
E-Voting

T he democratic process rests on a fair, universally
accessible voting system through which all citi-
zens can easily and accurately cast a vote. With
the 2000 US presidential election, however, the

country got a firsthand look at the results of a flawed vot-
ing system, which fueled renewed public interest in vot-
ing system reliability. People became especially en-
chanted by the computer’s siren song, so election officials
have increasingly examined and adopted voting systems
that rely primarily on computers to record and tabulate
votes. Much of their attention has centered on direct
recording electronic (DRE) voting systems, which com-
pletely eliminate paper ballots.

DRE voting systems have some inherent advantages
over paper-based voting schemes, including a decrease
in voter error. If the system’s interface has been well de-
signed, for example, it seeks confirmation if the voter
fails to cast a vote in a particular race and disallows mul-
tiple votes in the same race. DREs also make it possible
to accommodate people with different disabilities, help-
ing them vote without human assistance. Unfortu-
nately, recent analyses of one popular vendor’s DRE
voting system indicated numerous security over-
sights,1,2 including

• Voters can cast multiple votes without leaving a trace. 
• Anyone with access to a voting machine can perform

administrative actions, including viewing partial results
and terminating an election early.

• Communications between voting terminals and the
central server are not properly encrypted, making it
possible for a malicious “man in the middle” to alter
communication content. 

According to
analysts, this flawed
state is the result of undisciplined software development and
a process that failed to encourage developers to anticipate or
fix security holes. The closed-source approach to software
development, which shielded the source code from public
review and comment, only served to delay the necessary
scrutiny. Of course, as daily headlines demonstrate, neither a
commitment to software security nor an open-source ap-
proach to software development prevents software security
holes. (For example, see www.cert.org/advisories, which
lists security holes that have been discovered in the past year.)
Software developers and auditors who follow standard soft-
ware engineering practices have proven unable to ship bug-
free software. In general, producing software free from all se-
curity holes is significantly harder than an attacker’s goal: to
find and exploit a single bug. 

We recently conducted a project to demonstrate that
electronic voting software is not immune from these secu-
rity concerns. Here, we describe Hack-a-Vote, a simplified
DRE voting system that we initially developed to demon-
strate how easy it might be to insert a Trojan horse into a
voting system. Having accomplished this, we used Hack-a-
Vote in an associated course project, in which student teams
implemented their own Trojan horses, then searched the
source code for their classmates’ malicious code. The Hack-
a-Vote project revealed the potential damage individuals
can cause with electronic voting systems, the feasibility of
finding system weaknesses (deliberate or otherwise), and
some solutions to mitigate the damage. Hack-a-Vote and
our course assignment are freely available online at www.
cs.rice.edu/~dwallach/courses/comp527_f2003/vote
project.html.
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In a quest for election legitimacy, officials are increasingly

deploying direct recording electronic (DRE) voting systems.

A project to assess their trustworthiness revealed both the

ease of introducing bugs into such systems and the

difficulty of detecting them during audits.



E-Voting

The Hack-a-Vote system
Our demonstration voting machine is a relatively simple
Java Swing application that weighs in at about 2,000 lines
of code. It has a GUI front end for user interaction, a back
end for reading-in election configurations and writing-
out ballot images, and voting logic that drives the GUI
and records votes. 

Hack-a-Vote first authenticates the user with a simple
PIN authentication scheme inspired by Hart Intercivic’s
eSlate (www.hartintercivic.com/solutions/eslate.html),
which is used for elections in Houston, Texas, among
other places. With eSlate, voters first sign in at their local
voting precinct. Every group of eSlate voting terminals is
connected via a wired network to an election manage-
ment console. The user approaches the console, and an
election official prints him or her a four-digit PIN; the
user then goes to any available voting terminal and enters
this PIN. Once eSlate validates the PIN, the user can
vote. Similarly, in the Hack-a-Vote implementation, the
server maintains a list of a few valid PINs that are displayed
to the election administrator (we didn’t bother to print
the PINs, although it would be an easy extension to add).
Once a voter uses a PIN, the system invalidates it and ran-
domly generates a new one. Figure 1a shows the PIN
login screen. 

