
Customizing Information Capture and
Access

DANIELA RUS
Dartmouth College
and
DEVIKA SUBRAMANIAN
Rice University

This article presents a customizable architecture for software agents that capture and access
information in large, heterogeneous, distributed electronic repositories. The key idea is to
exploit underlying structure at various levels of granularity to build high-level indices with
task-specific interpretations. Information agents construct such indices and are configured as
a network of reusable modules called structure detectors and segmenters. We illustrate our
architecture with the design and implementation of smart information filters in two contexts:
retrieving stock market data from Internet newsgroups and retrieving technical reports from
Internet FTP sites.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—selection process; H.3.4 [Information Storage and Retrieval]:
Systems and Software—current awareness systems; information networks

General Terms: Design, Documentation, Experimentation

Additional Key Words and Phrases: Information gathering, software agents, table recognition

1. INTRODUCTION

The proliferation of information in electronic form and the development of
high-speed networking make the problem of locating and retrieving infor-

D. Rus has been supported by the Advanced Research Projects Agency of the U.S. Defense
Department under ONR contract N00014-92-J-1989, by ONR contract N00014-92-J-39, and by
NSF contract IRI-9006137. D. Subramanian has been supported by NSF contract IRI-8902721.
This work was also supported in part by the Advanced Research Projects Agency under grant
no. MDA972-92-J-1029 with the Corporation for National Research Initiatives (CNRI). Its
content does not necessarily reflect the position or the policy of the U.S. Government or CNRI,
and no official endorsement should be inferred.
Authors’ addresses: D. Rus, Department of Computer Science, Dartmouth College, Hanover,
NH 03755; email: rus@cs.dartmouth.edu; D. Subramanian, Department of Computer Science,
Rice University, Houston, TX 77005; email: devika@cs.rice.edu.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1046-8188/97/0100–0067 $03.50

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997, Pages 67–101.

mation in vast electronic environments one of the grand challenges of
computer science. Examples of electronic corpora include repositories of
newspapers and technical reports, data from high-energy physics experi-
ments, weather satellite data, and audio and video recordings. Examples of
tasks that query and manipulate these electronic collections include con-
tent-based retrieval of technical reports, access of documents via citations,
summaries of stock prices from archives, and retrieval of temporal weather
patterns from a weather database. The goal of information capture and
access (ICA) is to organize and filter electronic corpora guided by user-
specified tasks. We organize data by acquiring partial models that associ-
ate task-level content with information, which in turn facilitates location
and retrieval. Our research goal in this article is to develop methods for
solving the ICA problem and to provide a computational paradigm for
customizing this process in heterogeneous, distributed repositories.
A diverse collection of tools has been developed for information capture

and access. Information capture tools like Gopher and the World Wide Web
(WWW) provide hierarchical and networked organization of data, but they
require substantial manual effort to build and maintain. Information
access over Gopher and WWW is via manually hard-wired hyperlinks and
keyword search. In addition, existing automated search engines take little
advantage either of nontextual cues in electronic data or of other underly-
ing structures. Consider the task of finding papers on cognitive theories of
practice substantiated by human data. A word-based query involving the
keywords cognitive, theory, practice, and data produces hundreds of papers,
only a small fraction of which are actually relevant. The problem is that in
a database of psychology papers these keywords occur frequently in varying
contexts. Thus, the precision value for the search is low. A better automatic
filter can be constructed by exploiting knowledge about conventions of data
representation. For example, the fact that experimental data are generally
presented in tables and graphs in technical papers can be used to substan-
tially reduce the number of potentially relevant matches to the query. Cues
like tables and graphs complement the textual content of documents. In
addition, they generalize to other types of media (like video). Information
retrieval tools need both textual and “structural” cues for query formula-
tion, as well as for information capture and access.
We propose an approach to ICA that relies on structural cues to construct

data indices at the appropriate level of granularity. We call this approach
structure-based information capture and access.1 The term structure refers
to any pattern that is at a level of abstraction higher than the basic unit of
data representation (e.g., characters and pixels). Tables, figures, lists,
paragraphs, and sections are standardized layout-based abstractions for
documents. Theorems, lemmas, examples, and counterexamples are con-
tent-based abstractions. These structures have evolved as conventions for
organizing documents and can be naturally exploited as filters to select

1Conventional word-based systems like Smart [Salton and McGill 1983] are also structure-
based ICA systems. However, they exploit only one type of structure in the data.

68 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

relevant data. In general, high-level structures are not immediately avail-
able, and computation is needed to reveal them.
We advance the theory that such structure is a natural basis for modu-

larizing information search computations. In this article, we provide a
framework for synthesizing customized information processing engines by
assembling prefabricated modules that reveal and detect structure in data.
These prefabricated structure-detecting and revealing modules can be

implemented as static programs. For distributed corpora, we claim that it
is more advantageous to organize them as transportable software agents.
Transportable agents can travel from machine to machine, processing
information locally, thus avoiding costly data transfers over congested
networks. Agents, in addition to being transportable, can learn and can
operate autonomously.
We draw inspiration from robotics [Brooks 1986; 1990; Donald et al.

1993; 1995] to design information agents. The basic modules for physical
robots are sensors and effectors. Our information agents are autonomous
sensori-computational “circuits” comprised of a network of virtual sensors
to detect, extract, and interpret structure in data and virtual effectors for
transportation. This article describes our agent architecture and the sen-
sory modules required for processing information. These modules fit on a
transportable platform called Agent-Tcl2 [Gray 1995; 1996; Rus et al. 1997].
Two types of sensori-computational modules are necessary for ICA: (1)

structure detectors, which efficiently decide whether a block of data has a
specified property (for example, “is this block of text a table?”), and (2)
segmenters, which partition the data into blocks that are appropriate for
the detectors. The modules are efficient, reliable in the presence of uncer-
tainties in data interpretation and extraction, and fault tolerant. The
modules are capable of tuning their performance parameters to the envi-
ronment and task at hand.
We illustrate our approach to ICA with an example developed in full

detail in the rest of the article. Consider the task of finding precision-recall
measures for a specific collection (such as the CACM) [Cohen 1993] from a
scanned archive of technical reports. Using knowledge that precision-recall
numbers are contained in articles on information retrieval and are fre-
quently displayed in tables, we first filter the information retrieval papers
from the electronic archive.3 We then extract tables from these papers with
an efficient table detector and then interpret the extracted tables to find
the precision-recall measures. Figure 1 shows a zoomed-out view of a paper
on information retrieval that highlights the presence of tables. The re-
quested measure is then obtained by zooming-in the tables, to examine
their contents. In our approach, we select tables from the pages of the

2This is a transportable version of Tcl/Tk [Gray 1995] that allows programs to suspend
execution and move to a different machine running an Agent-Tcl server. The current
capabilities include process migration, message passing, and communication.
3We use the information retrieval system Smart [Allen and Salton 1993] to cluster on this
topic.

Customizing Information Capture and Access • 69

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

article using simple geometric computations. We then analyze the tables at
the level of words to obtain the desired information.
We will refer to sensori-computational modules, such as the table detec-

tor above, as smart filters. We will show how smart filters can be composed
to form customizable search engines. Throughout this article, we will refer
to the result of the composition interchangeably as information agents and
as search engines [Rus and Subramanian 1993].

1.1 Related Work

The proposal by Kahn and Cerf [1988] for organizing architectures for
retrieving information from electronic repositories provides the context for
the problem addressed in this article. We are inspired by research in
several distinct areas: information retrieval and filtering, automated docu-
ment structuring, agents, information visualization, and mobile robotics.

Information Retrieval and Filtering. We can interpret the classical work
[Salton and Buckley 1990; Salton and McGill 1983] in information retrieval
(IR) as follows: the data environment is text; the unit of structure is
typically a word; the detectors constructed in the IR literature are pattern
matchers over words; the segmenters are word indexes over documents. We
propose augmenting the set of recognizable structures to include higher-
level entities: tables, graphs, pictures, time histories of patterns, etc. This
permits us to handle heterogeneous forms of information (numbers,
weather maps, simulation data).
Work in information filtering (IF) can be viewed as a complement to the

work on information retrieval, where the focus of research is in character-
izing the information in an environment that is relevant to a user.
Techniques developed in the IF community for unobtrusive user modeling
in multimedia environments, and calculation of the information that can be
ignored based on query specifications, are important in the design of
information agents.

Automated Document Structuring. The goals of the document-structur-
ing community are to identify the key constituents of a document image
(sections, paragraphs, pictures, etc.) from its layout and to represent the
logical relationship between these constituents. This is a first step toward
analyzing the content of documents.

Fig. 1. A zoomed-out view of an article on information retrieval.

