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Abstract
The rapid growth of the Internet has made IP addresses a
scarce resource. To get around this problem, today and
in the foreseeable future, networks will be deployed with
reusable-IP addresses (a.k.a. private-IP addresses) or IPv6
addresses. The Internet is therefore evolving into a collec-
tion of networks of heterogeneous address spaces. Such de-
velopment jeopardizes the fundamental bi-directional con-
nectivity property of the Internet.

The problem is that, without IP addresses, non-IP hosts
(i.e. reusable-IP or IPv6 hosts) cannot be directly addressed
by IP hosts, making it impossible for IP hosts to initiate
connections to them. To solve this problem, we propose a
network layer waypoint (3rd-party network agent) service
called AVES. The key idea is tovirtualizenon-IP hosts by
a set of IP addresses assigned to waypoints. The waypoints
then act as relays to connect IP hosts to non-IP hosts. This
scheme allows every IP host to simultaneously connect to
as many non-IP hosts as the number of waypoint IP ad-
dresses. Therefore high connectivity is achieved by AVES
even when a small number of IP addresses are used. Un-
like other known solutions, AVES can provide general con-
nectivity and does not require any change to existing IP
hosts or IP network routers for easy deployment. We have
implemented and deployed an AVES prototype system at
CMU. A wide range of applications have been shown to
work seamlessly with AVES. Details of our implementa-
tion’s design, performance and limitations are discussed.

1 Introduction

The Internet was originally conceived as a homogeneous
global network in which all hosts would implement the net-
work protocol Internet Protocol version 4 (IP or IPv4) [20],
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Figure 1: (a) Heterogeneous address spaces (b) IPv6 dual-stack
strategy

have globally unique unicast IP addresses for identification
and routing purposes, and could freely communicate with
each other. But as the Internet evolves, it is becoming a
heterogeneous network (as depicted in Figure 1(a)). In the
process,bi-directionalconnectivity between hosts is lost.
That is, given a pair of hosts, sometimes a connection can
be established only if it is initiated by a particular side, and
sometimes a connection cannot be established at all.

The root of the problem is that with the rapid growth of
the Internet and the inefficient utilization of the IP address
space, it has become clear that the relatively small 32-bit
address space defined by IP is insufficient. The danger of
exhausting the IP address space has prompted the Internet
Assigned Numbers Authority (IANA) to conserve the re-
maining IP address space. This has resulted in two impor-
tant development trends.

First, to get around the IP address shortage problem, it
is increasingly common for networks ranging from large
corporate networks to small home networks to be deployed
using reusable-IP addresses.1 By connecting a reusable-

1Reusable-IP addresses are the network prefixes 10/8, 172.16/12 and
192.168/16 [21]. We use the term “reusable-IP addresses” instead of the
more conventional “private-IP addresses” to distinguish from another use
of these addresses to buildprivateIP networks that are intentionally made
inaccessible to the public Internet.



IP network to the IP Internet through a Network Address
Translation (NAT) [25] gateway,uni-directional connec-
tivity to the IP Internet is provided. That is, in general,
reusable-IP hosts can initiate connections to IP hosts but
not vice versa. Moreover, between two reusable-IP hosts
belonging to different networks, there is generally no con-
nectivity. Thus, hosts inside reusable-IP networks are not
first-class Internet entities.

Second, as a long term solution, the IETF has designed
the Internet Protocol version 6 (IPv6) [4] which defines
an enormous 128-bit address space. Ideally, all new net-
works should now be deployed using IPv6, and all existing
IP and reusable-IP networks should be upgraded to IPv6.
However, since upgrading to IPv6 is a gradual process, IP
and reusable-IP networks will remain in the foreseeable fu-
ture. In addition, although new IPv6 networks can be fully
compatible with IP when the dual-stack transition mecha-
nism [8] is used, to achievefull transparency, every IPv6
host must be assigned an IP address and essentially behave
as both an IPv6 and an IP host simultaneously as shown in
Figure 1(b). Obviously, for many IPv6 network operators,
this is simply not a viable option. Thus, a significant por-
tion of IPv6 networks will likely be deployed as IPv6-only
networks, and they will only haveuni-directionalconnec-
tivity to the IP Internet via Network Address Translation -
Protocol Translation (NAT-PT) [27] gateways similar to the
reusable-IP network scenario.

These development trends clearly indicate that the Inter-
net today and in the foreseeable future will be a heteroge-
neous network composed of IP, IPv6 and reusable-IP ad-
dress spaces as shown in Figure 1(a), and the fundamen-
tal bi-directional connectivity property of the Internet has
been destroyed. In this environment, many common appli-
cations are no longer usable. Recent interest in peer-to-peer
applications has raised awareness of this problem because
under these applications there is no longer a distinction be-
tween client versus server and bi-directional connectivity is
crucial. An important challenge is:How can the lost con-
nectivity in this heterogeneous environment be restored to
as high a degree as possible? The obvious difficulty is that,
without IP addresses, non-IP hosts (i.e. reusable-IP or IPv6
hosts) cannot be directly addressed by IP hosts, therefore IP
hosts cannot initiate connections to non-IP hosts directly.
Any general solution to this problem must therefore allow
a non-IP host to be identified by an identifier other than an
IP address, and the identifier must be mapped to the actual
non-IP host during communication.

