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Abstract—Cloud computing services allow users to lease com- Observations: We measure the processor sharing, packet
puting resources from large scale data centers operated besvice  delay, TCP/UDP throughput and packet loss properties among
providers. Using cloud services, users can deploy a wide vaty  Amazon EC2 virtual machine instances. Our study systemati-

of applications dynamically and on-demand. Most cloud sernce o . . L .
providers use machine virtualization to provide flexible ard cost- cally quantifies the impacts of virtualization and finds ttiet

effective resource sharing. However, few studies have insigated Magnitude of the observed impacts are significant:

the impact of machine virtualization in the cloud on networking 1) We find that Amazon EC2 small instance virtual ma-

performance. - . ’
In this paper, we present a measurement study to charactere chines typically receive only a 40% to 50% share of the
the impact of virtualization on the networking performance of the processor.

Amazon Elastic Cloud Computing (EC2) data center. We measu 2) Processor sharing can cause very unstable TCP/UDP
the processor sharing, packet delay, TCP/UDP throughput ah throughput among Amazon EC2 small instances. Even

packet loss among Amazon EC2 virtual machines. Our results - . .
show that even though the data center network is lightly utiized, at the tens of millisecond time granularity, the TCP/UDP

virtualization can still cause significant throughput instability and tthUQhPUt experienced by applications can fluctuate

abnormal delay variations. We discuss the implications of or rapidly between 1 Gb/s and zero.

findings on several classes of applications. 3) Even though the data center network is not heavily
Index Terms—Measurement, cloud service, virtualization, net- congested, we observe abnormally large packet delay

working performance variations among Amazon EC2 instances. The delay

variations can be a hundred times larger than the propa-
|. INTRODUCTION gation delay between two end hosts. We conjecture that

Cloud service allows enterprise class and individual users the large delay_ var|at|on§ are caus_ed by long queuing
delays at the driver domains of the virtualized machines.

to acquire computing resources from large scale data center :
of service providers. Users can rent machine instances With4) We find that the apnormally unstable network perfof'
different capabilities as needed and pay at a certain per mance can dramatically skew the resul_ts of certain
machine hour billing rate. Despite concerns about security network performance measurement techniques.
and privacy, cloud service attracts much attention fronhbot |mplications: Our study serves as a first step towards under-
users and service providers. Recently, many companiel, sgganding the end-to-end network performance charadtevist
as Amazon, Google and Microsoft, have launched their cloefl virtualized data centers. The quantitative measurement
service businesses. results from this study provide insights that are valuable t
Most cloud service providers use machine virtualizationsers running a variety of applications in the cloud. Many
techniques to provide flexible and cost-effective resost@®- cloud applications (e.g. video processing, scientific cotimg,
ing among users. For example, both Amazon EC2 [1] anmfistributed data analysis) are data intensive. The netwgrk
GoGrid [11] use Xen virtualization [3] to support multipleperformance among virtual machines is thus critical to éhes
virtual machine instances on a single physical serveruirt applications’ performance. The unstable throughput acégta
machine instances normally share physical processors/@nd dielays can obviously degrade the performance of many data
interfaces with other instances. It is expected that viization intensive applications. More importantly, they make itch&
can impact the computation and communication performanieder the network congestion and bandwidth properties from
of cloud services. However, very few studies have be&md-to-end probes. Packet loss estimation is an example tha
performed to understand the characteristics of these taxge will be discussed in section VI. The abnormal variations in
virtualized environments. network performance measurements could also be detriinenta
In this paper, we present an empirical measurement studyadaptive applications and protocols (e.g. TCP vegas [5],
on the end-to-end networking performance of the commercRCP [2]) that conduct network performance measurements
Amazon EC2 cloud service, which represents a typical larfr self-tuning. Researchers have also recently started to
scale data center with machine virtualization. The focuswf deploy large scale emulated network experiments on cloud se
study is to characterize the networking performance ofigirt vices [6], [12]. For this use of cloud services, our resutigp
machine instances and understand the impact of virtuelizatto challenges in performing accurate network link emufatio
on the network performance experienced by users. in virtualized data centers. The unstable network perfoicea



of cloud services may bias the conclusions drawn from thegeocessor.” For applications requiring higher computirg ¢
experiments. Given the observations from our measuremeacity, Amazon EC2 provides several high-capacity inganc
study, many applications may need to be adjusted to achiavikich are configured with 4 to 20 EC2 compute units. The
optimal performance in virtualized data center environteen input-output (1/0O) capacities of these types of instances a
The rest of this paper is organized as follows. In Sectigmt specified clearly.