70 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

Document structuring is usually done in two phases. In the first phase,
the location of the blocks on the page is determined. In the second phase,
the blocks are classified, and the logical layout of the document is calcu-
lated. Previous work on block segmentation of documents include Jain and
Bhattacharjee [1992], Nagy et al. [1992], and Wang and Srihari [1989]. The
methods are developed in the context of very specific applications; segment-
ing pages of technical journals [Nagy et al. 1992; Wang and Srihari 1989]
and locating address blocks in letters [Jain and Bhattacharjee 1992]. The
methods (the run-length smoothing algorithm [Wong et al. 1982] and the
recursive XY cuts algorithm [Nagy et al. 1992]) use area-based techniques;
that is, every pixel in the document is examined at least once in the process
of generating the segmentation. We draw on this work to define parametric
segmenters for electronic document retrieval.
Previous work on classifying and logically relating blocks includes Tsuji-

moto and Asada [1992], Rus and Summers [1995], Fujisawa et al. [1992],
Nagy et al. [1992], Wong et al. [1982], Mizuno et al. [1991], and Wang and
Srihari [1989]. Methods for discriminating between text blocks and pictures
in bitmapped images are presented in Wang and Srihari [1989], Fujisawa
et al. [1992], Tsujimoto and Asada [1992], and Nagy et al. [1992]. A
language for representing the hierarchical structure of documents is given
in Fujisawa et al. [1992]. Tsujimoto and Asada [1992] and Mizuno et al.
[1991] extract the logical structure by a bottom-up approach that starts
with the finest units of structure and then computes aggregates.

Agents. There has been a recent flurry of activity in the area of
designing intelligent, task-directed agents that live and act within realistic
software environments. These are called knowbots by Kahn and Cerf
[1988], transportable agents by Rus et al. [1997], softbots by Etzioni and
Weld [1994], sodabots by Kautz et al. [1994], software agents by Gen-
esereth and Ketchpel [1994], personal assistants by Maes [1994] and
Mitchell et al. [1994], and information agents by Rus and Subramanian
[1993]. A knowledge-level specification of knowbots is provided by Kahn
and Cerf [1988, chap. 4], who outline the required capabilities without
committing to a specific implementation. The modular information agent
architecture, organized around the idea of structure that is presented here,
can be treated as a specific implementation proposal for this specification.
In common with Kahn and Cerf, our initial applications are in the retrieval
of documents for which a user may only be able to specify an imprecise
description. Our agent architecture can also be used to set up Personal
Library Systems [Kahn and Cerf 1988] “that selectively view, organize, and
update contents” of an electronic library for individual use.
We are interested in the same class of tasks as Etzioni and Weld [1994],

Kautz et al. [1994], Maes [1994], and Mitchell et al. [1994]. Etzioni and
Weld synthesize agents that are Unix shell scripts by using classical AI
planning techniques. The focus of Mitchell et al.’s and Maes’ work is in the
interaction between users and agents. They propose using statistical and
machine-learning methods for building user models to control the agent

Customizing Information Capture and Access • 71

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

actions. Genesereth and Ketchpel [1994] propose a declarative agent com-
munication language.

Information Visualization. The GUI community has developed a range
of visual methods for interacting with large information sets such as CACM
[Cohen 1993]. The work most relevant to our project is that of the
information visualization group at Xerox Parc [Robertson et al. 1993]. They
have developed an integrated architecture that allows a user to browse
through a rich information space and visualize the results of retrievals in
interesting three-dimensional views (e.g., walkthroughs in 3D rooms). The
major use of structure in their work is to summarize and present informa-
tion to a user.

Mobile Robotics. The analogy between mobile robots in unstructured
physical environments and information agents in rich multimedia data
environments is not just metaphorical. We have observed [Brooks 1986;
1990] that the lessons learned in designing task-directed mobile robots can
be imported to the problem of information capture and access. We were
influenced in defining topology-based segmenters and structure detectors
by the work of Donald [1995] and Donald et al. [1993; 1995], who consider
the problem of determining the information requirements to perform robot
tasks using the concept of information invariants and perceptual equiva-
lence classes.

2. ORGANIZING PRINCIPLES FOR INFORMATION-GATHERING SEARCH
ENGINES

For any specific information access query, no matter how complicated, we
can write a special-purpose program on top of existing tools to search for
the answer. However, there is such great variety in the information
landscape that it is impractical to provide a special search program for each
possible query. This is because building each one from scratch takes a
considerable amount of time and expertise. We are not arguing against the
use of search engines specialized for specific query classes. We propose
speeding up the process of building specialized search engines for classes of
queries by recycling the computations they perform. This requires the
recognition and reuse of significant computational modules; in particular,
we need (1) a basis for the modularization and (2) schemes for combining
the modules into complete search engines.
The basis for the modularization is structure at multiple levels of

granularity in the electronic repository. By structure we mean any regular-
ity or pattern present in the data. Word counts as used in traditional
information retrieval are examples of statistical structure, and tables or
graphs are examples of geometric structures. Sometimes structure is not
apparent in raw data. In such cases, modules that segment and transform
data to reveal underlying structure can lead to effective search algorithms.
We show that it is possible to synthesize special-purpose search algo-

rithms by combining simple modules for detecting and filtering structure.

72 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

Each module can be viewed as an operation in a calculus of search. The set
of all modules together with the combination operators defines a high-level
language for specifying search engines.
The desirable properties of segmenting and structure-detecting modules

are

—Reliability: Detectors and segmenters that rely on perfect data interpre-
tation perform poorly. Consider for instance the design of a structure
detector for tables. The general organization of a table is in rows and
columns, but the actual table content and layout differ with each exam-
ple. Tables with partially misaligned or missing records should be
detected with a specified degree of accuracy and confidence. In this
article, we design structure detectors and segmenters to be robust in the
presence of uncertainty in data representation and to have bounds of
accuracy for data interpretation.

—Efficiency: The objective of information gathering is to find good answers
in response to a user’s query, as fast as possible. The data environment is
so large that neither structure detectors nor segmenters can afford to
look at every data item, so it is important to design these units effi-
ciently. Our measures of efficiency are tuned to specific applications. We
prove bounds on efficiency (typically time and space bounds) as a
function of performance accuracy. For instance, we prove that our seg-
menter has complexity linear in the perimeter of the regions defined by a
white space border of width d in a document (rather than in the area of
these regions).

—Error detection and recovery: Modules should be designed to recover from
errors in the segmentation and interpretation of data. Additionally, since
our data are in a distributed, wide-area network, it is important that
they detect and recover from network failures. This is typically accom-
plished by having each module be self-correcting—a lesson about organi-
zation of complex systems [Brooks 1986; 1990] that was discovered in the
context of mobile robotics and insect intelligences. Our designs incorpo-
rate task-specific error detection and recovery schemes.

A complex search is organized as a network of on-line computations.
Each node in the network corresponds to a module; modules interact by
sharing data. Our information agents (1) are transportable across ma-
chines, (2) are customizable to a user specification, and (3) have autonomy
in decision making.
In the remainder of this section we discuss details of designing modules

(segmenters and detectors) and organizing them as information search
engines.

2.1 Segmenters

Segmenters partition data at the appropriate grain size for structure
detectors. The table detector expects information to be broken up into

Customizing Information Capture and Access • 73

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

pieces at the paragraph level; this is generated by a paragraph segmenter
described later in this section.
We model granularity shifts in the descriptions of the data using con-

cepts from topology [Munkres 1975]. A topology over a set S is a set of
subsets of S that are collectively exhaustive—the union of the subsets
yields S. A topology is closed under the operations of union and finite
intersection. The coarsest description of a data collection W, where the only
distinction made is between W and the rest of the world, is called a trivial
topology and consists of two subsets of W—W itself and the null set À.

Definition 2.1.1. A segmenter n is a function that takes a topology of the
world W and produces another topology of W, n: t1(W) 3 t2(W).

Each segmenter generates a view of the document (see Figure 2). A

Fig. 2. The lattice of syntactic topologies of an electronic document. The bibliographic view
contains the information in a bibliographic record. The physical view captures the page layout
of the document. The logical view captures the relation between the pieces of the document.
There are also semantic topologies, with various conceptual views.

74 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

special class of segmenters produce finer partitions of a given view of a
document. Let t1 be a partition of the document in Figure 1 into a title,
abstract, sections, and a bibliography. Let t2 partition the same article into
a title, abstract, section 1, . . . , section n, and a bibliography as shown in
Figure 2(c). Since t2 distinguishes sections unlike t1, t2 is a refinement of
t1.

Definition 2.1.2 (Refinement). Let t1 and t2 be two topologies over a set
S. If t1 [t1 t2 [t2 t1 , t2 then t2 is a refinement of t1.

