Public key crypto (quick intro) Provable cryptography

Slides from Bart Preneel and Phil Rogaway

CPA

support(M) only has strings of

one length

$$
\Pi=(\boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D})
$$

sem
$\operatorname{Adv}_{\Pi}^{\text {sem }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ;(f, \boldsymbol{M}) \stackrel{\$}{\leftarrow} \mathrm{~A}^{E(\mathrm{~K}, \cdot)}() ; \mathrm{M} \stackrel{\$}{\leftarrow} \boldsymbol{M} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(\mathrm{M}):\right.$

$$
\left.\mathrm{A}^{E(\mathrm{~K}, \cdot)}(\mathrm{C}, f)=f(\mathrm{M})\right]-
$$

$\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ;(f, \boldsymbol{M}) \stackrel{\$}{\leftarrow} \mathrm{~A}^{E(\mathrm{~K}, \cdot)}() ; \mathrm{M}, \mathrm{M}^{\prime} \stackrel{\$}{\leftarrow} \boldsymbol{M} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}\left(\mathrm{M}^{\prime}\right)\right.$:

$$
\left.\mathrm{A}^{E(\mathrm{~K}, \cdot)}(\mathrm{C}, f)=f(\mathrm{M})\right]
$$

$$
\Pi=(\boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D})
$$

ind
$\operatorname{Adv}_{\Pi}^{\text {ind }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} K: \quad \mathrm{A}^{E(\mathrm{~K}, \cdot \cdot)}=1\right]-$
$\operatorname{Pr}\left[K \stackrel{\$}{\leftarrow} \boldsymbol{K}: \mathrm{A}^{\boldsymbol{E}\left(\mathrm{K}, 0^{|\cdot|}\right)}=1\right]$

A

ind\$

$\operatorname{Adv}_{\Pi}^{\mathrm{ind}}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} K: \mathrm{A}^{E(\mathrm{~K}, \cdot)}=1\right]-$

$$
\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \mathbf{K}: \mathrm{A}^{E\left(\mathrm{~K}, \$^{\operatorname{clen}(|\cdot|)}\right)}=1\right]
$$

A

Lecture 2

Consider a weak form of semantic security: can't recover the key:

Assume A does well at breaking Π in the 01-sense.
Construct B that does well at breaking Π in the ind-sense.

Def of $\mathrm{B}^{\mathrm{f}} \quad$ Compute $\mathrm{C} \leftarrow \mathrm{f}(1)$
 Run A (C)
 When A halts, outputting b return b

$$
\begin{aligned}
& \operatorname{Adv}_{\Pi}^{\text {ind }}(\mathrm{B})=\operatorname{Pr}\left[\mathrm{B}^{E(\mathrm{~K}, \bullet)}=1\right]-\operatorname{Pr}\left[\mathrm{B}^{E\left(\mathrm{~K}, 0^{|\bullet|}\right)}=1\right] \\
& =\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\Phi}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(1): \mathrm{A}(\mathrm{C})=1\right]-\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(0): \mathrm{A}(\mathrm{C})=1\right] \\
& =\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(1): \mathrm{A}(\mathrm{C})=1\right]-\left(1-\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(0): \mathrm{A}(\mathrm{C})=0\right]\right) \\
& =\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(1): \mathrm{A}(\mathrm{C})=1\right]+\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(0): \mathrm{A}(\mathrm{C})=0\right]-1 \\
& =2\left(\operatorname{Pr}\left[\mathrm{~K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(1): \mathrm{A}(\mathrm{C})=1\right](0.5)+\operatorname{Pr}\left[\mathrm{K} \stackrel{\$}{\leftarrow} \boldsymbol{K} ; \mathrm{C} \stackrel{\$}{\leftarrow} \boldsymbol{E}_{\mathrm{K}}(0): \mathrm{A}(\mathrm{C})=0\right](0.5)\right)-1 \\
& =2(\operatorname{Pr}[A \text { returns } \mathrm{b} \mid \mathrm{b}=1] \operatorname{Pr}[\mathrm{b}=1]+\operatorname{Pr}[\mathrm{A} \text { returns } \mathrm{b} \mid \mathrm{b}=0] \operatorname{Pr}[\mathrm{b}=0])-1 \\
& =2 \operatorname{Pr}[\mathrm{~A} \text { returns } \mathrm{b}]-1 \\
& =\operatorname{Adv}_{\Pi}^{01}(\mathrm{~A})
\end{aligned}
$$

ind $\$ \Rightarrow$ ind
Let A be an ind-adversary-think of $\delta=\operatorname{Adv}_{\Pi}^{\text {ind }}(\mathrm{A})$ as large. Construct B that breaks Π in the ind\$-sense.

