations do not produce appreciably different results. The

fitness value for a particular chromosome (optimization se-

quence) is the size of the object code produced when that

optimization sequence is applied to the source code. Unlike

typical genetic algorithms, we desire chromosomes with low

fitness values since these correspond to smaller object codes.

Each generation in our experiments consists of the fol-

lowing steps:

1. Compute a fitness value for each chromosome. The

code being compiled is passed through the front end

of the compiler and then optimized according to the

optimization sequence defined by the chromosome. Af-

ter optimization, we remove empty basic blocks from

the code (i.e., a final pass of the clean optimization)

and perform Briggs style register allocation with 32 in-

teger and 32 floating-point registers [4]. The number

of static iloc operations in the final code is recorded

as the fitness value for that chromosome.

2. The chromosomes are sorted by fitness values from

lowest to highest. The population is split into a lower

and upper half, based on fitness value, each half con-

sisting of 10 chromosomes. The upper half consists of

the 10 chromosomes with the lowest fitness values.

3. The chromosome with the highest fitness value (worst

performance) is removed from the population. Three

additional chromosomes are chosen at random from

the lower half and removed from the population.

4. To fill the four vacancies in the population, new chro-

mosomes are generated using the “crossover” opera-

tion. Two “parent” chromosomes are randomly cho-

sen from the upper half of the population. The first

six genes of one chromosome are concatenated with

the last six genes of the other chromosome and vice

versa, creating two new chromosomes.1 This operation

is performed twice, to produce four new chromosomes.

5. Next, fifteen chromosomes are subjected to mutation.

The best performing chromosome is exempted from

mutation, a form of elitism. The four chromosomes

created by crossover in the previous step are also ex-

empted. In the fifteen chromosomes subject to muta-

tion, each gene is considered. For a chromosome in the

lower half of the population, mutation occurs with a

probability of 0.1 (or 10 percent). For a chromosome

in the upper half of the population, the probability of

mutation is reduced to 0.05 (or 5 percent). To mutate

a gene, it is replaced with a randomly selected gene.

6. Duplicate chromosomes are removed from the popula-

tion and replaced with random chromosomes.

This process is repeated for 1000 generations, and we keep

track of the best chromosome found over the course of the

run.
1The current version of our algorithm splits the chromosome in a

random position. This change does not noticeably alter our results.

Unoptimized ga results

Benchmark static dynamic static % red. dynamic % red. gen. found

adpcm 438 17221981 351 19.9 12290460 28.6 6

compress 1753 8402188 1318 24.8 5545480 34.0 (77,79)

dfa 1744 842382 1107 36.5 496164 41.1 806

dhrystone 760 4920264 536 29.5 3200191 35.0 (22,920)

fft 2415 18339859 1757 27.2 14574279 20.5 2

fmin 374 2192 187 50.0 963 56.1 32

nsieve 353 761244374 202 42.8 539954218 29.1 (0, 189)

rkf45 1525 511251 745 51.1 201470 60.6 74

seval 1061 3594 288 72.9 842 76.6 39

solve 1023 2729 437 57.3 1029 62.3 (33,58)

svd 2087 13049 972 53.4 4760 63.5 26

tomcatv 2250 1379982621 551 75.5 232833969 83.1 90

urand 204 1563 93 54.4 613 60.1 (0,18)

zeroin 273 1815 150 45.1 809 55.4 (239,270)

Table 1: Optimizing with the ga.

When computing fitness values, we also simulate a run

of the optimized code to test for correctness. If any error

was encountered during the optimization or the execution,

a fitness value of infinity is assigned to the chromosome.

Since we run the code each time we optimize it, we also

keep track of the number of operations executed during the

run. Each time any iloc operation is executed, the dynamic

operation counter is incremented. The number of dynamic

operations is a crude estimate of the number of cpu cycles

needed to execute the program. Operations that typically

require more time to execute (like divide) are not weighted

in this count. We use these dynamic operation counts as

secondary fitness values. When sorting the chromosomes by

fitness value (static operation count), we break any ties by

looking at the dynamic operation count. Thus, the final op-

timization sequence returned by the algorithm has the low-

est dynamic operation count of all optimization sequences

of the given fitness.