Following authentication, users are presented with
voting screens containing a series of races (see Figure 1b).
Once they’ve cast a vote in every race, they can view and
confirm a summary of their votes (see Figure 2a). When
the user confirms the selected candidates, the machine
cycles back to the PIN entry screen for the next voter.
Otherwise, the machine returns to the first ballot and lets
users change their selections. Once the election closes,
the system randomly shuffles and tallies all votes and
writes them out to disk. The machine then displays the
final tally, as Figure 2b shows. 

In Hack-a-Vote’s original implementation, we added
a Trojan horse to the code that prepares votes for writing
out to disk. By adding a few extra command-line options,
we made it possible for the user to indicate a candidate or
political party that should receive extra votes. With a con-
figurable probability, the system would modify votes for
other candidates before writing them to disk and count-
ing them. In the student version, we removed the cheat-
ing code (about 150 lines in one file). 

The Hack-a-Vote assignment
The Hack-a-Vote project introduces students to some of
the many faces of security, from the malicious hacker’s de-
sign of subtle system attacks, to the auditing required to
uncover those attacks, to the higher level challenges of se-
cure system design. The project also raises policy implica-
tions for how governments might regulate voting sys-
tems. The Hack-a-Vote project was inspired in part by
Ross Anderson’s UK lottery experiment, in which he

asked students to consider the security threats of running
a national lottery.3

For Hack-a-Vote, we split students in Comp527, a
graduate-level computer security course, into groups of
two for a three-part assignment. For the project’s first
phase, the groups assumed the role of Hack-a-Vote devel-
opers who were paid off by a nefarious organization to rig
an election without getting caught. We placed no require-
ments on the type of malicious hack, so long as students
could justify how it could be used to ruin or bias an elec-
tion without being detected. Solutions could thus run the
gamut from denial-of-service attacks to arbitrary biases in
the final election tally. The groups spent two weeks pep-
pering their voting machines with Trojans horses. 

In the second phase, each group received modified
voting systems from two other randomly selected groups
in their class. They now assumed the role of independent
auditors, with one week to find any security-critical flaws
in the altered code. In this phase, we prohibited any direct
comparison with the original code, requiring students to
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Figure 1. The initial Hack-a-Vote screens. (a) The PIN login screen.
Once a voter enters a PIN, the system invalidates it for future use.
(b) Following authentication, the system displays selection screens
containing a series of races.

(b)(a)

Figure 2. Additional screens. (a) The Hack-a-Vote confirmation
screen offers a summary after users have voted. (b) The final tally
screen.

(a) (b)
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rely solely on their memory of the voting machine and its
functionality—a requirement enforced by the university’s
honor code. (Otherwise, students could easily locate
changes using the UNIX diff tool, giving them greater
powers than a genuine auditor might have when studying
a voting system.)

In the final phase, the focus shifted: We gave students
two and a half weeks to fix a problem discovered in the
Diebold voting machine’s smartcard authentication pro-
tocol.2 Students first had to consider what security threats
a voting system faces. They then designed an improved
authentication protocol and used Cryptyc, a crypto-
graphic protocol type checker,4 to model and verify the
protocol. They also had to explain the protocol in terms
of the security threats it was designed to thwart.

Results
Although the groups designed various hacks, they gener-
ally fell into one of four categories:

• direct vote-manipulation hacks,
• attacks aimed at breaking the authentication mecha-

nism for PINs or administrative access,
• hacks directed at defeating voter anonymity, and 
• denial-of-service bugs.

The most blatant hacks fell into the first category.

Result manipulation
Hacks aimed at directly manipulating vote records
skewed results in favor of a desired candidate by changing
previously cast ballots or adding new ballots accordingly.
Although these hacks were typically the most obvious,
the groups used numerous tricks to hide them. One overt
case of vote altering added a percentage of votes to a par-
ticular party’s candidates. However, the students did this
only on voting terminals with an ID greater than two,
presuming that black-box testers would use at most two
terminals for testing. 