II, we introduce the background on Amazon EC2 and the Allocated EC2 instances can be placed at different physical
Xen virtualization technique. In section lll, we explainroulocations. Amazon organizes the infrastructure into déffe
measurement methodology. In Section IV, V, VI, we descritregions and availability zones. There are two regions, us-
our measurement results and discuss the reasons behindeast-1 and eu-west-1, which are located in the US and in
observations. In Section VII, we discuss the implicatiofis dcurope respectively. Each region is completely independen
our findings on different classes of cloud applications. Wand contains several availability zones that are used toavep
discuss the related work in Section VIII and conclude thegpapthe fault tolerance within the region. We suspect that each

in Section IX. availability zone is an isolated data center which is podere
by its own powerline. Different availability zones in thensa
Il. BACKGROUND region are placed very close to each other. The region us-
A. Xen Virtualization east-1 has three availability zones, us-east-1a, usibaatd

] . ] _ us-east-1c. The region eu-west-1 has two availability gpne
Xen [3] is an open source x86 virtual machine monitog, \west-1a and eu-west-1b.

which can create multiple virtual machines on a physical
machine. Each virtual machine runs an instance of an oper- [1l. EXPERIMENT METHODOLOGY

ating system. A scheduler is running in the Xen hypervisor | this section, we introduce the methodology of our mea-

to schedule virtual machines on the processors. The ofigiRgrement study. We first explain the properties we measure
Xen implementation schedules virtual machines accordingih our experiments, and the methodology we use to measure
the Borrowed Virtual Time (BVT) algorithm [8]. them.

Particularly for network virtualization, Xen only allows a
special privileged virtual machine calledtiver domain, or A. Properties and Measurement Tools

domain 0 to directly control the network devices. All the processor Sharing: Since each Amazon EC2 instance
other virtual machines (calleguest domains in Xen) have to js a Xen virtual machine, an immediate question users may
communicate through the driver domain to access the pHysigak is "now does Amazon EC2 assign physical processor to
network devices. The way Xen realizes this is, the drivq:ﬁy instance? Are there any processor sharing?” To answer
domain has a set of drivers to control the physical Netwokkjs question, we use a simple CPUTest program to test the
Interface Cards (NIC), and a set bhck-end interfaces t0  processor sharing property of EC2 instances. This program
communicate wittguest domains. The back-end interfaces andconsists of a loop that runs for 1 million times. In each
physical drivers are connected by a software bridge insiggration, the program simply gets the current time by nglli
the kernel of the driver domain. Eadjuest domain has a gettimeofday() and saves the timestamp into a pre-alldcate
customized virtual interface driver to communicate with grray in memory. When the loop finishes, the program dumps
back-end interface in the driver domain. All the packetst seg|| the saved timestamps to the disk. Normally, if the pragra
from guest domains will be sent to the driver domain throughjs executed continuously, all loop iterations should take a
the virtual interfaces and then sent into the network. A8 thsimilar amount of time. However, virtual machine schedylin
packets destined to guest domain will be received by the can cause some iterations to take much longer than the others
driver domain first, and then transferred to tjeest domain.  f the instance is scheduled off from the physical processor
) ) we should observe a gap in the timestamp trace. Since context

B. Amazon Elastic Cloud Computing (EC2) switching among user processes can also cause a gap in the

Amazon EC2 is a component of Amazon’s Web Servicdsnestamp trace, we always run the CPUTest program as the
(AWS), which allows users to rent computers to run computenly user process in our processor sharing experiments to
applications in the Amazon EC2 data center. Amazon EQ@&inimize the impact of context switching. Therefore, frdme t
uses the Xen virtualization technique to manage physidahestamp trace of this program, we can estimate the process
servers. There might be several Xen virtual machines rgnnisharing property of EC2 instances.
on one physical server. Each Xen virtual machine is called Packet round-trip delay: Given an instance pair, we use
an instance in Amazon EC2. There are several types gbing to measure the packet round-trip delay (or round-trip
instances. Each type of instance provides a predictableiaimaime, RTT) between them. To also measure delay variations,
of computing capacity. The small instance is the primamye send 10 ping probes per second, and continuously collect
instance type, which is configured with 1.7GB memory, %000 round-trip delay measurements.
EC2 compute unit and 160GB instance storage. AccordingTCP/UDP throughput: We developed two programs
to Amazon, "one EC2 compute unit provides the equivalemCPTest and UDPTest to measure the TCP and UDP through-
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xe@ut that can be achieved by applications running on Amazon