Note that the runtime bottleneck of this genetic algo-

rithm process is the computation of the fitness values. Also

notice that at least one chromosome (the one with the best

fitness value) remains unchanged from one generation to the

next. Thus, there is no need to recompute the fitness value

for that chromosome. It is likely that many of the other

chromosomes may not be mutated. Over the course of 1000

generations many chromosomes get “regenerated”. On av-

erage, over the whole run of 1000 generations, we found that

about 45 per cent of chromosomes already had fitness values

computed previously. To improve the runtime performance

of the algorithm we keep a hash table of fitness values in-

dexed by chromosome. When computing fitness values, we

first check the hash table to see if the fitness value for that

chromosome is already available. If so, there is no need to

recompute it and we move on to the next chromosome.

4 Experimental Results

To test the efficacy of our ga, we used it to find optimization

sequences for several benchmark programs. The Fortran

programs used in the experiments were fmin, rkf45, seval,

solve, svd, urand, and zeroin from the fmm benchmark

suite [12] and tomcatv from spec. The C codes used were

adpcm, which performs adaptive differential pulse code mod-

ulation, compress, which is the unix file-compression util-

ity, fft, a fast Fourier transformation algorithm, dfa, an

implementation of the Knuth-Morris-Pratt string-matching

algorithm, dhrystone, a common hardware benchmark, and

nsieve, code that implements the Sieve of Eratosthenes as

written by Al Aburto.

The ga described in the previous section is implemented

with a Perl script. The script determines the optimization

sequence according to the algorithm and then calls the pro-

gram ctest, which is the optimization-testing program for

our research compiler. Ctest runs the corresponding opti-

mization passes on the iloc code, including one additional

pass of clean and the register allocator. Finally, ctest has

the resultant iloc code converted to C, compiled, and run.

The number of static and dynamic operations are recorded

and reported back to the Perl script for use as fitness values

and secondary fitness values, respectively.

4.1 Solutions found by the ga

Table 1 presents the results of running our ga on the bench-

mark codes. Column two shows the unoptimized code size

(number of static operations), and column three the unop-

timized dynamic operation count. (Unoptimized code has

been run through one pass of clean and the register alloca-

tor.) Column four reports the smallest code size returned

by the ga, and column six reports the lowest dynamic oper-

Benchmark ga sequence reduced sequence

adpcm tonosdnzscno osnzc

compress ncsnzosvndvs nczvnds

dfa rztonvncodvs rztcodvs

dhrystone covolcnocdvc covlcodvc

fft ovocdvscnnos ovcdvs

fmin tdcotcscnnvo dcsvo

nsieve snzdvvcdsvss nzdvcs

rkf45 ovndtdcvsndd ovndtcvsd

seval rnldoncvconv ldovco

solve dondvnsdsdcv ovndcv

svd odvdvdsnnnss odvs

tomcatv dntvvccocvdv tvcodv

urand cnottcdtvooc nodvc

zeroin rsdosvncnsss rsosvcs

Table 2: Optimization sequences found by the ga.

ation count found for codes having the size reported in col-

umn four. (For example, several solutions resulting in object

code of size 187 were found for fmin. The best dynamic op-

eration count of those solutions was 963.) Columns five and

seven report the percentage reduction of static operations

and dynamic operations, respectively, over the unoptimized

case. Recall that the algorithm is tuned to find the solution

with the lowest static size and is only secondarily concerned

about execution time results. The last column labeled “gen.

found ” reports the generation in which the ga found the re-

ported solution. A pair of numbers in this column indicates

that the first occurrence of a solution producing the result

in column four was found in a different generation than the

solution resulting in the best dynamic instruction count as

reported in column six. Thus, the first number in the pair

is the first generation where a solution resulting in minimal

code size appeared. The second number is the generation

where the final solution appeared.

The results in Table 1 show the overall impact of opti-

mization on code size and speed for our compiler. Improve-

ments in code space range from 20 to 75 percent. Improve-

ments in speed range from 20 to 83 percent. These numbers

show the potential for improvement in our compiler. The

size and speed of the unoptimized code depends heavily on

the quality of code emitted by the compiler’s front end. In

our compiler, the code is carefully shaped to expose oppor-

tunities for optimization. This may produce slower unopti-

mized code than necessary. Other authors, however, have

reported total improvements that are comparable [20].