Another group attempted to evade black-box testers
by activating their hack only after a predetermined num-
ber of votes had been cast, presuming that testers would
cast only a limited number of votes. This group also used
the Java hash-code function to detect votes for favorable
candidates. For every object, Java defines a hashCode()
method, which is typically used to store objects in hash
tables. This group determined when to bias a candidate
based on whether the candidate name’s hash was equal to
a hard-coded integer, providing more stealth than hard
coding the name directly into the source code.

Another project had a very subtle bug that manipu-
lated the election system’s vote counter. When tallying
election results, Hack-a-Vote uses a hash table for each
race, mapping each candidate to the number of votes he
or she received. By cleverly rewriting the Candidate

class’s hashCode() and equals()methods, the group
made it appear to the hash table that two candidates were
the same if one’s name was a prefix of the other. As a re-
sult, one of the candidates would get all of the other can-
didate’s votes, and the other candidate would not appear
in the tally at all. Such subtle changes, which can signifi-
cantly influence an election’s outcome, would go unde-
tected by most forms of testing.

Broken authentication
Groups used several techniques to break Hack-a-Vote’s
authentication scheme. Among the most common were
using back doors to vote without a PIN. One group im-
plemented a hack that let any PIN successfully authenti-
cate after a non-numerical PIN was entered. Other
groups used numerical constants already in the code, such
as 10 (the number of PINs active at any one time), and
1776 (the network port the console listens on) as back-
door PINs. Yet another group accepted any PIN longer
than nine digits. In this hack, the administration console
returned an error message to the voting terminal, but the
voting terminal only considered the error message’s nu-
meric prefix, which indicated that the PIN was valid. 

Related hacks let users vote multiple times with a sin-
gle PIN. In one hack, a ClassCastException was
triggered after a vote had been submitted but before the
login screen was displayed, letting the user vote multiple
times. In another, clicking the “Start over” button—
which is supposed to let the user restart the voting process
from scratch—submitted the existing ballot and let the
voter start over. 

Another group weakened the random-number gener-
ator that generates PINs by seeding it with the hour’s cur-
rent second (ranging from 0 to 3,599). Given knowledge of
two PINs generated within a sufficiently narrow time
range, a voter could fairly easily determine the initial seed
and generate new PINs. In addition, the hack made 20
PINs valid at a time, despite the election console displaying
only 10 PINs at a time. A malicious user could thus vote
multiple times without PINs mysteriously disappearing
from the console. This group also used the current PIN to
seed a random-number generator that generated a back-
door administrator password, which is usually entered after
a valid PIN to terminate the election. A malicious user
could thus end the election on that voting terminal.

Violating anonymity
A third area of attack was ballot randomization. The orig-
inal Hack-a-Vote version shuffled ballots before writing
them to disk. Hacks here ranged from simply omitting
the shuffle to employing a “shuffle” function that actually
did nothing. One group tagged votes by the terminal ID
of the voting terminal that generated them, and shuffled
the votes using a random-number generator seeded by
the terminal ID, which made the original vote order
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fairly easy to recover.
Finally, instead of reordering the votes, one group

simply renumbered the ballots, outputting them in their
original order but with new numbers. Although a casual
examination would not reveal the lack of anonymity, the
votes could be easily tied to the original voters if the order
in which they departed the polls was observed.

Denial of service
Several groups implemented denial-of-service (DoS)
hacks in an attempt to selectively disable the voting sys-
tem. One group introduced a bug whereby a non-nu-
meric PIN would crash the authentication console, pre-
venting others from authenticating their PINs. Another
group implemented a GUI trigger to disable the “Elec-
tion over” button, which the authenticated administrator
typically uses to end the election, write the votes to disk,
and compute a tally. Finally, a group added a command-
line option to the voting terminal that disrupted commu-
nications with the authentication console, effectively dis-
abling the voting terminal.