"Hybrid Argument"

Case 1: Set B=A.

$$
\operatorname{Adv}_{\Pi}^{\text {ind } \$}(\mathrm{~B}) \geq \delta / 2
$$

Case 2: Adv B^{f} behaves as follows:
Run A
When A asks its oracle x, Ask $\mathrm{f}\left(0^{|x|}\right)$ and return it to A.
When A outputs a bit b, return 1-b

$$
\begin{array}{r}
\operatorname{Adv}_{\Pi}^{\text {ind } \$ ~}(\mathrm{t}, \mathrm{q}) \leq 2 \operatorname{Adv}_{\Pi}^{\text {ind }}(\mathrm{t}+\text { tiny }, \mu) \\
\text { tiny }=\mathrm{O}(\mu)
\end{array}
$$

Suppose \exists an adv A that runs in time t and asks queries totaling μ bits and breaks Π in the ind-sense with advantage δ. Then \exists an adv B that runs in time $t+O(\mu)$ and asks queries totaling μ bits and breaks Π in the ind $\$$-sense with advantage $\geq \delta / 2$

$\overline{\text { CBC-zera }}$
CBE-GII
CBE-chain
CBC-encctr
CBC-rand

CBC-zero (IV = 0)
violating ind
Ask $0^{\mathrm{n}} \rightarrow \mathrm{C}_{1}$
Ask $1^{\mathrm{n}} \rightarrow \mathrm{C}_{2}$
if $\mathrm{C}_{1}=\mathrm{C}_{2}$ then return 0 else return 1
CBC-ctr $\left(\mathrm{IV}_{\mathrm{i}}=\mathrm{i}\right)$
Ask $0^{\mathrm{n}} \rightarrow \mathrm{C}_{1}$
Ask $0^{\mathrm{n}-1} 1 \rightarrow \mathrm{C}_{2}$
if $\mathrm{C}_{1}=\mathrm{C}_{2}$ then return 1 else return 0
CBC-chain $\left(\mathrm{IV}_{\mathrm{i}}=\right.$ last block of ciphertext $)$
Ask $0^{\mathrm{n}} \rightarrow \mathrm{IV}_{1} \mathrm{C}_{1}$
Ask $\mathrm{C}_{1} \rightarrow \mathrm{IV}_{2} \mathrm{C}_{2}$
Ask $\mathrm{C}_{2} \rightarrow \mathrm{IV}_{3} \mathrm{C}_{3}$
if $\mathrm{C}_{2}=\mathrm{C}_{3}$ then return 1 else return 0

Proof outline (from Goldwasser and Bellare, chapter 6)
-We know that one-time-pad is secure
-Replace block-cipher with random function (R)

- $\mathrm{R}(\mathrm{i}++$) $=$ one-time-pad
-Shannon proved that "idealized" counter mode give any attacker zero advantage
-Construct difference between ideal and actual protocol (ind\$)
- Assume adversary A can distinguish ideal and actual protocol
-Prove that adversary B could use A to distinguish the block cipher from PRF
-Therefore, assuming any B should have low advantage (strong cipher), then
-Any A therefore has a low advantage

Claim: CTR-rand is secure if its block cipher is a good PRP: Let A be an adv attacking CTR[E]. Construct B that attacks E.

Adversary B ${ }^{f}$ behaves as follows:
Run A.
When A asks its oracle to encrypt $\mathrm{M}=\mathrm{M}_{1} \cdots \mathrm{M}_{\mathrm{m}}$ ctr $\leftarrow\{0,1\}$ compute pad $=\mathrm{f}(\mathrm{ctr}) \mathrm{f}(\mathrm{ctr}+1) . . \mathrm{f}(\mathrm{ctr}+\mathrm{m}-1)$ return to A (ctr, pad $\oplus \mathrm{M}$)
When A halts, outputting a bit b, return b

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{E}}^{\operatorname{prp}}(\mathrm{B}) & =\operatorname{Pr}\left[\mathrm{B}^{\mathrm{E}} \mathrm{~K}=1\right]-\operatorname{Pr}\left[\mathrm{B}^{\pi}=1\right] \\
& \geq \operatorname{Pr}\left[\mathrm{B}^{\left.\mathrm{E}_{K}=1\right]-\operatorname{Pr}\left[\mathrm{B}^{\rho}=1\right]-\sigma^{2} / 2^{\mathrm{n}+1} \quad \text { (switching lemma) }}\right. \\
& =\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}\left[\mathrm{E}_{K}\right]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\text {CTR[p] }}=1\right]-\sigma^{2} / 2^{\mathrm{n}+1}
\end{aligned}
$$

