Monitoring Solution for Workflow – based Satellite Image Processing Applications Running in a Grid Environment

Author:
Dragoș Dumitru Sbirlea

Coordinators:
Prof. Dr. Ing. Valentin Cristea
As. Dr. Ing. Florin Pop
Summary

• Satellite Image Processing
• Grids
• gProcess Workflows
• Monitoring Solution Goals
• Improving the gProcess Architecture
• Sensors
• Visualization Capabilities
• Runtime Estimates
• Conclusion
Satellite Image Processing

• Domains
 – Identification of fertile land
 – Monitoring disasters (floods, eruptions)
 – Discovery of geological characteristics
 – Identification of ore resources
 – Environment characteristics
 • Draft
 • Vegetation
 • Water
• The project adds monitoring to all stages of such a processing.
gProcess

• Engine for workflow-based satellite image processing

• Example:

Enhanced Vegetation Index

\[EVI = \frac{2.5 \times (NIR - RED)}{NIR + 6 \times RED + 7.5 \times BLUE + 1} \]
Monitoring Solution Goals

• Data Accounting and Visualization
 – System and application parameters

• Error Management
 – Discover
 – Log
 – Notify

• Scheduling improvement through statistics

• Profiling & system tuning help
Improving the gProcess Architecture

1. Client Application
2. gProcess webservices & Scheduler & Workflow job management
3. MonaLisa Repository
4. Database Server
5. Feedback System: Statistics help improve scheduling

Automated Error Detection System & Statistics computing unit

gLite Cluster

Client Application
Monitoring System Components

- Colored blocks -> my implemented components
- Gray blocks -> libraries & frameworks used
Sensors

• Implemented by me:
 – System sensors
 • CPU (user, system)
 • Memory (free, total, percentual, swap)
 – Job related sensors
 • LifeCycle steps
 – Extensible sensors engine

• Hundreds more accessible through MonALISA
Visualization

• Using MonALISA Web Client
 – Histogram and real time view for parameter values

• Using customized MonALISA Repository
 – History or Near Realtime
 – Custom graphs
 – Combined graphs
 – Statistical analysis
Runtime Estimates

• Scheduling improvement through runtime estimates

 – Fixed Percentile Estimate (FPE)
 \[\text{Cost}'_{\text{wf}}(N+1) = \text{Cost}'_{\text{wf}}(N) \times (1-p) + \text{Cost}_{\text{wf}}(N) \times p \]

 – Decreasing Percentile Estimate (DPE)
 \[\text{Cost}'_{\text{wf}}(N+1) = \text{Cost}'_{\text{wf}}(N) \times (1-p/N) + \text{Cost}_{\text{wf}}(N) \times p/N \]
Scenarios & Testing

- Testing validates the theoretical analysis
Conclusions

• Real time access to monitoring data
 \Rightarrow new possibilities for scheduling and error detection

• Made possible by a powerful monitoring framework

• Contributions:
 – Workflow runtime estimates
 – Monitoring solution implementation
 – gProcess operators implementation
 – MonALISA module for PBS updated