Table 2 reports the optimization sequences found by the

ga which give the results reported in Table 1. Each letter

in the sequence corresponds to one iloc optimization. The

letters correspond to ctest options indicating ctest should

perform that optimization. The mapping from these letters

to their corresponding optimizations is given in Table 3.

gene optimization

c cprop

d dead

l partial

n clean

o combine

r shape

s coalesce

t strength

v valnum

z lazy

Table 3: Mapping of ctest options (genes) to corresponding

optimizations.

The last column of Table 2 is a reduced sequence that

produces the same results as the sequence found by the ga.

These smaller sequences were found by an automatic tool,

starting from the sequence returned by the ga and removing

optimizations from the sequence one at a time. A simple

work-list algorithm is used, the work-list being initialized

with the sequence returned by the ga. When a sequence

s of length l is removed from the work-list, l sequences of

length l−1 are generated by removing a single optimization

from s. Each shorter sequence is tested and if it produces the

same results as the original sequence it is added to the work-

list. A hash table of tested solutions is maintained to avoid

testing a solution more than once. The process continues

until the work-list is empty, and the shortest solution found

is returned. Smaller sequences producing the same results

may exist.

It is interesting to note which optimizations appear fre-

quently in the sequences (especially the reduced sequences)

and which ones do not. Peephole optimization (combine or

o) appears in twelve of the fourteen reduced sequences. Reg-

ister coalescing (coalesce or s) and dead code elimination

(dead or d) appear in most sequences. This is not surprising,

since these optimizations almost always remove operations

from the code. Global value numbering (valnum or v) was

also present in most sequences.

Other transformations were less prevalent. Not surpris-

ingly, partial redundancy elimination (partial or l) is seen

in very few sequences (only twice in seval, and dhrystone)

This is due to the fact that partial frequently adds oper-

ations to the code in order to reduce the lengths of some

paths through the code. The effects of partial can reduce

run times but tend to increase code size. Another code mo-

tion technique, lazy code motion (lazy or z), appeared in

only four cases. Lazy can increase code size but tends to

produce fewer long register live ranges than partial. It

should be noted that valnum was run with an option that

performs value driven code motion as described in Simp-

son’s thesis [21]. Operator strength reduction (strength

rvzcodtvzcod nodvcodvs

Benchmark operations % operations %

adpcm 362 3.0 356 1.4

compress 1412 6.7 1325 0.5

dfa 1168 5.2 1145 3.3

dhrystone 574 6.6 544 1.5

fft 1973 10.9 1757 0.0

fmin 203 7.9 198 5.6

nsieve 227 11.0 202 0.0

rkf45 832 10.5 751 0.8

seval 313 8.0 297 3.0

solve 609 28.2 438 0.2

svd 1641 40.8 973 0.1

tomcatv 770 28.4 565 2.5

urand 93 0.0 93 0.0

zeroin 158 5.1 154 2.6

Table 4: Comparison of ga solutions and fixed sequence

solutions – static operation counts. Percentages indicate

improvement of ga solution over the fixed sequence.

or t) appeared in only three reduced sequences (dfa, rkf45,

and tomcatv), but appeared more frequently in non-reduced

sequences. This suggests that the optimization does not typ-

ically increase code size, but tends not to reduce it either.

Reassociation (shape or r) appeared in only two cases (dfa

and zeroin).

There was some repetition of optimizations, but it was

not very consistent across benchmarks. Repeated optimiza-

tions occurred in the reduced sequences only a few times:

valnum in dhrystone, fft, rkf45, solve, and tomcatv; com-

bine in dhrystone and seval; clean in compress, dead in

rkf45; coalesce three times in zeroin; cprop three times

in dhrystone.

The ga required about 1 day (on a Sparc Ultra-10) to

run 1000 generations for most benchmarks. This running

time is dominated by the time required to compute fitness

values, since that requires actually optimizing the code and

running it. Some time could be saved by modifications to

our testing program ctest. With the exception of dfa and

zeroin, the best solution in terms of code size was found

by the ga in less than 100 generations. This suggests that

with some fine tuning of the ga parameters, the ga would

need to be run for far fewer than 1000 generations to produce

quality results. Also, we were able to find reduced sequences

of nine or fewer optimizations in all cases. This suggests that

a smaller chromosome size could be used by the algorithm,

further improving total running time.