A topology t2 that satisfies Definition 2.1.2 makes finer distinctions in the
data than the topology t1. There can be many distinct refinements of a
topology.
A refinement segmenter computes a specific topological refinement of the

data to aid the detection of structure at a certain grain size. A segmenter
that extracts individual sections in an article can provide them to a
structure detector that filters sections with certain properties (e.g., sections
containing definitions). The set 7 of all topologies of a data collection W is
computed from a set 1 of segmenters as a finite (functional) composition of
elements of 1. Since the refinement relation between topologies is a partial
order, 7 is a lattice. The top element of the lattice 7 is the trivial topology
of W. The bottom element ' is a topology consisting of singleton subsets
containing the elements of W. This topology cannot be refined any further.
The join operation ~ on the lattice takes topologies t1 [7 and t2 [7 and
produces a topology t [7 such that t1 and t2 are refinements of t. The
meet operation ` takes topologies t1 [7 and t2 [7 and generates t [7
such that t is a refinement of both t1 and t2. The lattice 7 of topologies of
the data environment reveals structures at different levels of detail.
The abstract specification of a segmenter allows us to characterize its

behavior independent of its implementation. Modeling the world as a
lattice of topologies generated by segmenters provides computational sup-
port for the idea of generating successive refinements that zoom-in to the
required information.
We distinguish between logical and physical segmenters. A segmenter

that extracts sections of an article for table detection generates a logical
segmentation of the data environment. In contrast, agents like Netfind
[Schwartz and Tsirigotis 1991] employ segmenters that partition the nodes
in the Internet into relevant and irrelevant sets.
We illustrate the idea of segmenters with a general algorithm that can

partition two-dimensional documents with arbitrary layout. A special case
of the algorithm presented here has been implemented and tested in the
context of the Cornell technical report collection [Rus and Summers 1995].
The segmenter in Rus and Summers [1995] automatically synthesizes a
logical view of a document by analyzing the geometry of the white spaces in
the left and right margins.

2.1.1 An Example: Segmenting Documents. Given a pixel array of a
document, the segmenter’s goal is to partition the document into regions

Customizing Information Capture and Access • 75

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

that capture its layout. This problem has two parts: determining where the
regions are and classifying them according to their layout structure.
Examples of regions are titles, text blocks, pictures, tables, captions, etc. In
what follows, we present an algorithm for finding specific regions of layout
structure.

Definition 2.1.1.1. Let B be a polygonal partition of the document. A
border of width d is the set Border (B, d) 5 B Q Sd

1 2 B. Every element of
Border (B, d) is a white space.4

A document is treated as a pixel array. Intuitively, a border of white
space of width d exists around a polygonal region B in the document if we
can roll a coin of diameter d around the region. We define an inclusion
relation between polygonal partitions S1, S2 in a document; in particular
we say that S1 is included in S2, denoted S1 , S2, if every pixel in S1 is
also a pixel of S2.

Definition 2.1.1.2. A layout region B relative to a border of width d in a
document D is a document partition for which B ø Border (B, d) , D, and
there is no region B9 , B with this property.

This definition identifies borders around both convex and nonconvex
document partitions. It cannot, however, identify rings of white space
contained entirely within a region. Note that the geometric definition of a
border is parameterized on d, the width of the border. It allows us to
construct a hierarchical model of the document layout without relying on a
predefined set of document features like sections, captions, etc. The levels
of the hierarchy are defined by different values of d. That is, we can
partition a document into regions at different grain sizes according to the
border of white space that can be drawn around them. For example, if the
task is to partition the front page of The New York Times into blocks,
values of d . 0.2 inches extract the entire title, while values of d , 0.1
inches separate each character of the title into its own block. If we are
given a set of characteristic d values for a document, we can segment that
document into regions for each d value. The region topology generated with
d1 is a refinement of the region topology generated with d2 if d1 , d2.
Thus a collection of d values defines a totally ordered set of region
topologies for a document. The coarsest element in the set consists of one
region: the entire document. The ith element of the set contains regions
relative to a border width of di. The (i 1 1)th element is constructed
recursively by refining the regions found in the ith partition with a
(smaller) d value of di11. Each topology is computed by rolling coins of
successively smaller sizes through the maze of white spaces in a document.
The block segmentation algorithm in Figure 3 finds regions by detecting

borders of width d. It traces the perimeters of identified regions. Its
computational complexity is O(p), where p is the number of pixels that do

4A Q B 5 {a 1 b  a [A, b [B} is the Minkowski sum of sets A and B. Sd
1 is a circle of

diameter d.

76 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

not occur in any of the identified regions. For each region, the algorithm
examines a number of pixels linear in the perimeter of the region, rather
than its area. For dense documents, like lead pages of a newspaper, this is
a significant reduction in complexity.

PROPOSITION 2.1.1.3. The perimeter-tracing algorithm identifies polygo-
nal partitions that are unions of axis-parallel rectangular regions with
borders of width d as specified in Definition 2.1.1.2. For a pixel array of size
m 3 n, it identifies regions by examining no more than O(p) pixels, where
p is the number of pixels that occur outside identified regions.

The restriction to unions of axis-parallel rectangles is due to the sweep-
ing strategy employed by the algorithm. The size d of the border width has
to be chosen carefully for the algorithm to perform well, i.e., for the number
p of pixels examined to be significantly smaller than mn. With a border
width equal to the intercharacter spacing, the algorithm examines every
pixel, similar to existing area-based methods, and generates the finest
region topology of the document.
How reliably does the algorithm identify meaningful blocks in a scanned

document? The accuracy of the block partitions is a function of the d values
made available to the block segmenter. Significant d values, denoting the
width of white spaces between logical units like paragraphs and sections,
extract partitions of the document at the paragraph and section level
respectively. These spacings can be provided by a user or estimated by the
system using random sampling of regions of the document. The correctness
of our block segmentation scheme relies on regularities in the environment
of documents—in particular, the fact that documents are typeset with some

Fig. 3. The perimeter tracer for the block segmentation algorithm for a given border width d.
The regions are determined by connecting vertices found by the algorithm.

Customizing Information Capture and Access • 77

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

standard conventions. Most documents have a rectangular layout produced
with a finite set of fonts. Each font size has a characteristic spacing
between lines and characters. Our algorithm relies on the following generic
typesetting rules. A superset of these conventions are found in Nagy et al.
[1992].

(1) Printed lines are roughly horizontal.
(2) The base lines of characters are aligned.
(3) Word spaces are larger than character spaces.
(4) Paragraphs are separated by wider spaces than lines within a para-

graph, or by indentation.
(5) Illustrations are confined to rectangular frames.

Suppose the interparagraph spacing is dp, and we supply the algorithm
with a d value of dp 6 ep, where 0 # ep # dp. How likely are we to extract
paragraphs in the scanned document using the block segmenter? The
answer to this question is determined entirely by the data and not the
algorithm. If d values in the interval [dp 2 ep, dp 1 ep] are not associated
with other “natural” logical units of the document, our algorithm will
correctly produce a partition of the document at the paragraph level. The
algorithm is robust in environments where significant d values are spaced
more than ep apart. A more formal statement of this intuitive analysis of
robustness requires the formulation of layout models of scanned docu-
ments. A formal robustness analysis is presented in the next subsection for
a structure detector that operates on paragraph-level regions in an ASCII
document.
The algorithm, as presented in Figure 3, assumes that there is no noise

in the data and that we can reliably detect borders. In particular, on any
sweep line, horizontal or vertical, we assume that we can find clean runs of
white pixels of length larger than d. In reality, runs of white pixels are
polluted by black pixels that occur at random locations. For instance,
letters like f, g, j, p, q, and dots on i’s protrude into the white space around
a region. We associate a tolerance parameter ed, with every d value. ed
represents the number of black pixels that can be ignored in the detection
of a run of white pixels of length d. The tolerance ed should be chosen
directly proportional to the value of d. Metaphorically speaking, we treat
each coin of size d as a bulldozer that can push ed or fewer black pixels out
of the way.5 In our implementation of the block segmenter, we experimen-
tally determined these values for documents drawn from the scanned
technical report archive at Cornell.

2.2 Structure Detectors

Structure detectors are programs that can decide whether a block of data
has a specified property P. An example is the property of being a table or a
graph for a block of text.

5We thank Jim Davis for this idea.

78 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

Definition 2.2.1. A structure detector is a computable function s : t (W) 3
2t (w) defined on a topology t (W) to a discrete subset t(W) of that topology, such
that t(W) has the property P.

A structure detector s for a property P is complete if it finds all the subsets
of t(W) that satisfy P. A structure detector s for property P is robust if
whenever it recognizes t(W), it recognizes all its e-perturbations.

2.2.1 An Example: Detecting Tables. Webster’s Seventh Dictionary de-
fines a table as a “systematic arrangement of data usually in rows and
columns for ready reference.” Implicit in this definition is a layout compo-
nent and a lexical component: the data are organized in columns of similar
information. Consider the structure in Figure 4: the records are two lines
long; the columns in the second line of a record do not align with the
columns in the first; some columns extend into adjacent ones; and there are
lexical irregularities in its records. In spite of these imperfections, the
layout and lexical structures are clear, and we identify the structure as a
table. Our goal is to create a structure detector that checks for column and
content structure while tolerating irregularities to within specified error
bounds.
The measure for the column layout of a block of text is given in terms of

a data structure called the white space density graph and is denoted by
WDG. Let B be a block of text of n rows and m columns and w : {cc is a
character} 3 {0, 1} with w (space) 5 1 and c Þ space, w(c) 5 0.

Definition 2.2.1.1 (Vertical Structure). The white space density graph of
B is the polygonal line WDG : [0, m] 3 [0, 1] defined by the points
WDG(i) 5 1/n (j50

n w(Bi, j), 0 # i # m.

Figure 6 shows the WDG associated with the table in Figure 4.

