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Provable cryptography
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CPA
support(M ) only has strings of
one length

A

ΕΚ(.)M1
M2

…
Mq 

ΕΚ(X1) 
ΕΚ(X2)

…
ΕΚ(Xq) Π = (K,E,D)

Advsem(A) = Pr [ K←K; ( f,M ) ← AE(K, ⋅) ( ); M← M; C ←EK(M):
AE(K, ⋅) (C, f ) = f (M)] −

$$ $$
Π

Pr [ K←K; ( f,M ) ← AE(K, ⋅) ( ); M,M’← M; C ←EK(M’):
AE(K, ⋅) (C, f ) = f (M)]

$$ $$

sem

2



Π = (K,E,D)

Advind(A) = Pr [ K←K:  AE(K, ⋅) = 1 ] −$
Π

Pr [ K←K:  AE(K, 0 | ⋅ | ) = 1 ]$

ind

EK (.) ΕΚ(0| ⋅ | )

A
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Advind$ (A) = Pr [ K←K:  AE(K, ⋅) = 1 ] −$
Π

Pr [ K←K:  AE(K, $ clen(| ⋅ |) ) = 1 ]$

ind$

$clen(⋅)EK (.)

A
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Lecture 2
Consider a weak form of semantic security: can’t
recover the key:

EK A

5

b’b∈

{0,1}

Adv01(A) = 2 Pr[b← {0,1}; K←K; C←EK(b):  A(C) = b] − 1
$$$

Π

C

Assume A does well at breaking Π in the 01-sense.
Construct B that does well at breaking Π in the ind-sense.



Def of B f Compute C ← f(1)
Run A (C)
When A halts, outputting b

return b
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Advind(B) = Pr[B E(K, •) = 1 ] − Pr[B E(K, 0 |•| ) = 1]

= Pr[K ← K; C←EK(1): A(C)=1] − Pr[K ←K; C←EK(0): A(C)=1] 

=  Pr[K ← K; C←EK(1): A(C)=1] − (1 − Pr[K ←K; C←EK(0): A(C)=0])

= Pr[K ← K; C←EK(1): A(C)=1] + Pr[K ←K; C←EK(0): A(C)=0]  −1  

= 2 (Pr[K ← K; C←EK(1): A(C)=1](0.5) +  Pr[K ←K; C←EK(0): A(C)=0](0.5)) −1

= 2 (Pr[A returns b | b=1] Pr[b=1] + Pr[A returns b | b=0] Pr[b=0]) −1

= 2 Pr[ A returns b] − 1 

= Adv 01(A)

Π

$ $$ $

$

$

$ $

$

$

$ $ $

$ $

$

Π



ind$ ⇒ ind
Let A be an ind-adversary—think of δ=Advind(A) as large.
Construct B that breaks Π in the ind$-sense.

Π

A

EK(⋅) Case 1: Set B=A.
Advind$ (B) ≥δ/2Π
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EK(0 |.| )

$clen(⋅)
≥δ/2

Case 2: Adv Bf behaves as
follows:

Run A
When A asks its oracle x,

Ask f(0|x| ) and return
it to A.

When A outputs a bit b,
return 1−b

≥δ/2

“Hybrid Argument”



Advind$ (t,q)  ≤ 2 Advind (t+tiny, µ)
tiny = O(µ)

Π Π

Suppose ∃ an adv A that runs in time t and asks queries
totaling µ bits and breaks Π in the ind-sense with advantage δ.
Then ∃ an adv B that runs in time t + O(µ) and asks queries
totaling µ bits and breaks Π in the ind$-sense with advantage ≥ δ/2
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K

⊕IV

M1

⊕

M2

⊕

M3

CBC-zero

CBC-ctr

CBC-chain

CBC-encctr

CBC-rand

K K

C1 C2 C3



violating indCBC-zero (IV = 0)
Ask 0n→ C1
Ask 1n→ C2
if C1= C2 then return 0 else return 1

CBC-ctr (IVi = i)
Ask 0n→ C1
Ask 0n-1 1→ C2
if C1= C2 then return 1 else return 0