Hiding hacks in Java
Groups made proficient use of Java features to hide their
hacks. Several of them used Java’s exception-handling
features to craft unusual control flows and skip security
checks. One group introduced a ClassCastExcep-
tion in the code that clears the ballot and generates the
PIN login screen after a user’s votes have been submitted,
letting the user vote multiple times. Another group in-
troduced an UnknownHostException in the com-
munication between the voting terminal and the au-
thentication console, which was triggered when an
invalid PIN entry was detected. With this exception, the
code skipped the authentication check on the subse-
quent PIN, making any entry acceptable. Finally, a
group introduced a NumberFormatException in
the authentication console, which crashed the election
console—and thus disabled the voting terminals—if a
user entered a nonnumerical PIN. 

Another common technique for hiding hacks was to
integrate them into Java’s GUI event handler. In Java, a
handler can be registered for any GUI item. On GUI
events, such as a mouse click, the handler runs in a sepa-
rate thread. Groups used GUI event handlers to trigger
both the “Election over” denial of service and the
ClassCastException bug that we described earlier. 

Finally, groups also used Java’s polymorphism to ob-
scure their hacks. One group added a variable called
BallotControl to the BallotControl class,
which contains several important static methods. A call to
BallotControl.saveVotes()would appear to in-
voke a static method of class BallotControl, yet actu-
ally invoke an interloper class instance method. As we de-
scribed earlier, other groups exploited the semantics of

Java’s standard equals() and hashCode()methods to
effect their hacks.

Hack detection
Different groups used different methodologies to analyze
the voting systems. Some groups began with the largest file,
an implementation of Steve DeGroof’s Windows-style ini-
tialization file handling (see http://degroof.home.
mindspring.com/java/ for more information). Others
began by examining unusual or unexpected code, includ-
ing the use of GUI event handlers and Java reflection. 

Two groups analyzed each system, and—with only
one exception—at least one of these groups found all the
hacks; both groups found about two out of three hacks.
The one hack that went entirely undetected was the de-
nial-of-service command-line option. In other cases,
groups detected the hacks, but did not accurately divine
their implications. Among these was the hack that used
the equals() and hashCode()methods to remove a
candidate from the final tally (although a bug in this hack
might have impeded its analysis).

Discussion
One of our primary goals for the Hack-a-Vote project
was to teach students (and others) about security threats
to real-world voting systems. Although the Hack-a-Vote
system has only a fraction of the size and complexity of
real-world DRE systems, the deviousness of the Trojan
horses the students created and the effectiveness of their
auditing are indicative of what might be accomplished
with real-world voting systems.

Hack implications 
If the hacks our students devised were implemented in a
real-world voting system, the results would be devastat-
ing. The impact of the vote-manipulation bugs is proba-
bly the clearest: these bugs could result in a candidate who
did not actually receive the most votes being declared the
winner of an election. Similarly, the PIN-authentication
bugs could let a voter cast multiple votes, likewise affect-
ing the election’s outcome.

The DoS hacks and the administrator-authentication
bug would create a great deal of confusion and require
some time and expense to fix. If these bugs are exploited
in a targeted fashion—perhaps disabling voting ma-
chines in a highly partisan neighborhood, for example—
targeted users might never get the chance to cast their
ballots. Finally, anonymity hacks could let malicious
users with access to an election’s raw results determine
how an individual voted, opening the door to bribery
and voter coercion.

Auditing
By design, the Comp527 project gave auditing groups
many advantages that real-world auditors do not have: 
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• Auditors were familiar with the unaltered code base, al-
lowing for limited “mental diffs.” 

• The code base consisted of only 2,000 lines of well-
commented, clean code that was easy to inspect. 

• We did not permit drastic changes to the voting ma-
chines, such as reimplementing major subsystems. 

On the other hand, the students were not full-time
auditors. We gave each group one week to analyze two
different voting systems, and the students didn’t have
eight or more hours each day to devote to the task. This
deliberate lack of attention is an imperfect simulation of
the time that real auditors would devote to genuine vot-
ing systems.