Definition 2.2.1.2 (Deviations in Vertical Structure). Given an error
tolerance ev, a block of text has column structure if it occurs between two
successive local maxima above 1 2 ev in the WDG.

Each local maximum is a candidate column separator. A candidate column
is a real table column only when it has corresponding horizontal lexical
structure. We are far from being able to identify row structure based on
semantic content, but semantic uniformity in rows is highly correlated with

Fig. 4. A schedule of the introductory computer science courses.

Customizing Information Capture and Access • 79

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

lexical uniformity. We exploit this correlation in the design of a table
detector that is robust in the presence of layout imperfections.
The process of discerning lexical structure is facilitated by the presence

of nonalphabetic characters. For example, it is easy to recognize that the
entries of the sixth column in Figure 4 represent similar information, since
they have a very regular and distinct lexical pattern. In distinguishing
lexical structure, we identify the following equivalence classes of charac-
ters: alphabetic, numeric, and special (each special character is in its own
class). Let c0, c1, . . . cn denote the columns of a table. We use regular
expressions for generalizing the contents of a column. In Figure 4, all items
in the sixth column (the meeting times) can be described by the following
conjunctive regular expression NN : NN, where N is a symbol denoting a
number and where the colon (:) is special character. The lexical descrip-
tion of a column ci is a nontrivial regular expression ri that describes the
smallest possible language that includes all elements of ci. The regular
expression r1 1 . . . 1 rn is a trivial generalization of a given set of the
elements r1, . . . , rn; otherwise it is nontrivial.

Definition 2.2.1.3 (Horizontal Structure). Consider the columns
c1 . . . cn of a block of text satisfying Definition 2.2.1.2, and consider the
lexical descriptions r1 . . . rn of these columns. This text also has row
structure if and only if the language described by r1, r2 . . . rn is nonempty.

Now consider Figure 4, which has small irregularities in the lexical
structure of the columns. To express this more rigorously, let M be a metric
for string comparison (we use the Levenshtein metric [Sankoff and Kruskal
1983]). Given e . 0, two strings a and b are e-similar if M(a, b) # eh. We
use eh-typings, defined below, of the regular expressions that correspond to
the entries of a column in order to control the imperfections we allow in
horizontal structure.

Definition 2.2.1.4 (Deviations in Horizontal Structure). Given eh . 0
and a set of strings, an eh-typing is a division of the set into disjoint subsets
such that any two strings in the same subset are eh-similar.

Lexical typing for a table is done in two parts. Each candidate column is
analyzed to determine a regular expression for its type. The alphabet of
types is generated by eh-typing the column elements. The lexical type of the
table is obtained by computing the minimum regular expression over the
column types. The data in the list associated with each column are typed by
grouping all the elements of the column, that are at least eh-similar (for a
given eh), into an equivalence class. This step in the algorithm allows for
the occurrence of multiline records in a table and for eh tolerance in the
record units. A minimal eh-typing partitions the elements of the column in
the coarsest possible way.
Figure 5 describes the table detection algorithm. An example application

of this algorithm to the table in Figure 4 follows. The first step in the
algorithm is to create the WDG associated with the table, by calculating
the percentage of blank spaces in each column of the block. Figure 6 shows

80 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

the WDG associated with the text in Figure 4. The second step is to look for
column separators, i.e., peaks in the graph of height at least 1 2 ev. This
graph has six high peaks that are associated with the rivers of white space
flowing between the seven columns in Figure 4. In the third step, each
candidate column is analyzed for lexical structure. If the column descrip-
tion patterns can be combined into a regular expression across the entire
table, the block of text is a table; otherwise it is not.
We now analyze the robustness of the algorithm. Computing peaks in the

WDG is quite easy. What is not obvious is how to determine a reasonable
threshold value eh that robustly and efficiently filters tables from basic
text. We measure efficiency as the cost of the actual computation and the
probability that base text is passed through unnecessary lexical analysis.
One approach is to require the user to specify the value of eh using his or
her knowledge about the data environment. Another approach is to have
the algorithm statistically learn the value of eh by analyzing the WDG of
tables identified by the user. A third solution does not rely on user
assistance, but rather makes use of a probabilistic analysis of WDGs of
basic text. The question we ask is “for a high peak value in the WDG, what

Fig. 5. The table detection algorithm.

Fig. 6. A white space density graph for Figure 4.

Customizing Information Capture and Access • 81

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

is the probability that it corresponds to a true table column rather than a
random distribution of spaces in basic text?” From this analysis, we extract
a tolerance parameter that can be used as an absolute lower bound on eh
for detecting tables with irregularities in layout.
The analysis makes the following assumptions:

—The average word length that occurs in text is known. For the English
language, Kucera and Francis [1967] have determined that the average
word length of distinct words is 8.1 characters, but of word occurrences in
written text, it is 4.7 characters. For simplicity, we assume that in basic
text the average word length is 4 characters.

—The blank spaces in base text are distributed independently. This is due
to the fact that the lengths of words and of the spacing between them are
variable, and their occurrences in a line of text are random. We have
tested the independence of the distribution of white space by extensive
experiments with Splus [Statistical Sciences 1991]. This implies that the
blank spaces of a line have a binomial distribution.6

Let B be a block of text of n rows and m columns. Let p be the probability
that a character c in a row is blank, and let q 5 1 2 p be the probability
that the character is nonblank.7 Let WDG be the white space density graph
for B. Denote by WDG(k) the value for the kth column of B. Application of
Chebyshev’s theorem8 yields the following:

COROLLARY 2.2.1.5. If the absolute value of a peak in the WDG is greater
than np 1 h=npq, the probability that the peak is an occurrence of basic
text is 1/h2.

In other words, by setting the peak threshold to np 1 h=npq, we ensure
that with probability 1/h2 the presence of any value above the threshold is
a candidate column separator in a table. The user can specify required
confidence in identifying columns (1/h2), and we can calculate the peak
threshold, since n, p, q, and h are all known.
A block of text is a table if it has both vertical and horizontal structure.

We now consider the complexity of lexical component analysis.

PROPOSITION 2.2.1.6. Finding the minimum eh-typing is NP-complete.

PROOF. Reduction to partitions into cliques. e

Even though finding the minimum typing is a hard problem, a useful
eh-typing can be found efficiently. An element is placed in a partition only
if it is eh/ 2-similar to the original element of that partition; when an

6An interesting problem is to determine when the binomial distribution approaches a normal
distribution; at present, we have no solution to this problem.
7An average word length of four characters yields p 5 0.2 and q 5 0.8.
8For any distribution with standard deviation s, at least a fraction 1 2 (1/h2) of the
measurements differ from the mean by amounts at most hs.

82 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

element is encountered for which no such partition exists, it becomes the
original element of a new partition.
The types of the entries of each column are assembled into the type

matrix. An m 3 n type matrix is constructed for a block of text of m lines
and n columns. If tij 5 ti9j9 the data in row i and column j and the data in
row i9 and column j9 are e-similar. The type matrix for the table in Figure
4 is given in Figure 7. A GCD algorithm [Blum and Kozen 1978] can be
used to determine the type, if any, of the overall matrix and thus to decide
whether the matrix represents a table. We provide for error tolerance in
the typing of each column by supplying an error parameter er. This
parameter specifies the amount of “noise” in the pattern that defines the
type of a column. For example, if er 5 0.2, the type of the fifth column in
Figure 7 is taken to be t8; the two entries that are labeled as t0 are treated
as noise.
We have implemented this table detector that is robust with respect to

layout imperfections and used it to build search engines for retrieval tasks
whose answers are found in tabular form.

2.2.2 Experiments with the Table Detector. We have tested the perfor-
mance of the table detector on several thousand articles culled from a
number of Usenet news groups9 over a period of a few weeks. Each article
was partitioned into paragraphs and then filtered through the table detec-
tor. The results were compared with human labeling (as tables and non-
tables) of the same data. From a subset of the data consisting of messages
in comp.biz.hardware, 711 segments were analyzed. The table detector
correctly identified 147 out of the 151 tables labeled by a human. The
parameter setting was ev 5 10%, eh 5 30%, and er 5 50%. The results of
our experiments yielded 2.65% false negatives and 2.95% false positives.
For perfect tables (i.e., tables with perfect vertical alignment and with
uniform lexical structure) the recognition accuracy is 100%.

9These groups include clari.tw.stocks, biz.comp.hardware, biz.jobs.offers, comp.benchmarks,
alt.internet.news, and bionet.journals.contents.

Fig. 7. Type matrix for the course table in Figure 4.

Customizing Information Capture and Access • 83

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

False negatives occur for imperfect tables when there is noise in the
vertical alignment greater than the specified error limit, or when records
(rows) are nonuniform. Also, false negatives occur when tables are embed-
ded so that the text around them bias the vertical and/or the horizontal
structure of the block. Tables with multiline headers where the ratio of the
size of the header to that of the table exceeds the horizontal error tolerance
are also misidentified. False positives occur when there is accidental
alignment of blanks in a paragraph of text. This happens more frequently
for short paragraphs (less than five lines).
We studied the sensitivity of the table detector on a data set consisting of

74 tables of very different formats. We counted the number of tables
detected by varying the vertical noise ev from 5% to 25% in increments of
5% and by varying the horizontal noise eh from 20% to 40% in increments
of 5%. The results are plotted in Figure 8. The algorithm is much more
sensitive to values of ev than of eh. The worst performance over the
parameter range we studied was for ev 5 5% and eh 5 20%: 53 out of 74
tables were recognized. The best performance was for ev $ 15%: 73 out of
74 tables were recognized. The one table that was not detected had very
irregular lexical content. Figure 9 shows the table that was not recognized,
and Figure 10 shows a complicated table that was recognized.