Let C be the event of a collision in the inputs to the blockcipher

$$
\begin{aligned}
& =\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}\left[\mathrm{E}_{\mathrm{K}}\right]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}[\rho]}=1 \mid \overline{\mathrm{C}}\right] \operatorname{Pr}[\overline{\mathrm{C}}] \\
& -\operatorname{Pr}\left[A^{C T R\left[E_{K}\right]}=1 \mid C\right] \operatorname{Pr}[C]-\sigma^{2} / 2^{\mathrm{n}+1} \\
& =\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}\left[\mathrm{E}_{\mathrm{K}}\right]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$}=1\right](1-\operatorname{Pr}[\mathrm{C}]) \\
& \left.-\operatorname{Pr}\left[A^{\text {CTR[EK }}\right]=1 \mid C\right] \operatorname{Pr}[C]-\sigma^{2} / 2^{\mathrm{n}+1} \\
& =\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}\left[\mathrm{E}_{\mathrm{K}}\right]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$}=1\right]+\operatorname{Pr}[\mathrm{C}] \operatorname{Pr}\left[\mathrm{A}^{\$=1}=1\right. \\
& -\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}\left[\mathrm{E}_{\mathrm{K}}\right]}=1 \mid \mathrm{C}\right] \operatorname{Pr}[\mathrm{C}]-\sigma^{2} / 2^{\mathrm{n}+1} \\
& \geq \operatorname{Pr}\left[\mathrm{A}^{\mathrm{CTR}\left[\mathrm{E}_{\mathrm{K}}\right]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$}=1\right]-\operatorname{Pr}[\mathrm{C}]-\sigma^{2} / 2^{\mathrm{n}+1}
\end{aligned}
$$

The problem is now an information theoretic one. Claim $\operatorname{Pr}[C] \leq \sigma^{2} / 2^{\mathrm{n}+1}$ (see next slide). We then have

$$
\geq \operatorname{Adv} \text { inds }^{\text {CTRS[E] }}-\sigma^{2} / 2^{\mathrm{n}}
$$

$$
\mathrm{N}=2^{\mathrm{n}} \text { bins }
$$

$* * * * *$

$$
* * *
$$

*

m_{1} balls

m_{3}
m_{4}

$$
\Sigma \mathrm{m}_{\mathrm{in}}=\sigma
$$

Adversary wants to create a collision.
Best way to do this is to toss one ball at a time.
$\operatorname{Pr}[\mathrm{C}] \leq 1 / \mathrm{N}+2 / \mathrm{N}+\ldots+(\sigma-1) / \mathrm{N}$
$\leq \sigma^{2} / 2 \mathrm{~N}$

Lecture 3

Th. Let $\mathrm{E}: \mathrm{K} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$.
Let A attack CBC[E]. Assume A runs in time t_{A} and asks σ total blocks and achieves advantage $\delta_{\mathrm{A}}=\operatorname{Adv}_{\mathrm{CBC[E]}}^{\mathrm{ind}}(\mathrm{A})$.

Then an adv B that attacks E and runs in time at most t_{B} and asks at most q_{B} queries and achieves advantage at least $\delta_{B}=\operatorname{Adv} \underset{\mathrm{E}}{\mathrm{prp}}(\mathrm{B})$ where

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{B}}=\mathrm{t}_{\mathrm{A}}+\mathrm{O}(\sigma) \\
& \mathrm{q}_{\mathrm{B}}=\sigma \\
& \delta_{\mathrm{B}}=\delta_{\mathrm{A}}-\sigma^{2} / 2^{\mathrm{n}}
\end{aligned}
$$

Def of B

> Run A
> When A asks its oracle $\mathrm{M}=\mathrm{M}_{1} \cdots \mathrm{M}_{\mathrm{m}}$ Choose IV $\leftarrow \mathrm{C}_{0} \leftarrow\{0,1\}^{\mathrm{n}}$ for $\mathrm{i} \leftarrow 1$ to m do $\mathrm{C}_{\mathrm{i}} \leftarrow \mathrm{f}\left(\mathrm{C}_{\mathrm{i}-1} \oplus \mathrm{M}_{\mathrm{i}}\right)$ return to A (IV, $\mathrm{C}_{1} \cdots \mathrm{C}_{\mathrm{m}}$)
> When A outputs a bit, b, return b

$$
\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CBC}[\pi]}=1\right]
$$

$$
\operatorname{Adv}_{\mathrm{E}}^{\mathrm{prp}}(\mathrm{~B})=\operatorname{Pr}\left[\mathrm{B}^{\mathrm{E} K}=1\right]-\operatorname{Pr}\left[\mathrm{B}^{\pi}=1\right]
$$