EC2 instances. The UDPTest tool has a sender and receigerlLarge Scale Experiment Setup

The sender reads data from a buffer in memory and sendsye deploy large scale experiments to evaluate the system
it as UDP packets. Since Amazon EC2 instances are Xg@fje networking performance of Amazon EC2 instances. We
virtual machines, the UDP packets are sent to network througet up a spatial experiment to evaluate how the network
Xen driver domain. The communication between Xen drivgferformance varies on instances at different network ionat
domain and guest domain is done by copying data frofe set up a temporal experiment to evaluate how the network
memory to memory. If UDP sender sends as fast as possijgrformance varies on a given instance over a long time gherio
it will burst data at very high rate to the driver domain. Ayl the large scale experiments are deployed in the us-kast-
lot of traffic will be dropped when Xen driver domain cannofegion. To eliminate the potential impacts from differeatriel
send them out in time. Therefore, in our UDPTest tool, thgsrsions, we use the same OS image ami-5647a33f on all the
sender controls the sending rate to 1Gb/s by adding small ighstances.
intervals between every 128KB of data. We set the sendiieg rat Spatial experiment: In the spatial experiment, we request
to 1Gb/s because according to our experiences, the Amazaf pairs of small instance and 50 pairs of medium instances
EC2 instances are configured with Gigabit network cards. Th@m each of the three availability zones us-east-1a, gt-ea
UDP/IP packet size is 1500 bytes (i.e. the MTU of Ethernef}, gnd us-east-1c. Within each availability zone, the insta
and the socket buffer size is 128KB. The receiver simplyre requested and measured in a round by round manner. In
receives the UDP data and calculates the UDP throughptich round, we request a pair of instances, measure them and
The TCPTest tool also has a sender and a receiver. The sengRiase them. Since we don't know the instance allocation
reads data from a buffer in memory and sends data Viasgategy of Amazon EC2, we check the network mask of all
TCP connection to the receiver. The receiver also simplie instances to validate that the requested instancestare a
receives the data and calculates the TCP throughput. The T&Kerent network locations. According to the network mask
maximum send and receive window sizes are set to 256KBe instances we have chosen cover 177 different subnets in
From our experience, most of the RTTs among Amazon EGgnazon EC2 data centers. For each instance pair, we mea-
instances are below 0.5 ms. Therefore, if the network allowsre the processor sharing using CPUTest on both instances.
end host could achieve throughput higher than 4Gbps by thig also measure the network properties between the two
window size. instances, including delay, TCP/UDP throughput and packet
Packet loss: We use the Badabing tool [13] to estimate thgyss. To avoid interference between different measurement
packet loss among Amazon EC2 instances. Badabing is f1@grams, we run the programs one by one sequentially. Since
state-of-the-art loss rate estimation tool. It has beerwshoine TCP/UDP throughput measurement programs are more in-
to be more accurate than previous packet loss measuremgpjve to the network, we limit the amount of data transecitt
tools [13]. Packet loss estimation is considered chalemgiiy each test to 800 MB, which corresponds to roughly 10
because packet loss typically occurs rarely and lasts for V&econds of measurement time. We run the Badabing tool for
short time. Badabing use active probes and statisticahesti one minute to estimate the packet loss property for an insetan
tions to measure the packet loss properties. However, singgr. Since all the instance pairs in the same availabilityez
we are using these tools in a virtualized environment, thogge measured sequentially, the measurement traffic ofeiiffe
estimations may not give us accurate results. We will p@vighstance pairs will not interfere with each other.
detailed discussion on the packet loss estimation results iTemporaI experiment: In the temporal experiment, we
section VI. choose two small instance pairs and one medium instance pair
in each of the three availability zones (us-east-la, usHas
and us-east-1c). For all the nine instance pairs, we measure
Amazon EC2 provides different types of instances for usekfeijr processor sharing and network performance contisiyou
Our measurement experiments are mainly based on Amazgp 150 hours. The measurements are done in a round by
EC2 small instances and high CPU medium instances (@und fashion. Within each availability zone in each round,
called medium instances). Small instances are the defaubasure the processor sharing, RTT, TCP/UDP throughput and
instances in Amazon EC2 and they compete for physiGghcket loss of the three instance pairs one by one. Thegettin
processor resources, which creates an interesting eméoh of || the measurement tools are the same as in the spatial
for studying the impact of virtualization on network perforexperiment. The time interval between two adjacent rounds
mance. High CPU medium instance is one type of high set to 10 minutes. We arrange all the experiments inside

capacity instances in Amazon EC2. Based on Amazon Egt same availability zone sequentially to avoid intenfieee
documents, the high-capacity instances are configured WiBnveen measurement traffic.