Fig. 8. The dependency of the performance of the table detector on ev and eh. The perfor-
mance numbers are doubly encoded color and height: bright colors and high values along the
x-axis denote good performance.

84 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

2.3 Assembly of Information Agents

Users assemble search engines from task specifications. In this section, we
discuss how simple agents are constructed from available detectors and
segmenters and how complex agents can be built from simple ones. To
synthesize an information agent for a given task, the user

(1) identifies a set of structures at different levels of detail that are
relevant to the task and chooses (or creates) detectors that can recog-
nize these structures,

(2) chooses segmenters that partition data at the right granularity for each
detector,

(3) composes the agent from these segmenter/detector pairs, and
(4) interprets the computed data.

For example, to find precision-recall measures for the CACM collection
[Cohen 1993] from a given article, the designer uses knowledge that the
answer to the query is found in tabular form. Since tables need to be
identified, the relevant structure detector is the one introduced in Section
2.2.1. The segmenter that partitions the environment for processing by the
table recognizer is the block segmenter in Section 2.1.1 with a border width
parameter that filters paragraphs in the environment. Once tables are
identified, they need to be further refined into rows by the block segmenter

Fig. 9. An example of a figure with irregular lexical content that is not recognized by the
table detector within the parameter range we studied. The first column consists of the entire
text to the left of the “3”. The lexical analysis failed on the first column due to the presence of
many mixed special characters. If the text consisting of “250Mb, QIC-80” had lined up, the
table would have been recognized. This mismatch problem is exacerbated by the fact that the
table is short.

Fig. 10. An example of a table with irregular lexical content and misalignment that was
recognized by the table detector. This table has 20% nonwhite space in the first and last
column separators, and so a parameter setting with ev $ 20% is successful.

Customizing Information Capture and Access • 85

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

with the appropriate border width parameter. We compose the two seg-
menter/detector pairs (table level and row level) in series to extract rows of
identified tables in the environment. Finally, the contents of each row have
to be interpreted to obtain the precision-recall measures. This last step
requires knowledge about the form of precision-recall measures.

2.3.1 Formalizing Agents. We represent an agent in the language of
circuits [Balcázar et al. 1988]. Asynchronous circuits are a useful engineer-
ing metaphor for assembling agents from detectors and segmenters. We
draw upon the rich formal history of circuit theory to provide principled
specifications of the computations that agents perform.

Definition 2.3.1.1. An asynchronous agent circuit A 5 (V, E) is a
directed acyclic graph representation of a computation. The elements of V
denote structure-detecting or segmenting operations, and the edges in E
denote data paths between the nodes. Each path in the graph is an
alternating sequence of segmenters and structure detectors.

We provide circuit descriptions for the modules introduced in the previ-
ous section. A structure detector is both a filter over data (e.g., a table
detector picks out blocks that are tables) and a boolean function (e.g., a
table detector checks whether a block is a table). The definition of a
structure detector (Definition 2.2.1) specifies it as a predicate which can be
viewed extensionally as the subset of a set or intensionally as a boolean
function over a set. We rely upon the correspondence between these two
representations of a predicate to define structure detectors as circuits.
Each structure detector (see Figure 11(a)) is composed of a combinational

circuit that computes the predicate (denoted by the circle) and a latch
(denoted by the square) that filters the data. The input to the structure
detector is a stream of data. Both the latch and the combinational circuit
receive the data at the same time. The combinational circuit checks
whether the block of data has some property and uses this value as a toggle
to release the data as output.
Complex detectors can be built from simple ones by using boolean

operations of `, ~, and ¬ on the predicate components of the individual
modules. Figures 11(b) and (c) show the composition operations.
A segmenter can also be described as a data-driven, asynchronous circuit

(see Figure 11(d)). A segmenter is composed of a combinational circuit that
computes a predicate, a data shredder, and a latch. The computed predicate
determines where to place the “hyperplanes” for shredding the data. The
shredder physically partitions the data into units; this partition is con-
verted into a data stream by the latch. Unlike structure detectors, we do
not consider direct compositions of segmenters. This is because we view
segmenters as preprocessors of data for detectors, and we prefer to compose
segmenter/detector pairs instead of composing segmenters. Thus, for exam-
ple, if we wanted to segment a file into individual lines with two segmenter
modules S1 and S2 where S1 segments a file into paragraphs, and S2

86 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

segments paragraphs into lines, we construct the path S1-id-S2 in the
agent graph, where id is the identity structure detector.
Structure-detecting and segmenting circuits are assembled into agent

circuits by synthesizing a data flow graph. A detector and a segmenter can
be connected in series in any order to form a simple agent. For this
composition to make sense, we need the output topology of the first circuit
in the series to match the input topology of the second circuit. For example,
a table detector should be connected to a segmenter that partitions a
document into blocks at the paragraph level. The constraints on matching
topologies are type theoretic and define minimal conditions for correct
composition. We call the topology-matching constraints calibration con-
straints. Calibration constraints ensure that data at the right granularity
pass between the components.

Definition 2.3.1.2 (Simple Agent). A simple agent is constructed from a
segmenter S : t1(W) 3 t2(W) or a detector D : t(W) 3 2t(W) connected in
series, denoted S z D, such that the calibration constraint S(t1(W)) 5
t (W) holds. The series composition D z S can be constructed provided
t1(W) 5 D(t (W)).

This simple agent takes a partition t1(W) of the data and generates a
subset of a refinement of t1(W) that satisfies s. We define two composition
schemes for agents and identify calibration constraints on each scheme.

Definition 2.3.1.3 (Serial Composition). An agent a1 : in1(W) 3 tout1(W)
can be serially composed with an agent a2 : t in2(W) 3 tout2(W) in that

Fig. 11. Circuits for structure detectors and segmenters.

Customizing Information Capture and Access • 87

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

order yielding a new agent a : t in1(W) 3 tout2(W) constructed from the
functional composition of a1 and a2, provided the calibration constraint
tout1(W) 5 t in2(W) holds. We also require that the composition respect the
alternation constraint between segmenters and detectors. We denote the
composition a1 z a2.

Definition 2.3.1.4 (Parallel Composition). An agent a1 : t in1(W) 3
tout1(W) can be composed in parallel with an agent a2 : t in2(W) 3 tout2(W),
yielding an agent a : t in1(W) 3 tout1(W) 3 tout2(W), provided the calibra-
tion constraint tin1(W) 5 tin2(W) holds. We denote the composition a1 i a2.

If a1 and a2 are simple agents, then the above operation constitutes
sharing of a segmenter. Parallel composition of two simple agents allows
for different recognizers to operate on the same data partition. For in-
stance, a table detector and a detector for recognizing graphs in text both
employ paragraph-level partitions.

2.3.2 Relating Task and Environment Structure. The design of appro-
priate structure detectors and segmenters for a task relies on underlying
assumptions about conventions for representing information in the data
environment. Consider the task of designing an agent to help protein
crystal growers access the latest information about the primary amino-acid
sequence, solubility, and molecular weight of the protein they wish to
crystallize. Such knowledge is available in databases (their number is
growing rapidly) accessible by tools like Gopher and Mosaic. There are a
number of programs available at various Internet sites to compute proper-
ties of the protein, e.g., the isoelectric point from knowledge of the primary
amino-acid sequence. At this time, human crystal growers manually com-
pile information available from these databases and perform conversions to
get the data in a uniform framework to run protein simulation programs to
get all the computed properties. This is a tedious task that can be
automated with the construction of a search engine with knowledge about
the forms in which this information occurs and with methods for recogniz-
ing and extracting it.
What structure detectors and segmenters are needed for this task? How

do we systematically relate the computations they perform to the specific
information that needs to be extracted? The designer uses knowledge that
some biology databases store information in a relational format and in
which others store them as an association list of property-value pairs. The
segmenters for this engine partition the data environment into the known
databases and within each database recognize and partition the data into a
relational table or an association list (a-list). The parametric a-list seg-
menter has knowledge about association lists and how to recognize e-per-
turbations of a-lists. So rigid formatting constraints on data are not needed
for the proper recognition. By layering the segmenter/detector pairs appro-
priately, the designer ensures that the right task-specific components are
extracted.