CBC-chain (IVi = last block of ciphertext)
Ask 0n→ IV1 C1
Ask C1→ IV2 C2
Ask C2 → IV3 C3
if C2= C3 then return 1 else return 0
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ctr+1 ctr+2

K

⊕

ctr
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M1 ⊕ M2 ⊕

CTR-ctr

CBC-randK K

M3

C1 C2 C3



Proof outline (from Goldwasser and Bellare, chapter 6)

•We know that one-time-pad is secure
•Replace block-cipher with random function (R)
•R(i++) = one-time-pad

•Shannon proved that “idealized” counter mode give any attacker zero advantage

•Construct difference between ideal and actual protocol (ind$)

•Assume adversary A can distinguish ideal and actual protocol
•Prove that adversary B could use A to distinguish the block cipher from PRF

•Therefore, assuming any B should have low advantage (strong cipher), then
•Any A therefore has a low advantage
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Claim: CTR-rand is secure if its block cipher is a good PRP:
Let A be an adv attacking CTR[E].  Construct B that attacks E.

Adversary Bf behaves as follows:

Run A.
When A asks its oracle to encrypt M=M1

… Mm
ctr ← {0,1} 
compute pad = f(ctr) f(ctr+1)…f(ctr+m-1)
return to A (ctr, pad⊕M)

When A halts, outputting a bit b,
return b
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Advprp(B)  =  Pr[BEK=1] − Pr[Bπ = 1]
≥ Pr[BEK=1] − Pr[Bρ = 1] − σ2 / 2n+1 (switching lemma)
= Pr[A CTR[EK] =1] − Pr[A CTR[ρ] = 1] − σ2 / 2n+1

Let C be the event of a collision in the inputs to the blockcipher

= Pr[A CTR[EK] =1] − Pr[A CTR[ρ] = 1 | C]  Pr[C]   
− Pr[A CTR[EK] =1 |  C]  Pr[ C] − σ2 / 2n+1

= Pr[A CTR[EK] =1] − Pr[A$ = 1] (1 − Pr[C]) 
− Pr[A CTR[EK] =1 |  C]  Pr[ C] − σ2 / 2n+1

= Pr[A CTR[EK] =1] − Pr[A$ = 1] + Pr[C] Pr[A$=1]
− Pr[A CTR[EK] =1 |  C]  Pr[ C] − σ2 / 2n+1

≥ Pr[A CTR[EK] =1] − Pr[A$ = 1] − Pr[C] − σ2 / 2n+1

= Adv ind$ − Pr[C] − σ2 / 2n+1

The problem is now an information theoretic one.  Claim Pr[C] ≤ σ2 / 2n+1

(see next slide).  We then have
≥ Adv ind$ − σ2 / 2n

E

CTR$[E]

CTR$[E]
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N = 2n bins

m1 balls

m2

m3

m4

* * *

* * * * *

*

* * * * * *

Σ min = σ
Adversary wants to create a collision.
Best way to do this is to toss one ball at a time.
Pr[C] ≤ 1/N + 2/N + … +(σ-1)/N

≤ σ2/2N
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Lecture 3

Th. Let E: K× {0,1}n→ {0,1}n.  
Let A attack CBC[E].  Assume A runs in time tA and

asks σ total blocks and achieves advantage δA=Adv ind$    (A).

Then an adv B that attacks E and runs in time at most tB
and asks at most qB queries and achieves advantage at
least δB = Adv prp (B) where

tB = tA + O(σ)
qB = σ
δB  = δΑ − σ2 / 2n

CBC[E]

E
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Def of Bf

Run A
When A asks its oracle M=M1

…Mm
Choose IV←C0← {0,1}n

for i←1 to m do Ci←f (Ci-1⊕ Mi)
return to A  (IV, C1

…Cm)
When A outputs a bit, b,

return b

$
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Pr[ACBC[π] = 1]

Advprp(B)     = Pr[BEK = 1] – Pr[Bπ = 1]

Adv ind$  (A) = Pr[A CBCE =1] – Pr[A$ =1 ]

E

CBC[E]