multiple virtual cores (2 for high CPU medium instances).

Each virtual core represents a CPU core that is visible éaid IV. PROCESSORSHARING

virtual machine. It is expected to have no processor comgeti We use our CPUTest program to test the processor sharing
among high-capacity instances. We choose medium instanoassmall and medium instances in our spatial and temporal
as comparison with small instances to study the cases witkperiments. We first present a typical CPUTest timestamp
and without processor sharing among virtual machines.  trace observed on small and medium instance in Figure 1.

B. Instance Type Selection
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—— Spatial exp, small
o i%;:r;r:;%zem | estimation of small and medium instances in both spatial and
TR SR M temporal experiments. From this graph, we can see that small
instances are always sharing processors with other irestanc
For almost all the cases, small instances always get 40% to
50% of the physical CPU sharing. We suspect Amazon EC2
uses strict virtual machine scheduling policy to contrat th
| computation capacity of instances. Even there is no other
d virtual machines running on the same server, small instance
still cannot use more than 50% of the processor. On the other
hand, medium instances get 100% CPU sharing for most of
02 o3 oa o5 cpu‘;é‘hare T T TRt the cases. There are only 20% of the cases where medium
instances get 95% of the CPU sharing, which might be caused
by the context switch between the CPUTest program and
kernel service processes.
As illustrated in Figure 1, when the CPUTest program is Note that the scheduling effect observed by our CPUTest
run on a non-virtualized machine or a medium instance, tB‘?ogram is only typical for CPU intensive applications sinc
timestamp traces produced indicate the CPUTest progr@foes not have any I/O operations during the test peria. I/
achieves a steady execution rate with no significant intgfrensive applications may have different schedulingepatt
ruption. However, the timestamp trace of the small instanggywever, our results do confirm that processor sharing is a
shows very obvious scheduling effects. When the CPUT&g{de spread phenomenon among EC2 small instances, whereas

program is run on a EC2 small instance, periodically thefgedium instances do not competing processors with other
is a big timestamp gap between two adjacent loop iterationsstances.

The timestamp gaps are on the order of tens of milliseconds.
In each iteration of the CPUTest program, the program only =~ V. BANDWIDTH AND DELAY MEASUREMENT

retrieves the current time and saves it to memory; there is|n this section, we discuss the bandwidth and delay mea-

no I/O operations. Since CPUTest is the only user progragirement results of Amazon EC2 instances observed in our
running on the instance, there shouldn’t be frequent conteperiments.

switch between user programs. Therefore, the logical reaso )
that explains the observed execution gap is virtual machifte Bandwidth Measurement
scheduling. The large timestamp gaps represent the periodseasurement Results: In the spatial experiment, we
when the instance running the CPUTest program is schedutadasured the TCP/UDP throughput of 750 pairs of small
off from the physical processor. instances and 150 pairs of medium instances at different net
In the CPUTest timestamp trace on an EC2 small instaneeork locations. In the temporal experiment, we measured the
when the CPUTest program is running on the processor, ch€P/UDP throughput of 6 pairs of small instances and 3 pairs
loop iteration normally takes less than 3 us. If one loopf medium instances continuously over 150 hours. Figure 3
iteration takes more than 1 ms, we treat this time gap asslaows the cumulative distribution of TCP/UDP throughput
schedule off period. We define CPU sharing as the percentageong small and medium instances in the spatial experiment.
of CPU time an instance gets from the Xen hypervisofrom these results, we can see that Amazon EC2 data center
By searching through the timestamp traces produced by thetwork is not heavily loaded since EC2 instances can aehiev
CPUTest program, we can estimate the CPU sharing of EE®re than 500 Mbps TCP throughput for most the cases. More
instances. Figure 2 shows the distribution of CPU sharimgportantly, we can make an interesting observation frois th
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By looking at the TCPDUMP trace of the TCP transmission,
T e s o 0 o we find that during the very low throughput period, no packet