88 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

2.3.3 Data Interpretation. By data interpretation, we mean attaching
meaning in task-specific terms to the computations being performed by
each component. Interpretation need not, and in fact generally is not, done
by the search engine. The designer ensures that the search engine main-
tains an invariant—the mapping between the results of computations
(recall these are topologies) and the “meaning” of the extracted data. In the
Stock Filter, discussed in the next section, the designer establishes a
mapping between the structure extracted by the table detector and a “stock
table”—the latter is a task-specific category, the former a geometric object.
The mapping constitutes the interpretation of items in the rows as compa-
nies and stock prices and constitutes the items in the columns as high, low,
and closing values. The designer incorporates checks in each agent to
ensure the integrity of this mapping between results of computations
performed by the agent and their task-specific interpretations. There are
two implementation choices for data interpretation. It can be procedurally
encoded by the designer in structure detectors. Alternatively, interpreta-
tion constraints can be declaratively encoded and interpreted at run-time
for the “parsing” or “filtering” of data. The tradeoffs between these two
extremes in implementation choices can be made using established meth-
ods for analyzing interpreted versus compiled code. While declarative
encodings usually permit more flexible interpretation of data, compiled
schemes are generally more efficient. Further examples of data interpreta-
tion are discussed in the context of the Stock Filter and the Bib Filter,
described in the following sections.

3. EXAMPLE 1: COMPILING REPORTS FROM TABULAR DATA

Consider the task of compiling a stock report for AT&T for a given period of
time using an electronically archived collection of The New York Times. For
each day in the given time interval, we can structure the task as follows:

(1) We partition the paper into sections using the segmenter in Section 2.1
with the border parameter that characterizes sections in The New York
Times.

(2) We filter the business section from the paper (this is where the stock
data are most likely to occur) by using a structure detector for section
titles.

(3) We partition the business section into blocks at the paragraph level,
using the segmenter in Section 2.1 with the border parameter that
characterizes paragraphs.

(4) Since stock data in The New York Times are represented in tabular
form, or in graphical form, we select the tables and graphs using the
table detector and the graph detector.

(5) We zoom into each table and graph to extract the specific information
on AT&T.

We have implemented a smart filter that performs this operation on data
coming through newsgroups (see Figure 12). The first-level segmenter is a

Customizing Information Capture and Access • 89

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

block segmenter that takes postings, one at a time, and produces its
paragraph-level partition. Two structure detectors follow it. One filters out
the tables, and the other filters out the graphs. The subset of paragraph
blocks that are recognized as tables is provided to a row segmenter, in
order to separate the records. The rows are individually passed to a string
filter to identify the AT&T records.
The data interpretation phase is complex. The filter makes no assump-

tions about the format of the stock data other than that it is a table. The
fields for the high, low, and closing value have to be identified and
extracted from the record retrieved by the string comparator. If there is a
header, the interpreter scans it looking for the keyword “close” and deter-
mines the location of the closing value in the record. If there is no header,
the interpreter uses other information about the format of the table. It uses
the fact that stock market tables usually contain three columns correspond-
ing to high, low, and closing values and that the closing value is between
high and low. This information, which can be encoded as rules, can be used
to identify the location of the closing column.
We have implemented the Stock Filter for the data domain of Internet

newsgroups. Typical messages consist of a combination of prose and tables
that vary in format. This search engine extracts tables from a given list of
business newsgroups (an example of an extracted table is shown in Figure
13) which are then searched for records labeled “ATT.” An extracted record
is interpreted by a procedure attached to the table detector. The procedure
contains rules that define the High, Low, and Closing columns on a table of
stock data. Figure 14 shows the X-Window user interface for this filter, and
sample results for running this filter are given in Figure 15.

Fig. 12. The circuit representation of a filter for compiling stock reports.

90 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

We note that the Stock Filter can be used to retrieve any other type of
information that is present in tabular form. In particular, we have instan-
tiated the design in Figure 12 for the task of retrieving precision-recall
measures for specific collections from our database of scanned technical

Fig. 13. A data segment of stock quotations extracted by the table detector from the
newsgroup clari.tw.stocks (March 18, 1993).

Fig. 14. The user interface of the stock filter.

Fig. 15. Compilation of a stock report for AT&T over time, using the stock filter in the
environment of newsgroups.

Customizing Information Capture and Access • 91

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

reports on information retrieval. For the paper shown in Figure 1, a block
segmenter detects paragraph blocks, and the table detector extracts the
table in Figure 16. The three-line record of the table is further processed by
string comparators to extract the actual measures. The same search engine
can be used for any other retrieval task whose answer exists in tabular
form, using appropriate data interpretation procedures.

4. EXAMPLE 2: AUTOMATIC INFORMATION GATHERING WITH
CUSTOMIZED INDICES

With increasing amounts of heterogeneous distributed data, there is a need
for tools that can autonomously obtain information with minimal human
intervention. The complexity of the problem is in finding the location of a
document in a huge and unorganized world. It is impractical to look at
every server in the world for every single query. Our idea is that once we
have invested the effort to collect information relevant to a specific query,
we remember the list of sites found and use it to perform a selective search
when asked another query from the same class.
For example, suppose you are interested in books written in French; you

would need to know the list of bookstores (physical and electronic) that
carry French books. A roll call of bookstores would cluster the relevant
sources. When you need a book in French, you would begin by checking
with the stores in the computed cluster. Subsequently, when bookstores
carrying French books open or close, you would want a way of adding or
deleting them from the cluster. Our goal is to provide a facility for creating
and maintaining clusters of information sources customized for specific
query classes.
We have designed and implemented a search engine that actively finds

and orders information sources containing technical reports about a given

Fig. 16. An extracted table from an information retrieval article.

92 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

topic.10 The engine is customizable by each user. For each topic of interest,
a user invokes the engine to compute a cluster of relevant sites. Each node
in the cluster consists of a location and a tree of paths to directories within
that site. The first time around, every site is examined to construct the
initial list. In our previous example, every bookstore has to be polled to find
out if it carries French books. Once constructed, the cluster is used to
efficiently compute specific queries about the given topic. For example,
given a cluster with sites that contain papers on the query class “robotics,”
a specific query like the most recent version of the paper by Rodney Brooks
on Cog can be answered by restricting the search to the given sites. Since
the information landscape changes, the cluster is not a static entity.
Updates to the cluster involve sites as well as paths within a site. We
consider two methods for keeping the cluster current. The lazy method
updates the cluster only when the answer to the specific query is not found
in the current list. The eager method automatically adds new relevant
servers as they become available. Both methods work incrementally.
We call the cluster of sites and paths at sites a customized index for a

given query class. The customized index comprises part of the internal
state of such an agent. It drives the physical navigation of the agent
through the Internet. The index prunes away a large fraction of irrelevant
sites. The cost for the pruning is paid by the first query in that class and is
amortized over all subsequent queries. Of course, this amortization is not
valid if data changes so frequently as to make the index out of date as soon
as it is created.
Bib Agent is built on top of the Alex [Cate 1992] file system which

provides users transparent access to files located in all the FTP sites over
the world. Bib Agent can thus use Unix commands like cd and ls to
navigate to the directories and subdirectories accessible by anonymous
FTP. A structure detector collects the contents of each directory (using the
ls Unix utility and a filter) and selects a subset of directories for the next
set of navigators. These directories are processed in parallel. The Bib Agent
has knowledge about the structure of anonymous FTP directories—for
instance, it consults directories named pub, papers, or users but not bin.
This task-specific knowledge is used to navigate autonomously as far as
possible. At each node, the Bib Agent estimates the cost of its exploration
by examining the number and size of its files and subdirectories. If the cost
is above a threshold, the agent provides the user with the opportunity to
help prune and prioritize its options.11 If the user responds, the agent
remembers the user preferences and uses them in the future.
The directory tree at each site is traversed in a breadth-first manner. For

each encountered file, Bib Agent establishes a type by examining the name
and selects appropriate searching and displaying routines for that type

10In the current implementation, queries are specified by listing keywords. Our selective
search approach can be coupled with more sophisticated methods for query specifications. For
instance, we can use the table detector for specifications involving tables.
11In our present implementation, a query window (see Figure 17) is displayed.

Customizing Information Capture and Access • 93

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

(e.g., ghostview for PostScript files and MPEG for video files, etc.). A
sample output from our implementation is shown in Figure 18.
Bib Agent is a learning agent that is transportable (through FTP). It

incrementally constructs a road map of the Internet indexed by query
classes. The road map consists of cached paths to information. These
cached paths allow it to get to these locations more easily in the future. Bib
Agent also customizes the cached paths from user input as it searches.
Unsuccessful paths are pruned quickly by this approach, and a user can
customize Bib Agent with his or her own preferences by showing it some
examples.
The complexity of this agent arises from the considerable knowledge

about the Unix file organization embedded in each structure detector in the
tree. We illustrate this using an example from our existing implementation.
When the agent for this task reaches the directory /vol/alex/edu/mit/ai it has
a choice of seven large subdirectories to search. Our detector uses the
README file to aid in the selection of a subset of subdirectories for further
investigation. Bib Agent knows all the error messages of the Alex system
and provides customized routines to handle them. In some cases, Bib Agent
asks the user to help resolve an error message from Alex. For instance, Bib
Agent knows about connection timeouts and will delay reconnecting to the
site by a certain amount. If repeated timeouts occur, Bib Agent informs the
user and asks for the next course of action.