4.2 Performance of ga against a fixed sequence

Typical compilers present a variety of optimization levels to

the user. Each of the optimization levels represents some

rvzcodtvzcod nodvcodvs

Benchmark operations % operations %

adpcm 11965360 -2.7 12440360 1.2

compress 7494982 26.0 5548268 0.1

dfa 546396 9.2 511349 3.0

dhrystone 3390200 5.6 3270193 2.1

fft 15088485 3.4 14574279 0.0

fmin 955 -0.8 947 -1.7

nsieve 570608938 5.4 554450986 2.6

rkf45 214146 5.9 215620 6.6

seval 809 -4.1 985 14.5

solve 1099 6.4 1033 0.4

svd 4731 -0.6 4758 -0.0

tomcatv 186355888 -24.9 239463612 2.8

urand 631 2.9 613 0.0

zeroin 829 2.4 811 0.2

Table 5: Comparison of ga solutions and fixed sequence

solutions – dynamic operation counts. Percentages indicate

improvement of ga solution over the fixed sequence.

fixed sequence of optimizations that the compiler applies to

the code.

In this section, we investigate the performance of the ga

against fixed optimization sequences. We compare the so-

lutions found by the ga to two fixed sequences. The first

is used as the default in our system for producing highly

optimized code. This sequence was designed to produce

code with low dynamic operation counts, not necessarily low

static code size. This sequence is rvzcodtvzcod. The sec-

ond sequence is based on our observations of optimization

sequences returned by the ga. We tried several sequences

using optimizations that were prevalent in the reduced se-

quences of ga solutions and repeated some of them. The

best fixed sequence we developed was nodvcodvs. Clean

and the register allocator were run after each optimization

sequence. Static code size numbers are presented in Table 4

and dynamic operation counts in Table 5. The percentages

indicate the percent reduction given by the ga compared

to the fixed string. A negative value indicates that the

fixed string performed better. Notice that the ga performed

very well against the first sequence in terms of static code

size. The second sequence we developed performed quite

well against the ga but still lost by as much as 5.6 percent

in terms of static code size.

The first sequence (our default sequence) found several

solutions resulting in code executing fewer operations at run

time, but also had quite a few losses. The ga did slightly

better than the second sequence in terms of dynamic op-

eration counts with only a couple of losses, and won by as

much as 14.5 percent. Remember that the ga is specifically

tuned to find sequences that result in small code. Improved

running times are only a secondary goal of the algorithm.

Small changes in the fixed sequence can have dramatic

impacts. For example, when the shape transformation was

inserted into the sequence we developed above, the code size

for dfa was reduced to 1109 operations from 1145. However,

the same sequence increased the code size for tomcatv to

737 operations, from 565. This emphasizes the potential

improvement of using customized optimization sequences for

different programs.

4.3 The ga vs. random probing.

We would like some assurance that the ga is doing some-

thing useful. That is, can the same results be found quickly

by simply trying random optimization sequences? To test

this, we performed extensive testing on two benchmarks,

fmin and adpcm. We ran 25 experiments using the ga with

different random number seeds. We forced the ga to stop af-

ter it found a solution of the same quality as reported in Ta-

ble 1. The number of unique solutions tested was reported.

We also ran 25 experiments where we randomly choose an

optimization sequence consisting of 12 optimizations from

the pool. Again we stopped after we found a solution of the

quality reported in Table 1. The number of unique solutions

tested was reported. One would hope that average number

of solutions tested by the ga would be less than the average

number tested by random sampling to find the same quality

solution.

The average number of solutions tested by the random

algorithm was 351.8 for adpcm with a standard deviation

of 311.8. The ga tried an average of 198.7 solutions with

a standard deviation of 129.1. At the .05 level of signifi-

cance the random algorithm tests on average more than 42

solutions more than the ga. On average 3330.9 random so-

lutions were tested for fmin with a standard deviation of

2513.0. The ga tested on average 431.6 solutions on fmin

with a standard deviation of 176.0. At the .05 level of sig-

nificance we conclude that the random algorithm tests on

average greater than or equal to 2070 more solutions than

the ga.