Adv ind$  (A)  − Advprp(B) = Pr[Bπ = 1] – Pr[A$ = 1]
= Pr[A CBC[π] = 1] – Pr[A$ = 1]
= Pr[A CBC[ρ] = 1] − Pr[A$ = 1] + σ2/2n+1

CBC[E] E

Now a purely inf theoretic question. “Game-playing” to
Show first difference at most σ2 / 2n+1
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Authenticity

A

ΕΚ(.)M1
M2

…
Mq 

C1
C2

…
Cq

A “wins”
if  C∉ {C1,…,Cq}

and
DK(C) ≠*

C
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“Encrypt-with-redundancy”

0n

20

K

⊕IV

M1

⊕

M2

⊕

K K

Attack:
Ask 0 0 → IV  C1 C2 C3

Forge 
IV C1 C2

C1 C2 C3



MAC   “Message Auth. Code” MACK(M)

σ

M   .   MACK(M)
SK RK

Compute  σ’= MACK(M)
Check if σ = σ’

A

MACK(.)M1
M2

…
Mq 

σ1
σ2

…
σq

A wins if σ=MACK(M) and M∉ {M1,…,Mq}
“A forgery”

Adv mac (A) = Pr[K←K: A MACK(.) forges]Π
$

(M, σ) 21



M1

22

K

⊕

M2

⊕

M3

σ

K K

CBC MAC

To forge:
Ask 0 →σ1

Forge
(0 σ, σ)

The CBC MAC is
Incorrect across msgs of
Varying lengths.

[BKR] Correct, with bound 3σ2/2n for msgs of some
one fixed length.



M1

23

K

⊕

M2

⊕

M3

K K

K’

Fixing the CBC MAC

Encrypted CBC
(from RACE project).
Shown provably 
secure (when E a PRP) 
by [Petrank, Rackoff]

σ



M1
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K

⊕

M2

⊕

M3

σ

K K

K’

A different fix.
Provably security
shown in [Black, R]



M Carter-Wegman
paradigm

h

h(M)
The key for the MAC is (h,K)

EK

h is a random element of
H = {h: M → {0,1}n}σ

Def:  Family of hash functions H = {h: M → {0,1}n}
is ε-AU (almost universal) if for all M, M’∈ M, M≠M’, 

Prh [h(M)=h(M’)] ≤ ε
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M

.

.
.

h

h

Unlikely 
for a 

random
h
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Eg construction

M = Mm … M0            |Mi|=128

M(X) = Xm + Mm-1 Xm-1 + … + M1X + M0

All operations in GF(2128)
There are 2128 elements of H, each described by a 128-bit R:

hR(M) = M(R).     Can be efficiently evaluated.

Claim: H is m/2128-AU  where m upperbounds the number of
blocks on any message M in the message space M

Proof: Pr [ M(R ) =M’(R )] = Pr[poly(R) =0] ≤ m/2128  because
poly(.) is a nonzero polynomial of degree at most m and therefore
has at most m zeros, and so that chance that a random point in 
the field is one of these zeros is at most m / the size of the field.
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m1 16

k1

+

m2

k2

+

m3

k3

+

m4

k4

+

m5

k5

+

m6

k6

+

m7

k7

+

m8

k8

+

× × × ×

+

16
16

32

The function NH used
in UMAC [BHKKR].
This function is 2-15-AU.
The above can be computed
In just four instructions on a
Pentium processor, allowing 
one to MAC at about 1cpb.

32

h(m)
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Authenticated Encryption via Generic Composition
(see [Bellare, Namprempre])

M
MACK

EK

C’ σ
Encrypt-and-MAC

MAC-then-Encrypt

M
MACK

EK

σ

C M

C’

EK
MACKEncrypt-then-MAC σOK!
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Authenticated Encryption via Fancy Modes
(see IAPM [J] and OCB [RBBK)]
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K

⊕

M1

⊕

M2

⊕

M3

C1 C2 C3

K K

⊕ ⊕ ⊕

K’

M1⊕M2⊕M3N

⊕R 2R 3R 3R

K*

R 2R 3R
R

σ
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