Time (s)

Fig. 5. TCP and UDP throughput of small instances at fine daaity

is sent out from the TCP sender. The quiet periods last
for tens of milliseconds. The minimum TCP retransmission
timeout is normally set to 200 ms in today’s Linux ker-
graph. Medium instances can achieve similar TCP and UDtl [14]. These quiet periods are not long enough to cause
throughput. The median TCP/UDP throughput of mediumCP retransmissions. We also confirm that there are no TCP
instances are both close to 760 Mbps. However, the TC&ransmission observed in the TCPDUMP trace. This result
throughput of small instances are much lower than their UOPIIs us that the periodic low TCP throughput is not caused by
throughput. The median UDP throughput of small instanceacket loss and network congestion because if that is the cas
is 770 Mbps, but the median TCP throughput is only 5A@e should observe a large number of TCP retransmissions.
Mbps. Figure 4 shows the cumulative distribution of TCP andonsidering the processor sharing behavior observed in our
UDP throughput of small and medium instances over the 150PUTest experiments, we believe that the quiet periods are
hour period in our temporal experiment. We observe the sam&used by the processor sharing among small instancesidouri
behavior from the results of the temporal experiment. Wiey athese quiet periods, either the TCP sender instance or the
the TCP throughput of small instances much lower than the&ceiver instance are scheduled off from the physical m%are
UDP throughput? We perform more detailed discussions atiterefore no packet can be sent out from the sender.
experiments to answer this question. From Figure 5, we can observe a similar unstable UDP

Discussion: Several factors can impact the TCP throughptiiroughput on small instances. The difference between UDP
results, including TCP parameter settings, packet lossethuand TCP transfers is that, in many cases, after a low thraughp
by network congestion, rate shaping and machine virtualizaeriod, there is a period where the receiver receives UDP
tion. In our experiments, the TCP window size we use tsaffic at a high burst rate (even higher than the network’s
256KB which can achieve 4Gb/s throughput if network allowsull link rate). That is why UDP throughput is higher than
Therefore, the low TCP throughput of small instances is n®CP throughput on average. We believe the reason is, during
caused by TCP parameter settings. To investigate further, the low UDP throughput periods, the receiver is scheduléd of
study the TCP/UDP transmission at a much smaller tinfeom the processor, but the sender instance is scheduledlon.
scale. In our TCPTest and UDPTest tool, every time when thiee UDP traffic sent to the receiver will be buffered in the Xen
receiver receives 256KB of data, it computes a throughput fdriver domain. When the receiver is scheduled in later,hadl t
the recent 256KB data transmission. Figure 5 demonstriages buffered data will be copied from driver domain memory to
fine-grain TCP and UDP throughput of a typical small instandbe receiver's memory. Since the data is copied from memory
pair in 1-second transmission. We consistently observe tteememory, the receiver can get them at a much higher rate
same transmission pattern on all the small instances. T@e makan the full link rate.
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Fig. 7. The Distribution of propagation delays and hop coresults in
spatial experiment . )
experiment, we measure the packet round trip delay (RTT) of

750 small instance pairs and 150 medium instance pairs using
5000 ping probes. Before describing the characteristiendf
to-end delays, we first discuss an interesting observation i
our ping measurement results. We consistently observe very
large delays (hundreds of ms) for the first several ping probe
packets over all the instance pairs in our spatial experimen
We compare the ping RTT results with the RTTs measured
by UDP probe packets. We find that the UDP probe RTTs
have the same characteristics with the ping RTTs except that
the first several UDP probe packets do not have abnormally
‘ . large delays. By looking at the TCPDUMP trace of the ping
R ' w packets, we believe the reason for the abnormally larg&init

Fig. 8. The distribution of delay statistical metrics in plaexperiment ping RTTsis tha_-t eVerY_time ping pa(fkets are initiated beMe
an instance pair, the first several ping packets are reditect

We define abuffer burst period by a UDP transmission to a device, perhaps for a security check. The routers can

period during which the receiver continuously receive dafg™ward ping packets only after the security check device
at rates higher than the full link rate. Since we control th@loWs them to do so. The large delays of the first several ping