Since the overhead required to perform the ga algorithm

vs. random testing is insignificant compared to the time

required to actually test solutions, we conclude that the

ga converges on quality solutions faster than mere random

probing of the solution space. That is, given the same fixed

amount of run time, the ga on average would produce a

better solution than random probing.

4.4 Module specific optimization sequences

Different programs have different optimization requirements.

Extending that idea, we could conclude that different mod-

ules or functions of the same program may have different

optimization needs. As a preliminary test of that hypothe-

sis, we ran our ga on the separate modules of several of our

benchmarks. That is, the ga was allowed to produce differ-

ent optimization sequences for each module. This test was

performed on rkf45, adpcm, fft, and dhrystone. Rkf45

has three iloc functions. Each one was optimized sepa-

rately. The total code size for the three was 741 operations;

a 1.5 percent reduction over the best fixed sequence and a

0.9 percent improvement over running the ga on the whole

program. adpcm has six functions and we computed opti-

mization sequences for each one. We saw no reduction in the

static size of the code over running the ga on the whole pro-

gram. However, separate optimization did lead to a 2.0 per-

cent improvement in dynamic operation count. fft contains

ten functions that we grouped into seven separate modules.

Applying the ga to each module separately resulted in a to-

tal program size of 1743 operations; a 0.8 percent reduction

from the whole program ga solution. A slight increase in

dynamic operation count was observed. Dhrystone consists

of two C modules. Optimizing them separately resulted in

a total size of 533 operations or a reduction of 0.6 percent

over running the ga on the entire program. No change in

dynamic operation count was observed.

5 Conclusions and Observations

In this paper, we described a genetic algorithm that is de-

signed to find compiler-optimization sequences resulting in

reduced static code sizes. The algorithm was tested on a

variety of benchmarks, and the solutions generated by the

algorithm were compared to no optimization and fixed op-

timization sequences. The results of these experiments are

summarized below:

• The ga found optimization sequences that dramati-

cally reduced the code size (static operation count)

compared with no optimization. The ga produced

optimization sequences that resulted in smaller code

than the compiler’s default sequence. In most cases,

the smaller code executed fewer instructions, as well.

• By observing patterns in the ga solution sequences, we

were able to construct a fixed optimization sequence

that generated up to 40 percent smaller codes than

the standard sequence used in our compiler. In many

cases, the resulting code is also faster, up to 26 percent

faster. This suggests that the ga can be used to give a

“tune-up” to an existing compiler by finding a better

optimization sequence that uses the existing passes.

• When applied to a single program, the ga generated a

program-specific optimization sequence that was often

better than either the compiler’s old default sequence

or the new sequence described in Section 4.2. This

shows that the “best” sequence differs from program

to program. In particular, if a program is too large for

the available space and the space cannot be enlarged,

it may be worth running a ga for several hours to

obtain a custom tailored optimization sequence.

We believe there are several avenues for continued re-

search based on this work:

• The number and kind of optimizations available to the

ga can be increased.

• Several of the optimizations allow options that force

the optimization to use different algorithms or heuris-

tics. These options could also be put under the control

of the ga. For example, one “gene” could correspond

to the valnum optimization as described. A separate

gene could correspond to running valnum without per-

forming value driven code motion.

• There are many parameters of the algorithm that can

be modified. The parameterization presented was one

of several tried and produced the best results of those

tested. Further changes may produce better results or

help the algorithm to converge more quickly.

• The preliminary work into module specific optimiza-

tion showed modest improvements. More study needs

to be done to see if separate optimization for different

modules in the same program is a viable technique for

reducing code size.

• We described how to use the ga to reduce code size.

However, by simply changing the fitness function, the

algorithm can be tuned to find solutions resulting in

other desirable properties such as reduced running time

or power consumption.

We believe that using a ga to find optimization sequences

could be a valuable technique for embedded systems com-

pilers. When compile time is plentiful, an embedded system

software designer may want to consider a ga approach to

final optimization, especially when code size is of critical

importance. A ga can be used to find a high quality opti-

mization sequence for particular set of optimizations.

6 Acknowledgements

This work was supported by Darpa through Usafrl grant

F30602-97-2-298. The motivation for this work came from a

talk by Andy Nisbet on his gaps genetic algorithm for par-

allelizing Fortran loops. Many thanks to past and present

members of the Massively Scalar Compiler Group for the

development and programming of the optimizations used in

this work. These include Preston Briggs, Tim Harvey, John

Lu, Rob Shillner, Taylor Simpson, and Linda Torczon. We

appreciate the helpful comments of the referees.

