
Crypto Protocols, part 2

Today’s talk includes slides from:
Jonathan Millen and Dan Wallach

Example - Needham-Schroeder

The Needham- Schroeder symmetric-key protocol [NS78]
A -> S: A, B, Na
S -> A: {Na, B, Kc, {Kc, A}Kb }Ka
A -> B: {Kc, A}Kb
B -> A: {Nb}Kc
A -> B: {Nb-1}Kc

A, B are “principals;” S is a trusted key server
Ka, Kb are secret keys shared with S
{X, Y}K means: X concatenated with Y, encrypted with K
Na, Nb are “nonces;” fresh (not used before)
Kc is a fresh connection key

Denning-Sacco Attack

Assumes that the attacker has recorded a previous session,
and compromised the connection key Kx used in that one.

A -> B: {Kx, A}Kb attacker replayed old message
B -> A: {Nb}Kx
A -> B: {Nb-1}Kx forged by attacker

B now believes he shares a fresh secret key Kx with A.
Denning-Sacco moral: use a timestamp (calendar clock value)
to detect replay of old messages.

Belief Logic

Burrows, Abadi, and Needham (BAN) Logic [BAN90a]
– Modal logic of belief (“belief” as local knowledge)
– Special constructs and inference rules

e.g., P sees X (P has received X in a message)
– Protocol messages are “idealized” into logical statements
– Objective is to prove that both parties share common beliefs

Constructs

P bel X P believes X
P sees X P received X in a message
P said X P once said X
P controls X P has jurisdiction over X
fresh(X) X has not been used before
P <-K-> Q P and Q may use key K for private communication
K-> P P has K as public key
P <-X-> Q X is a secret shared by P and Q
{X}K X encrypted under K
<X>Y X combined with Y
K-1 inverse key to K

(This symbolism is not quite standard)

BAN Inference Rules
These inferences are supposed to be valid despite attacker
interference.

(1) Message-meaning rules
P bel Q <-K-> P, P sees {X}K |– P bel Q said X
P bel K-> Q, P sees {X}K-1 |– P bel Q said X
P bel Q <-Y-> P, P sees <X>Y |– P bel Q said X

(2) Nonce-verification
P bel fresh(X), P bel Q said X |– P bel Q bel X

(3) Jurisdiction
P bel Q controls X, P bel Q bel X |– P bel X

More BAN Rules

(4) Sees rules
P sees (X, Y) |– P sees X, P sees Y
P sees <X>Y |– P sees X
P bel Q <-K-> P, P sees {X}K |– P sees X
P bel K-> P, P sees {X}K |– P sees X
P bel K-> Q, P sees {X}K -1 |– P sees X

(5) Freshness
P bel fresh(X) |– P bel fresh(X, Y) (inside encryption)

Symmetry of <-K-> and <-X-> is implicitly used
Conjunction is handled implicitly

P bel (X, Y) |– P bel X and P bel Y
P bel Q said (X, Y) |– P bel Q said X, P bel Q said Y

Protocol Idealization

Convert a protocol into a collection of statements
– Assumptions
– Message idealizations
– Security goals

Message idealization conveys intent of message
– Example: A -> B: {A, Kab}Kbs
– Idealized: B sees {A <-Kab-> B}Kbs

Note: only encrypted fields are retained in the idealization.

Example - Wide-Mouthed Frog

A

S

B

A -> S: A, {T, B, Kab}Kas --> (M1) S sees {T, A <-Kab-> B}Kas
S -> B: {T, A, Kab}Kbs --> (M2) B sees {T, A bel A <-Kab-> B}Kbs

T is a timestamp
A generates Kab
Kas, Kbs are shared with S
S should check this
Justifies A said A <-Kab-> B

(A1) P bel fresh(T), for P = A, B, S
(A2) B bel A controls A <-Kab-> B
(A3) S bel A <-Kas-> S, B bel B <-Kbs-> S
(A4) B bel S controls A bel A <-Kab-> B
(A5) A bel A <-Kab-> B

Analysis

Goal: prove that B bel A <-Kab-> B.
Proof:

B sees {T, A bel A <-Kab-> B}Kbs M2
B bel S said (T, A bel A <-Kab-> B) A3, rule 1
B bel fresh(T, A bel A <-Kab-> B) A1, rule 5
B bel S bel (T, A bel A <-Kab-> B) rule 2
B bel S bel A bel A <-Kab-> B conjunction
B bel A bel A <-Kab-> B A4, rule 3
B bel A <-Kab-> B A2, Rule 3

Exercises:
– Prove that S bel A bel A <-Kab-> B
– Add the message B -> A: {T}Kab (M3) and show that

A bel B bel A <-Kab-> B

Nessett’s Critique
Awkward example in [Nes90]

A -> B: {T, Kab}Ka-1 --> B sees {T, A <-Kab-> B}Ka-1

Assumptions
(A1) B bel Ka-> A
(A2) A bel A <-Kab-> B
(A3) B bel fresh(T)
(A4) B bel A controls A <-Kab-> B

Goal: B bel A <-Kab-> B
Proof:

B bel A said (T, A <-Kab-> B) A1, rule 1
B bel fresh(T, A <-Kab-> B) A3, rule 5
B bel A bel (T, A <-Kab-> B) rule 2
B bel A <-Kab-> B A4, rule 3

Problem: Ka is a public key, so Kab is exposed.