UDP sending rate to 1Gbps, during kaffer burst period packets are caused by the buffer delay at the security device

the additional amount of data beyond full link rate transfefnerefore, in our RTT characteristics analysis, we remove
must come from the Xen driver domain buffer. We call thi?® RTT measurement results of the first 50 ping packets
additional databuffer burst data. We can estimate the lower!© €liminate the impact of this security check on our delay
bound of Xen driver domain buffer size by the volume off€asurements. o

buffer burst data. We analyze the UDP transmission trace of We analyze several characteristics of RTTs among EC2

small instance pairs in our 150 hour temporal experiment. Wstances. First, we estimate the propagation delays keetwe
find, in the maximum case, thauffer burst data is as high instance pairs using the minimum RTTs observed in ping

as 7.7 MB. It means that Xen driver domain buffer can p&robes. In Figure 7, the bottom graph shows the probability
more than 7.7 MB. The large buffer at Xen driver domaifistribution of propagation delays for all instance paiFae
can help reduce the packet loss and improve the average UpipPagation delays have a two-peak distribution. The taplgr
throughput when instances are scheduled off from physiddiFigure 7 shows the histogram of the hop counts for all the
ProCessors. instance pairs. The hop counts are measured using traeerout
Figure 6 demonstrates the fine-grain TCP/UDP throughgthom this graph, we can see that in the EC2 data center,
trace for a medium instance pair. Since there is no procestbitances are very close to each other. All the instances pair
sharing among medium instance pairs, the TCP/UDP throughe measured are within 4 hops from each other, and most
put is relatively stable. Medium instances can achievelaimi Propagation delays are smaller than 0.2 ms. For all the 900

UDP and TCP throughput which are decided by the traffigstance pairs we have measured, the instances are either 3
load of the data center network. hops or 4 hops away from each other. This is the reason why

we observe a two-peak propagation delay distribution.
B. End-to-end Delays For each instance pair, we compute the minimum, median,
Measurement Results: In this section, we discuss theaverage, maximum RTTs and the RTT standard deviation from
packet delay measurement in our experiments. In our spatia 4950 probes. Figure 8 shows the cumulative distribudfon
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these RTT statistical metrics for small and medium instance 1
(note that the x-axis is in log scale). From this graph, we can
see that the delays among these instances are not stable. The
propagation delays are smaller than 0.2 ms for most of the
small instance pairs. However, on 55% of the small instance
pairs, the maximum RTTSs are higher than 20 ms. The standard
deviation of RTTs is an order of magnitude larger than the
propagation delay and the maximum RTTs are 100 times larger
than the propagation delays. The delays of medium instances
are much more stable than the small instances. But we still
observe that, for 20% medium instance pairs, the maximum —— Badabing probe loss rate (temporal exp)
RTTs are larger than 10ms. Considering the Amazon EC2 data = e e o
center is a large cluster of computers that are not spread ove Packet Loss
a wide area, these large delay variations are abnormal. Fig. 10. Badabing packet loss results in spatial and tenhgogzeriments
As a comparison, we test the RTT and between non-

virtualized machines located in our university network angriver domain with other instances. Let us suppose a medium
in Emulab. We observe much smaller delay variations QRstanceA is sharing Xen driver domain with another instance
the machines in our university network and in Emulab. FQg_ since there is a large buffer in the driver domain, instance
example, for two machines in our university network whictp could burst a big trunk of data into the driver domain
are 4 hops away, the minimum/average/maximum RTTs as@ffer. In this case, the packet from could be put into a
0.386/0.460/1.68 ms respectively, and the RTT standard cp@ng queue in Xen driver domain, which leads to relatively
viation is 0.037 ms. For two machines in Emulab which angng queuing delay. Since packets don't need to wait for

connected through a SWitCh, the minimum/average/maximl.t-ﬁb processor Schedu”ng for medium instancesi the de'ay
RTTs are 0.138/0.145/0.378 ms, and the RTT standard deVjgriations on medium instances are generally smaller than