4.1 Experimental Data

We have tested the performance of our Bib Agent by simulating a distrib-
uted collection. The test data consists of the Cornell computer science
technical report library for the years 1968 through 1994. The technical
reports are stored in various formats: text (abstract only), PostScript, DVI,
and HTML. We treat the reports from each year as belonging to a separate
site. Within each site reports are stored in a complex directory-subdirectory
structure. Our agent automatically navigates through this world.

Fig. 17. The query window that serves as interface for our agents.

94 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

For each site, the Bib agent performs a breadth-first search of the
directory-subdirectory structure, examining all files that it encounters
along the way using the search filter (e.g., keywords) provided by the user.
The path list computed for each site consists of all the paths to directories
that contain files on the given topic.
Data from executing the Bib Agent are shown in Figures 19 and 20. In

Figure 19 we show the cluster of papers that talk about theories (the filled
bullets), experiments (the bold bullets), and both theories and experiments
(the shaded bullets). These clusters contain a small fraction of all the
existing technical reports. Thus, a specific query, for example “theory and
experiments in robotics at Cornell,” quickly retrieves the paper that corre-
sponds to one of the shaded bullets. Similarly, the ISIS cluster can be used
for efficient retrieval as well as compiling statistics on the history of the
ISIS group.
The present implementation of Bib Agent uses keyword query specifica-

tions. We can reconfigure the Bib Agent into one that processes specifica-
tions involving tables by replacing the text (keyword) filters in our imple-
mentation by table filters. The ease of construction of new variants of the
Bib Agent is made possible by our modular construction kit of detectors and
segmenters. We are currently working on an implementation of Bib Agent
in Agent-Tcl with a World Wide Web interface. This will be provided to
external users as a service of the Dienst Technical Report server [Davis and
Lagoze 1995].

Fig. 18. The user interface of Bib Agent. The left image shows a query window that was
displayed in response to a query for ai papers on biological models and systems. The agent
automatically navigates to the mit/ai/ftp/ai-pubs/publications directory but does not know
how to select between the 1991, 1992, and 1993 subdirectories. The user selects 1991, and the
agent returns the only paper that mentions biological models in the abstract. The first page of
this document is shown on the right.

Customizing Information Capture and Access • 95

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

5. DISCUSSION

Our goal is to develop and prototype a methodology for customizable
information and access tools for large, distributed, heterogeneous informa-
tion domains. This is challenging for many reasons: (1) there is a mismatch
between the granularity of data representation and the task specification,
(2) there is little agreement about how to specify general retrieval tasks,
and (3) the amount of data is too large for exhaustively searching it. Our
hypothesis is that the structure that exists in electronic data at various
levels of detail embodies implicit representational conventions and that
smart filters composed of structure detectors and segmenters that use this
structure are a suitable computational paradigm for organizing the search
for information.

Fig. 19. The results from running the Bib Agent to cluster the Cornell technical reports on
the query classes Theory and Experiments. The world consists of three distributed nodes, each
containing technical reports from a different year.

Fig. 20. The results of running the Bib Agent to collect papers on the ISIS project. The world
consists of 12 distributed nodes, each containing technical reports from a different year.

96 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

The key technical challenge is association of content with information. By
this we mean finding structural cues or substitutes for semantic informa-
tion at different levels of detail. To do this, we need a formal framework for
analyzing what information is necessary for performing a task. Such a
framework, based on the notion of information invariants, has been dis-
cussed in the robotics context by Donald [1995] and Donald et al. [1993]
and in the theoretical literature by Blum and Kozen [1978].
Our long-term goal is to computationally characterize methods such as

statistics over character sequences [Pearce and Nicholas 1993; Salton and
McGill 1983], statistics over word occurrence, layout and geometry, and
other notions of structure with respect to information content. There are
many important questions that arise in the context of structure-based
information retrieval.

—For a given class of ICA tasks and data repositories, what are the
appropriate structural cues?

—What information is encoded by a given structure?
—What class of partial models can be constructed with a given segmenter?
—Given an agent what class of ICA tasks is it good for?
—Can we define a computational hierarchy of ICA tasks? That is, is there
an order relation on the information necessary to solve various classes of
tasks?

We advocate modular construction of smart filters from libraries of
structure detectors and segmenters. These detectors and segmenters come
with performance guarantees. For instance, the table detector can detect
tabular information to within user-specified tolerance in row and column
misalignments. Our scheme is suited for fast prototyping of customized
information agents.
Our design philosophy is orthogonal to the philosophy behind large,

general-purpose systems such as the World Wide Web and Gopher. When is
this design methodology more appropriate than others? To answer this
question, we need a theoretical basis for characterizing ICA tasks and for
measuring the effectiveness of alternate architectures on task classes. The
notion of structure introduced in this article is a first step toward charac-
terizing tasks in an implementation-independent manner. We constructed
a smart filter for the class of retrieval tasks whose answers can be found in
tabular form. We used this filter to build a search engine for compiling
stock reports and for finding precision-recall measures. Our current imple-
mentations of this engine have been tested on Internet newsgroups, Inter-
net FTP sites, and on the CS-TR project.12 We would like to provide our
tools for smart-filter construction to a much larger body of users and gather
feedback.

12The CS-TR project is a nationwide effort to create an electronic library of computer science
reports.

Customizing Information Capture and Access • 97

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

Several criticisms can be levied against this task-directed information
agent approach to ICA tasks.

(1) Task specification: at what level of detail do we need to specify tasks? To
specify a task we need to describe the desired information at a detailed
enough level that an agent can locate and retrieve it from the environ-
ment. An analogy helps in clarifying issues in task specification.
Suppose you want a visiting alien to match all the socks in your
laundry. You will probably tell him or her to “match the socks and put
them away in my sock drawer.” Now what does he or she have to know
to do this? First, he or she needs to know that socks come in pairs and
that matching them means finding all pairs, and next, where the
laundry is in your apartment and where socks are likely to be found (in
the dryer, washer, under the bed, under the sofa cushions, etc.). These
constitute task-specific knowledge that needs to be known to accom-
plish the task. Some of the knowledge is essential to perform the task
correctly, and others aid in efficient accomplishment of the task. If your
servant does not know what matching socks means, he or she will be
unable to perform the task at all. If preferred locations of socks in your
apartment are not known, it will probably take longer to do the task. It
is useful to think of information agents as electronic organizers; these
agents give us sanitized views of information worlds. They accomplish
important, routine tasks that we need done, but do not have the
patience to do.

(2) Matching structures to tasks: how can we identify structures relevant to
a task? To design information agents we need to identify structures in
the environment that can lead us to the required information for
solving the task. These structures exist because humans use and design
conventions for representing information. For instance, typesetting
rules embodied in TeX have standardized the visual appearance of
technical papers. Structure can thus be used as a cue for task-level
(semantic) content. Can one match structures to tasks in a general way,
or is it going to reduce to 1001 special cases? Since this matching relies
fundamentally on conventions for representing information, this ques-
tion translates to one of characterizing these conventions. Such a
characterization is outside the scope of this article. Our hope is that as
we construct more agents in our testbed environment of scanned
technical reports, we will identify patterns in matching structures to
tasks.

(3) Scale up: this approach may be good for simple ICA tasks, but does it
work for more complex tasks? In our framework, task complexity is
characterized by how well understood the mapping between task and
environmental structures is. We can view structure detectors as band-
pass filters which extract information within specific frequency ranges.
A library of structure detectors pulls out different bands of interest.
Our library contains parametric structure detectors and corresponding
segmenters for commonly occurring patterns in the data environment.

98 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

We have demonstrated their use in the construction of agents for two
useful task classes. Problems caused by heterogeneity and noise in data
are solved by our approach. However ill-specified tasks still present a
challenge.13 Our focus in this article has been to expand the class of
tasks that can be solved to beyond those specified by keywords. Our
approach supports the scaling of task classes to those specifiable and
solvable by geometric or visual cues.

(4) Solution complexity: when word-based indices work impressively well,
why do we need high-level structures to extract information? We do not
suggest the supplanting of existing word-based methods by our struc-
ture-based techniques; rather, we envision their synergistic combina-
tion to provide rapid filtering in large text environments. For example,
the ability to recognize the logical and layout structure of documents
provides automatic support for the SGML-like markup of documents
that text retrievers like Smart require. for nontext environments,
structures based on geometry and other domains are necessary for
content-directed retrieval of information.
We recognize that issues relating to how users specify structures

associated with tasks, and the development of a broad query language,
are important to make the agent approach user friendly and its use
widespread. We hope that this article will provide inspiration for such
investigations.

In the end, how well our approach performs is an empirical question.
Whether users of the information superhighway prefer to build their own
“hot rods” with a structure detector and segmenter kit, or take “public
transportation” that serves all uniformly,14 will ultimately be judged by
history.

ACKNOWLEDGMENTS

We thank John Hopcroft for proposing the problem of information capture
and access and for his guidance and support. Special thanks to James Allan
and K. Sivaramakrishnan for their careful reading of an earlier draft.
Thanks go to Jim Davis, Bruce Donald, Dean Krafft, T. V. Raman,
Jonathan Rees, Matthew Scott, Kristen Summers, and Rich Zippel for
enlightening discussions. We are also very grateful to the anonymous
reviewers for carefully reading earlier drafts and for making suggestions
that helped us improve the article considerably.