Observations

According to “Rejoinder” [BAN90b], “There is no attempt to
deal with … unauthorized release of secrets”
The logic is monotonic: if a key is believed to be good, the
belief cannot be retracted
The protocol may be inconsistent with beliefs about
confidentiality of keys and other secrets
More generally - one should analyze the protocol for
consistency with its idealization
Alternatively - devise restrictions on protocols and
idealization rules that guarantee consistency

Subsequent Developments

Discussions and semantics, e.g., [Syv91]
More extensive logics, e.g., GNY (Gong-Needham-Yahalom)
[GNY90] and SVO [SvO94]
GNY extensions:
– Unencrypted fields retained
– “P possesses X” construct and possession rules
– “not originated here” operator
– Rationality rule: if X |– Y then P bel X |– P bel Y
– “message extension” links fields to assertions

Mechanization of inference, e.g, [KW96, Bra96]
– User still does idealization

Protocol vs. idealization problem still unsolved

Model-Checking
Application of software tools designed for hardware CAD

Verification by state space exploration - exhaustive on model
Like earlier Prolog tool approach, but

Forward search rather than reverse search
Special algorithms (BDDs, etc.)
A priori finite model (no unbounded recursion)
Fully automatic once protocol is encoded

Practicioners:
Roscoe [Ros95], using FDR (the first)
Mitchell, et al, using Murphi [MMS97]
Marrero, et al, using SMV [MCJ97]
Denker, et al, using Maude [DMT98]
… and more

Model-Checking Observations

Very effective at finding flaws, but
No guarantee of correctness, due to artificial finite bounds
Setup and analysis is quick when done by experts
Automatic translation from simple message-list format to
model-checker input is possible [Low98a, Mil97]
“Killer” example: Lowe attack on Needham-Schroeder public-
key protocol, using FDR [Low96]

NSPK Protocol

Na, Nb are nonces; PKA, PKB are public keys
The protocol - final handshake

A -> B: {Na, A}PKB
B -> A: {Na, Nb}PKA
A -> B: {Nb}PKB

Exercise: use BAN Logic to prove
B bel A bel A <-Nb-> B [BAN90a]

Lowe Attack on NSPK

X is the attacker acting as a principal
X masquerades as A for B

Session 1: A to X
A -> X: {Na, A}PKX

X -> A: {Na, Nb}PKA
A -> X: {Nb}PKX

Session 2: X (as A) to B

A(X) -> B: {Na, A}PKB
B -> A(X): {Na, Nb}PKA

A(X) -> B: {Nb}PKB

(Lowe’s modification to fix it: B -> A: {Na, Nb, B}PKA)

Finiteness Limitation
How many sessions must be simulated to ensure coverage?
– Lowe attack needed two sessions
– Example 1.3 in Dolev-Yao [DY83] needed three sessions

A -> B: {{M}PKb, A}PKb
B -> A: {{M}Pka, B}Pka

No algorithmically determined bound is possible for all cases
Because of undecidability for the model

Possible bounds for limited classes of protocols
– Lowe “small system” result [Low98b]: one honest agent per role,

one time, if certain restrictions are satisfied:
Encrypted fields are distinguishable
Principal identities in every encrypted field
No temporary secrets
No forwarding of encrypted fields

Inductive Proofs
Approach: like proofs of program correctness
– Induction to prove “loop invariant”

State-transition model, objective is security invariant
General-purpose specification/verification system support
– Kemmerer, using Ina Jo and ITP [Kem89] (the first)
– Paulson, using Isabelle [Paul98] (the new wave)
– Dutertre and Schneider, using PVS [DS97]
– Bolignano, using Coq [Bol97]

Can also be done manually [Sch98, THG98]
– Contributed to better understanding of invariants
– Much more complex than belief logic proofs

Full guarantee of correctness (with respect to model)
– Proofs include confidentiality

Summary

Cryptographic protocol verification is based on models where
– Encryption is perfect (strong encryption)
– The attacker intercepts all messages (strong attacker)
– Security is undecidable in general, primarily because the number

of sessions is unbounded.
Belief logic analysis:
– Requires “idealization” of the protocol
– Does not address confidentiality
– Can be peformed easily, manually or with automated support

State-exploration approaches
– Use model-checking tools
– Are effective for finding flaws automatically
– Are limited by finiteness

Summary, cont’d

Inductive proofs
– Can prove correctness
– Require substantial effort
– Can be done manually, but preferably with verification tools

Protocol security verification is still a research area
– But experts can do it fairly routinely

“Real” protocols are difficult to analyze for practical reasons
– Specifications are not precise
– They use operators with more complex properties than simple

abstract encryption
– Flow of control is more complex - protocols negotiate alternative

encryption algorithms and other parameters
– Messages have many fields not relevant to provable security

	Crypto Protocols, part 2
	Example - Needham-Schroeder
	Denning-Sacco Attack
	Belief Logic
	Constructs
	BAN Inference Rules
	More BAN Rules
	Protocol Idealization
	Example - Wide-Mouthed Frog
	Analysis
	Nessett’s Critique
	Observations
	Subsequent Developments
	Model-Checking
	Model-Checking Observations
	NSPK Protocol
	Lowe Attack on NSPK
	Finiteness Limitation
	Inductive Proofs
	Summary
	Summary, cont’d