tion is 0.014 ms. For all these non-virtualized machines, tiymall instances.
RTT standard deviation is roughly 10 times smaller than the
propagation delays. To visualize this difference, we phat t VI. PACKET LOSSESTIMATION
5000 RTT measurement results for non-virtualized machines Estimation Results: In this section, we describe the packet
small instances, and medium instances in Figure 9. We dass estimation results observed in our experiments. Bagdab
clearly see that, RTTs among Amazon EC2 instances haaimates the packet loss characteristics of an end-tgathd
much higher variations than non-virtualized machines. ThHry estimating if each 5ms time slot is a lost episode. Figlre 1
delay variations among small instances are much higher trgtrows the overall cumulative distribution of packet loss- fr
that of medium instances. guency estimated by Badabing in our spatial and temporal ex-
Discussion: End-to-end delay variation are typically asperiments (note the x-axis is in log scale). Here the padest |
sumed to be caused by the queuing delays on routers wiimguency is defined a$loss_time_slot/total_time_slot).
a network is congested. However, in the Amazon EC2 ddtaom this graph, we can see that Badabing reports abnor-
center, the large delay variations are unlikely to be catised mally high packet loss frequency in the Amazon EC2 data
network congestion. The reasons can be argued as followsnter. In both spatial and temporal experiment resultsemo
First, we observe very rare packet loss in the ping probélan 10% of the Badabing measurements report very high
Among all the instance pairs we have done ping probes, 98%cket loss frequency>( 10%). This packet loss frequency
of them did not experience any ping packet loss. The other 2% extremely high since normally packet loss happens very
only experience roughly 1 out of 1000 packet loss. Second,rarely (< 0.1%). To cross validate, we look at the probing
our bandwidth measurement experiments, all the instanees packet traces of all the Badabing measurements, the cu-
have measured can achieve at least 500Mb/s TCP throughpuilative distributions of Badabing probe loss rate are also
All these results imply that the Amazon EC2 data centgiotted in Figure 10. The Badabing probe loss rate is defined
network is not congested. as (lost_probes/total_probes) in Badabing measurements.
Considering the processor sharing and large Xen drivierom the distribution of Badabing probe loss rate, we can see
domain buffer observed in previous sections, our conjedsir that probe packet loss actually happens very rarely in budh s
that the large delay variations among EC2 instances aredausal and temporal experiments. For 98% of the measurements,
by the long queuing delay at the Xen driver domain. Sindde probe loss rates are smaller than 0.005 and for 60% of
small instances are sharing processors with other inséandbe measurments, the probe loss rates are smaller than. 0.001
when the receiver instance is scheduled off, the probe packehe very high packet loss frequency reported by Badabing
will be buffered at the Xen driver domain until the receiveis suspicious. We perform a more detailed discussion on the
is scheduled on. This long buffering delay causes very hig@adabing estimation results.
delay variations among small instances. Although mediumDiscussion: Badabing estimates the loss characteristics of
instances do not share processors, they are still sharimg Xd-to-end paths by detecting thess episodes. loss episode
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way delay of most recent successful packets. From the graph,

; - Probe One Way Delay o we can see that the estimated maximum OWDs are not very
300t —.MaX|mum One Way Delay Estimation |

large. However, in many cases, the one way delay variations
caused by virtualization can be much larger than the estidnat
maximum OWDs. All these cases will cause false positive
detections in the Badabing results.

The discussion of Badabing results reveals that, in the
virtualized data center environment, there are additidlifét
culties to infer network properties using statistics. Saorakd
assumption in traditional network environments may nothol
in virtualized data centers.

Badabing One Way Delay (ms)