13Consider, for instance, John Hopcroft’s test for a conceptual retrieval system “how does the
Brown Computer Science Department’s research budget compare with that of Cornell’s?”
Where is this information to be found? What are suitable indicators for this metric (other than
the research budget itself)? This query highlights the fact that there is a tremendous amount
of information about the environment that the designer needs to know upfront in order to
solve information retrieval tasks.
14At the lowest common denominator over usages.

Customizing Information Capture and Access • 99

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

REFERENCES

ALLAN, J. AND SALTON, G. 1993. The identification of text relations using automatic hyper-
text linking. In the Workshop on Intelligent Hypertext, The ACM Conference on Information
Knowledge Management. ACM, New York.

BALCÁZAR, J. L., DÍAZ, J., AND GABARRÓ, J. 1988. Structural Complexity. EATCS Monograph
on Theoretical Computer Science, vol. 1. Springer-Verlag, Berlin.

BELKIN, N. AND CROFT, W. 1992. Information filtering and information retrieval: Two sides
of the same coin. Commun. ACM 35, 12 (Dec.), 29–38.

BLUM, M. AND KOZEN, D. 1978. On the power of the compass (or, why mazes are easier to
search than graphs). In Proceedings of the Symposium on the Foundations of Computer
Science. IEEE, New York, 132–142.

BROOKS, R. 1986. A robust layered control system for a mobile robot. IEEE J. Robot.
Automat. RA-2 (Apr.).

BROOKS, R. 1990. Elephants don’t play chess. In Design of Autonomous Agents, P. Maes, Ed.
MIT/Elsevier, Cambridge, Mass.

CANNY, J. AND GOLDBERG, K. 1993. A “RISC” paradigm for industrial robotics. In Proceed-
ings of the International Conference on Robotics and Automation. IEEE, New York.

CATE, V. 1992. Alex: A global file system. In Proceedings of the Usenix Conference on File
Systems. USENIX Assoc., Berkeley, Calif.

COHEN, J., Ed. 1993. Commun. ACM 36, 4 (Apr.).
CREAN, P., RUSSELL, C., AND DELLON, M. V. 1991. Overview and programming guide to the
Mind image management systems. Tech. Rep. X9000627, Xerox, Inc., Palo Alto, Calif.

DAVIS, J. AND LAGOZE, C. 1995. Dienst—An architecture for distributed document libraries.
Commun. ACM 38, 4 (Apr.), 47.

DONALD, B. 1995. Information invariants in robotics. Artif. Intell. 72, 217–304.
DONALD, B., JENNINGS, J., AND RUS, D. 1993. Information invariants for cooperating autono-
mous mobile robots. In Proceedings of the International Symposium on Robotics Research.
Carnegie-Mellon Univ., Pittsburgh, Pa.

DONALD, B., JENNINGS, J., AND RUS, D. 1995. Minimalism 1 distribution 5 supermodularity.
J. Exper. Theoret. Artif. Intell. To be published.

ETZIONI, O. AND WELD, D. 1994. A softbot-based interface to the Internet. Commun. ACM
37, 7 (July), 72–76.

FUJISAWA, H., NAKANO, Y., AND KURINO, K. 1992. Segmentation methods for character
recognition: From segmentation to document structure analysis. Proc. IEEE 80, 7.

GENESERETH, M. AND KETCHPEL, S. 1994. Software agents. Commun. ACM 37, 7 (July), 48–53.
GRAY, R. 1995. Transportable agents. Tech. Rep. PCS-TR95-261, Dept. of Computer Sci-
ence, Dartmouth College, Hanover, N.H.

GRAY, R. 1996. Agent Tcl: A flexible and secure mobile agent system. In Proceedings of the
4th Annual Tcl/Tk Workshop. ACM, New York.

HEARST, M. AND PLAUNT, C. 1993. Subtopic structuring for full-length document access. In
Proceedings of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, New York, 59–68.

HOPCROFT, J. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Mass.

HUTTENLOCHER, D., KLANDERMAN, G., AND RUCKLIDGE, W. 1993. Comparing images using the
Hausdorff distance. IEEE Trans. Patt. Anal. Machine Intell. 15, 9, 850–863.

HUTTENLOCHER, D., NOH, J., AND RUCKLIDGE, W. 1992. Tracking non-rigid objects in complex
scenes. Tech. Rep. TR92-1320, Cornell Univ., Ithaca, N.Y.

JAIN, A. AND BHATTCHARJEE, S. 1992. Address block location on envelopes using Gabor
filters. Patt. Recog. 25, 12.

KAHLE, B. 1991. Overview of wide area information servers. WAIS Online Doc. Online 15
(Sept. 5), 56–60.

KAHN, R. AND CERF, V. 1988. The world of knowbots. Report to the Corporation for National
Research Initiative, Arlington, Va.

100 • Daniela Rus and Devika Subramanian

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

KAUTZ, H., SELMAN, B., AND COEN, M. 1994. Bottom-up design of software agents. Commun.
ACM 37, 7 (July), 143–145.

KUCERA, H. AND FRANCIS, W. 1967. Computational Analysis of Present Day American
English. Brown University Press, Providence, R.I.

LESK, M. 1991. The CORE electronic library. In Proceedings of SIGIR. ACM, New York.
MAES, P. 1994. Agents that reduce work and information overload. Commun. ACM 37, 7
(July), 31–40.

MITCHELL, T., CARUANA, R., FREITAG, D., MCDERMOTT, J., AND ZABOWSKI, D. 1994. Experience
with a learning personal assistant. Commun. ACM 37, 7 (July), 81–91.

MIZUNO, M., TSUJI, Y., TANAKA, T., TANAKA, H., ISASHITA, M., AND TEMMA, T. 1991. Document
recognition system with layout structure generator. NEC Res. Devel. 32, 3.

MUNKRES, J. 1975. Topology: A First Course. Prentice-Hall, Englewood Cliffs, N.J.
NAGY, G., SETH, S., AND VISHWANATHAN, M. 1992. A prototype document image analysis
system for technical journals. Computer 25, 7.

PEARCE, C. AND NICHOLAS, C. 1993. Generating a dynamic hypertext environment with
n-gram analysis. In Proceedings of the ACM Conference on Information Knowledge Manage-
ment. ACM, New York, 148–153.

ROBERTSON, S. 1981. The methodology of information retrieval experiment. In Information
Retrieval Experiment, K. Sparck Jones, Ed. Butterworths, Durban, S. Africa, 9–31.

ROBERTSON, G., CARD, S., AND MACKINLAY, J. 1993. Information visualization using 3D
interactive animation. Commun. ACM 36, 4 (Apr.), 57–70.

RUS, D. AND SUBRAMANIAN, D. 1993. Multi-media RISSC informatics: Retrieving information
with simple structural components. In Proceedings of the ACM Conference on Information
and Knowledge Management. ACM, New York.

RUS, D. AND SUMMERS, K. 1995. Using whitespace for automated document structuring. In
Advances in Digital Libraries, N. Adam, B. Bhargava, and Y. Yesha, Eds. Lecture Notes in
Computer Science, vol. 916. Springer-Verlag, New York.

RUS, D., GRAY, R., AND KOTZ, D. 1997. Transportable information agents. In Proceedings of
the 1st International Conference on Autonomous Agents. ACM, New York. To be published.

SALTON, G. 1989. Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Addison-Wesley, Reading, Mass.

SALTON, G. AND BUCKLEY, C. 1990. Improving retrieval performance by relevance feedback.
J. Am. Soc. Inf. Sci. 41, 4, 288–297.

SALTON, G. AND MCGILL, M. 1983. Introduction to Modern Information Retrieval. McGraw-
Hill, New York.

SANKOFF, D. AND KRUSKAL, J. 1983. Time Warps, String Edits, and Macromolecules: The
Theory of Practice of Sequence Comparison. Addison-Wesley, Reading, Mass.

SCHWARTZ, M. AND TSIRIGOTIS, P. 1991. Experience with a semantically cognizant Internet
white pages directory tool. J. Internetworking Res. Exper. (Mar.).

SCHWARTZ, M., EMTAGE, A., KAHLE, B., AND NEUMAN, B. 1992. A comparison of Internet
discovery approaches. Comput. Syst. 5, 4.

STATISTICAL SCIENCES. 1991. Splus Reference Manual. Statistical Sciences, Inc., Seattle,
Wash.

TSUJIMOTO, S. AND ASADA, H. 1992. Major components of a complete text reading system.
Proc. IEEE 80, 7.

WANG, D. AND SRIHARI, S. 1989. Classification of newspaper image blocks using texture
analysis. Comput. Vis. Graph. Image Process. 47.

WONG, K., CASEY, R., AND WAHL, F. 1982. Document analysis system. IBM J. Res. Devel. 26,
6.

Received December 1993; revised December 1994 and August 1995; accepted February 1996

Customizing Information Capture and Access • 101

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.