\square

$$
\operatorname{Adv}_{\mathrm{CBC}[[\mathrm{E}]}^{\text {indS }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CBC} C_{E}}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{S}=1\right]
$$

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{CBC[E]}}^{\operatorname{indS}}(\mathrm{A})-\operatorname{Adv}_{E}^{\operatorname{prp}}(\mathrm{B}) & =\operatorname{Pr}\left[\mathrm{B}^{\pi}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{S}=1\right] \\
& =\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CBC}[\pi]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$}=1\right] \\
& =\operatorname{Pr}\left[\mathrm{A}^{\mathrm{CBC}[\rho]}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$}=1\right]+\sigma^{2} / 2^{\mathrm{n}+1}
\end{aligned}
$$

Now a purely inf theoretic question. "Game-playing" to Show first difference at most $\sigma^{2} / 2^{n+1}$

Authenticity

"Encrypt-with-redundancy"

Compute $\sigma^{\prime}=\mathrm{MAC}_{\mathrm{K}}(\mathrm{M})$
Check if $\sigma=\sigma^{\prime}$

A wins if $\sigma=\mathrm{MAC}_{\mathrm{K}}(\mathrm{M})$ and $\mathrm{M} \notin\left\{\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{q}}\right\}$ "A forgery"
$\operatorname{Adv}{ }_{\Pi}^{\text {mac }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{K} \stackrel{\S}{\leftarrow} \boldsymbol{K}: \mathrm{A}^{\mathrm{MAC}_{K}(\cdot)}\right.$ forges $]$

CBC MAC

To forge:
Ask $\mathbf{0} \rightarrow \sigma_{1}$
Forge
($0 \sigma, \sigma$)
The CBC MAC is
Incorrect across msgs of
Varying lengths.
[BKR] Correct, with bound $3 \sigma^{2} / 2^{\mathrm{n}}$ for msgs of some one fixed length.

Fixing the CBC MAC

Encrypted CBC
(from RACE project). Shown provably
secure (when E a PRP) by [Petrank, Rackoff]

Carter-Wegman paradigm

The key for the MAC is (h, K)
h is a random element of

$$
\boldsymbol{H}=\left\{\mathrm{h}: \boldsymbol{M} \rightarrow\{0,1\}^{\mathrm{n}}\right\}
$$

Def: Family of hash functions $\boldsymbol{H}=\left\{\mathrm{h}: \boldsymbol{M} \rightarrow\{0,1\}^{\mathrm{n}}\right\}$ is ε-AU (almost universal) if for all $M, M^{\prime} \in M, M \neq M^{\prime}$,
$\operatorname{Pr}_{\mathrm{h}}\left[\mathrm{h}(\mathrm{M})=\mathrm{h}\left(\mathrm{M}^{\prime}\right)\right] \leq \varepsilon$

Eg construction

$$
\begin{gathered}
\mathrm{M}=\mathrm{M}_{\mathrm{m}} \ldots \mathrm{M}_{0} \quad\left|\mathrm{M}_{\mathrm{i}}\right|=128 \\
\mathrm{M}(\mathrm{X})=\mathrm{X}^{\mathrm{m}}+\mathrm{M}_{\mathrm{m}-1} \mathrm{X}^{\mathrm{m}-1}+\cdots+\mathrm{M}_{1} \mathrm{X}+\mathrm{M}_{0}
\end{gathered}
$$

All operations in GF(2^{128})
There are 2^{128} elements of \boldsymbol{H}, each described by a 128 -bit R: $h_{R}(M)=M(R) . \quad$ Can be efficiently evaluated.

Claim: \boldsymbol{H} is $\mathrm{m} / 2^{128}$-AU where m upperbounds the number of blocks on any message M in the message space \boldsymbol{M}
Proof: $\operatorname{Pr}\left[M(R)=M^{\prime}(R)\right]=\operatorname{Pr}[p o l y(R)=0] \leq m / 2^{128}$ because poly(\cdot) is a nonzero polynomial of degree at most m and therefore has at most m zeros, and so that chance that a random point in the field is one of these zeros is at most $\mathrm{m} /$ the size of the field.

The above can be computed In just four instructions on a Pentium processor, allowing one to MAC at about 1 cpb .

Authenticated Encryption via Generic Composition (see [Bellare, Namprempre])

OK!

Authenticated Encryption via Fancy Modes

 (see IAPM [J] and OCB [RBBK)]