References

[1] Steven John Beaty. Instruction Scheduling Using Ge-

netic Algorithms. PhD thesis, Colorado State Univer-

sity, Fort Collins, Colorado, 1991.

[2] Preston Briggs and Keith D. Cooper. Effective partial

redundancy elimination. SIGPLAN Notices, 29(6):159–

170, June 1994. Proceedings of the ACM SIGPLAN

’94 Conference on Programming Language Design and

Implementation.

[3] Preston Briggs, Keith D. Cooper, and L. Taylor Simp-

son. Value numbering. Software – Practice and Expe-

rience, 27(6):701–724, June 1997.

[4] Preston Briggs, Keith D Cooper, and Linda Torc-

zon. Improvements to graph coloring register alloca-

tion. ACM Transactions on Programming Languages

and Systems, 16(3):428–455, May 1994.

[5] Gregory J. Chaitin, Marc A. Auslander, Ashok K.

Chandra, John Cocke, Martin E. Hopkins, and Pe-

ter W. Markstein. Register allocation via coloring.

Computer Languages, 6(1):47–57, January 1981.

[6] Keith D. Cooper and L. Taylor Simpson. Scc-based

value numbering. Technical Report CRPC-TR95636-

S, Center for Research on Parallel Computation, Rice

University, 1995.

[7] Keith D. Cooper, L. Taylor Simpson, and Chris A Vick.

Operator strength reduction. Technical Report CRPC-

TR95635-S, Center for Research on Parallel Computa-

tion, Rice University, 1995.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.

Wegman, and F. Kenneth Zadeck. Efficiently comput-

ing static single assignment form and the control de-

pendence graph. ACM Transactions on Programming

Languages and Systems, 13(4):451–490, October 1991.

[9] Lawrence Davis, editor. Handbook of Genetic Algo-

rithms. Van Nostrand Reinhold, 1991.

[10] Karl-Heinz Drechsler and Manfred P. Stadel. A solution

to a problem with Morel and Renvoise’s “Global opti-

mization by suppression of partial redundancies”. ACM

Transactions on Programming Languages and Systems,

10(4):635–640, October 1988.

[11] Karl-Heinz Drechsler and Manfred P. Stadel. A varia-

tion of Knoop, Rüthing, and Steffen’s “lazy code mo-

tion”. SIGPLAN Notices, 28(5):29–38, May 1993.

[12] G. E. Forsythe, M. A. Malcolm, and C. B. Moler.

Computer Methods for Mathematical Computations.

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

[13] David E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesly,

1989.

[14] John H. Holland. Adaptation in natural and artificial

systems. University of Michigan Press, 1975.

[15] Ken Kennedy. A survey of data flow analysis tech-

niques. In Steven S. Muchnick and Neil D. Jones, edi-

tors, Program Flow Analysis: Theory and Applications.

Prentice-Hall, 1981.

[16] Jens Knoop, Oliver Rüthing, and Bernhard Steffen.

Optimal code motion: Theory and practice. ACM

Transactions on Programming Languages and Systems,

16(4):1117–1155, July 1994.

[17] Melanie Mitchell. An introduction to genetic algo-

rithms. MIT Press, 1998.

[18] Etienne Morel and Claude Renvoise. Global optimiza-

tion by suppression of partial redundancies. Communi-

cations of the ACM, 22(2):96–103, February 1979.

[19] Andy P Nisbet. GAPS: A compiler framework for

genetic algorithm (GA) optimised parallelisation. In

Poster Session at The International Conference and

Exhibition on High-Performance Computing and Net-

working, HPCN Europe ’98, 1998.

[20] Randolph G. Scarborough and Harwood G. Kolsky. Im-

proved optimization of FORTRAN object programs.

IBM Journal of Research and Development, pages 660–

676, November 1980.

[21] L. Taylor Simpson. Value-Driven Redundancy Elimina-

tion. PhD thesis, Rice University, May 1996.

[22] Mark N. Wegman and F. Kenneth Zadeck. Con-

stant propagation with conditional branches. ACM

Transactions on Programming Languages and Systems,

13(2):181–210, April 1991.