2 4 1
0 000 OOF?robe I6DOOO 8000 0000 VIIl. | MPLICATIONS

Fig. 11.  Badabing probe packet one way delay and maximum OWD We have found that the networking performance between
estimation Amazon EC2 instances demonstrate very different chaiacter
tics from traditional non-virtualized clusters, such as &bnor-
is defined as the time series indicating a series of consecutinal large delay variations and unstable TCP/UDP throughput
packets (possibly only of length one) were lost [16]. There taused by end host virtualization. In this section, we discu
a sender and a receiver in the Badabing tool. At each 5mhe implications of our findings on applications running in
time slot, the sender sends a probe with 30% probabiligloud services.
Each probe includes 3 probing packets and all the probeNetwork measurement based systems in cloudAs dis-
packets are timestamped. When the receiver receives a probssed in the previous section, the large delay variation ca
packet, it simply remembers the packet sequence numbempletely skew the packet loss estimation results of the
and the timestamps. Badabing assumes time synchroniza@zmlabing tool. Badabing is just one example of the problem.
between the sender and receiver. However, since Badabifige fundamental problem is that the simple textbook end-
estimates loss episode based on delay differences, the ttmend delay model composed of network transmission delay,
synchronization does not have to be perfect. The estimatipropagation delay, and router queuing delay is no longer
algorithm marks a time slot as lossy or not lossy based on théfficient. Our results show that in the virtualized datateen
one way delay and lost packets in the time slot. The critariathe delay caused by end host virtualization can be muchdarge
that if there is a lost packet within time of the current time than the other delay factors and cannot be overlooked. Other
slot, or the one way delay is larger thamz_owd x (1 —«), than the Badabing tool we discussed in the paper, the large
the time slot is marked as lossy. Here, thex_owd is the delay variations can also impact many other protocols and
maximum one way delay of the path, which is estimated kyystems that rely on the RTT measurement to infer network
the one way delay of the most recent successful packet whemngestion, such as TCP vegas [5] and PCP [2]. Therefore,
a packet loss happens. By defauitis set to 50 ms and is if the cloud service users want to build systems relying on
set to 0.005. Here, Badabing is making an implicit assumptithe network measurements to make decisions, they need to be
that when an end-to-end path is in loss episodes, the one veayare of the virtual machine scheduling characteristicshef
delays (OWD) of this path will be higher than its one wayirtualized data center environment.
delays when the path is not in loss episodes. This assumptiomMetwork experiments in cloud: Emulab is a widely used
makes sense in the wide area Internet environments. facility for networking researchers to deploy emulatedvoek
However, in our previous results, we have observed veexperiments. However, Emulab is based on a relatively small
high delay variation even though the data center network dsmputer cluster. In many cases, researchers cannot find
not congested. These large delay variations are very likelpough machines to deploy their large scale experiments.
to be caused by the machine virtualization. The problem Recently, researchers have proposed to deploy large scale
that, the delay variations caused by virtualization can behm network experiments on the Amazon EC2 service (e.g. the
larger than the delay variations caused by network cormestiCloudlab project [6]). However, as far as we know, there is
Many of these large delay variations can cause Badabingno quantitative result about the feasibility of this ideaurO
mark a time slot as lossy. Therefore, in this environmenfeasurement results provide some insights on this profiem.
Badabing will have a much higher false positive rate. Thaeploy network experiments on Amazon EC2, the challenge
is why Badabing reports very high packet loss frequency @ to emulate different kinds of network links between EC2
many instance pairs in our experiments. To demonstrate thistances. The processor sharing and unstable networbrperf
effect, we plot the one way delay and corresponding maximumance bring challenges to the link emulation. First, beeaus
OWD estimation for 10,000 probes on a small instance pal the small EC2 instances are sharing processors withr othe
in Figure 11. During the 10,000 Badabing probes, there arestances, it is very hard for them to set timers precisely to
only 7 packets lost. Every time when a packet loss happepsyform accurate rate shaping. In addition, the large delay
Badabing will estimate a new maximum OWD based on onariations and unstable throughput make it hard to emulate



stable high speed links among small instances. Using hi&P/UDP throughput among Amazon EC2 instances. Through
capacity instances might be able to reduce the problem, logtailed analysis, we conclude that these unstable network
further experimental study is needed to understand thigisscharacteristics are caused by virtualization and processo

Scientific computing in cloud: Unstable network through- sharing on server hosts. The unstable network performance
put and large delay variations can also have negative impaan degrade the performance of and bring new challenges to
on the performance of scientific computing applications. Fonany applications. Our study provides early results toward
example, in many MPI applications, a worker has to exchangederstanding the characteristics of virtualized datéezenAs
intermediate results with all the other workers before in ca&uture work, we will study how applications can be custordize
proceed to the next task. If the network connections to a faw achieve good performance over virtualized environments
workers suffer from low throughput and high delay variasipn
the worker has to wait for the results from the delayed
workers before it can proceed. Therefore, MPI applications This research was sponsored by the NSF under CAREER
will experience significant performance degradation. MepRAWard CNS-0448546, NeTS FIND Award CNS-0721990, by
duce applications [7] may experience the same problem whiicrosoft Corp., and by an Alfred P. Sloan Research Fel-
a |arge amount of data is shuffled among all the mappé%VShlp Views and conclusions contained in this document
and reducers. To improve the performance of these scientfi@ those of the authors and should not be interpreted as
computing applications on cloud service, we may need kgpresenting the official policies, either expressed orlignp
customize their job assignment strategies to accommotate  NSF, Microsoft Corp., the Alfred P. Sloan Foundation, or
unstable networking performance among virtual machines. the U.S. government.
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