One question our results raise is this: How many audi-
tors are required to analyze a system? In many cases, two
student auditors did not successfully find all the bugs. In
one case, both groups (a total of four auditors) missed a
bug. In a real-world system, it’s difficult to predict how
many auditor-hours would be required to ensure the dis-
covery of all security holes. The Diebold voting machine
code, for example, has over 50,000 lines of code (com-
pared to Hack-a-Vote’s 2,000 lines). According to an em-
ployee of Science Applications International Corpora-
tion, which independently reviewed the Diebold code, it
would be “easy” to hide malicious code in such a big
code base, with a 99.9 percent chance that the hack
would go undetected.5

In fact, security holes have been found in many real-
world systems that millions of people use. In many of
these cases, curious individuals without any particular
time constraints found the bugs. Security researchers
studying Java as it is used in millions of Web browsers, for
example, discovered that many basic security checks were
never enforced.6 Despite Microsoft’s genuine and intense
effort to find and remove security bugs in its code, Win-
dows has been hit by numerous security holes (see
www.cert.org/advisories/CA-2003-16.html and www.
cert.org/advisories/CA-2003-27.html for an overview
of some recent security vulnerabilities).

Finally, open-source systems also have had their diffi-
culties. Consider Sendmail, for example, which is one of
the most popular Internet email transfer agents. Although
Sendmail has been around for nearly 20 years and its
source code is visible to anyone who’s interested, it’s been
hit by several recent security holes (see www.cert.org/
advisories/CA-2003-25.html for more information).

Even when vulnerabilities are discovered and patched,
those patches are not always universally applied. Many of
the high-profile and devastating Windows worms, in-
cluding Blaster and Slammer, were based on security holes
that Microsoft patched (see www.cert.org/advisories/
CA-2003-20.html and www.cert.org/advisories/CA
-2003-04 for more information). With voting machines,
such patches might not be so easily applied. Many juris-

dictions would require that patched systems be recerti-
fied—a slow and costly process. In fact, in a recent elec-
tion, many voting machines reportedly ran uncertified
software.7

Auditing is not the only way to discover and patch
security holes. Techniques such as proof-carrying
code8 and system-specific static analysis9 can uncover
specific vulnerabilities. A rigorous software engineer-
ing process also can help prevent the malicious intro-
duction of security vulnerabilities. In a recent incident,
an attempt to introduce a hack into the Linux kernel
was discovered because the modification failed to pass
through the appropriate channels.10 Unfortunately,
though, there are no known, general-purpose tech-
niques for proving that code is perfectly secure, much
less rigorous definitions of what “perfectly secure”
might actually mean.

Auditing, security-directed automated code analysis,
and rigorous software engineering practices are powerful
techniques for reducing the number and severity of a
program’s security flaws. Although such practices should
remain an important part of the software development
process, in an election, too much is at stake to rely on
these techniques alone. While security flaws discovered
in operating systems, servers, or user-level applications
can have serious repercussions, if security flaws are found
in America’s voting machines, the repercussions could
be catastrophic.

M any people view electronic voting as a solution to
traditional paper-based voting problems, such as

those in the 2000 US presidential election. But, even
though DRE voting systems have some usability ad-
vantages over traditional systems, they raise serious se-
curity concerns. As we’ve shown with our “toy” sys-
tem, it’s easy to compromise a purely electronic voting
system and difficult for auditors to identify and correct
hacks that might otherwise completely compromise
election results.

The best solution is not to abandon the trend toward
computerized voting, but rather to augment voting ma-
chines with a paper audit trail. With a voter-verifiable
audit trail,11,12 voting machines generate a paper printout
of a user’s vote that the machine cannot alter; that paper
becomes the canonical representation of the voters’ in-
tent. Voters can thus verify that their votes are correctly
indicated, and election officials can count the printouts—
either mechanically or by hand—to assure accuracy. Such
systems remove the voting machine software from the
election’s trusted computing base. Given the inevitable
bugs and potential for manipulation, our elections must
generate the most accurate tallies possible. This can only
be achieved with election systems that are, by design, in-
dependent of software correctness. 
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