To date, no known solution to this problem can pro-
vide generalbi-directional connectivity and at the same
time be deployed easily. Of the known solutions, which
are discussed in Section 7, some are specific to one appli-
cation (e.g. HTTP virtual hosting), some are application
independent but require per application manual configura-
tions and cannot provide general bi-directional connectiv-
ity (e.g. port forwarding), and some can provide general

bi-directional connectivity but require upgrades to existing
IP hosts or IP network edge routers (e.g. SOCKS-based
proposal). In practice, these upgrades to existing IP hosts
or IP network edge routers are either too daunting to carry
out, or there is no incentive to carry them out in the first
place because they are aimed to benefitnon-IP hosts and
do not directly benefit existing IP hosts and networks.

In this paper, our aim is to design a solution that not only
providesgeneral bi-directional connectivity but also re-
quires as little upgrades to existing software and hardware
as possible. To achieve this goal, we propose a network
layer waypoint service called AVES. Waypoints are 3rd-
party network agents. The key idea is tovirtualizenon-IP
hosts by a set of IP addresses assigned to waypoints. In this
approach, we use DNS [15] names as identifiers for non-
IP hosts anddynamicallybind non-IP hosts to waypoint
IP addresses during DNS name resolution in aconnection-
initiator-specificfashion. The waypoints then act as relays
to connect IP hosts to non-IP hosts through AVES-aware
NAT gateways.2 This scheme allows every IP host to si-
multaneously connect to as many non-IP hosts as the num-
ber of waypoint IP addresses. As a result, high connectiv-
ity is achieved even when a small number of IP addresses
are used. The internetworking heterogeneity is handled by
the waypoints, no upgrade to existing IP hosts or IP net-
work routers is required, making non-intrusive deployment
of AVES possible. This approach is unique because it ad-
dresses an internetworking problem without changing the
network layer of existing systems besides the NAT gate-
ways.

It is important to note that AVES is optimized for de-
ployment and is not perfect in every regard. In particular,
AVES trades performance for deployability. It turns out
that, since the binding of non-IP hosts to waypoint IP ad-
dresses during DNS name resolution is the critical step, the
more control we have over the local DNS servers used by
IP initiators, the better AVES can perform. However, in the
extreme case where we have no control over the local DNS
servers, AVES still provides the same connectivity but at
the cost of lowered performance.

In Section 2, we further motivate the heterogeneous ad-
dress space connectivity problem with a case study and pre-
cisely formulate the problem. We present the design of
AVES in Section 3, and discuss its connectivity and de-
ployability properties in Section 4. We have implemented
a complete prototype of AVES on Linux and the details are
presented in Section 5. In Section 6, we discuss key con-
cerns about AVES such as application compatibility, scal-
ability, and security. Finally, we discuss related work in
Section 7 and summarize the paper in Section 8.

2Note that no known solution can provide general bi-directional con-
nectivity without extending the functionality of the NAT gateway. How-
ever, since the operator of a NAT gateway has incentives to perform the
upgrade, deployment should not be hindered.



Responder
IP IPv6 R-IP

IP Trivial (a) Hard (b) Hard
Initiator IPv6 NAT-PT Trivial Reduces to (b)

R-IP NAT Reduces to (a) Reduces to (b)

Table 1: Taxonomy of address space connectivity

2 Case Study and Problem Formulation

To further motivate the need for bi-directional connectiv-
ity across heterogeneous address spaces, let us consider the
DSL service at CMU. In April 1999, CMU began offer-
ing an internal DSL service that allowed users to obtain
as many IP addresses as needed. Twenty months later,
the 2000 IP addresses allocated to the service were ex-
hausted. To conserve IP addresses, today only one stati-
cally assigned and one dynamically assigned IP address is
provided per DSL line.

The situation has driven many of our DSL users to be-
gin using NAT to get around the address allocation prob-
lem. Unfortunately with NAT, bi-directional connectivity is
lost. This drastically affects the user’s computing activities
because fundamentally the university environment is not a
pure client-server environment and bi-directional connec-
tivity is critical. Although the DSL user will still be able
to browse the web from home and access campus comput-
ing resources, she will not be able to remote login directly
to her home computers usingssh or telnet. She also
will not be able to host her own web servers orftp servers
on her home computers to distribute documents like digital
videos and photos. When she isaccessing campus com-
puting resources from home, she also will not be able to
bring upX Windows applications on her home computers
(unlessssh X Windows connection forwarding is used).
Many popular peer-to-peer applications also break down.
For example, when both parties are behind NAT gateways,
the popular music sharing software Napster will not work.

In Section 7, we discuss a simple port number forward-
ing work-around that can partially address these problems.
However, this work-around works in the transport layer, re-
quires per application manual configurations, and the con-
nectivity achieved is unacceptable as only one home com-
puter per port number can accept in-bound connections. In
contrast, as we shall see, AVES is capable of allowing DSL
users who deployed NAT gateways to fully regain all the
above lost capabilities.

2.1 Heterogeneous Address Space
Connectivity Problem

In the foreseeable future, three types of address spaces will
coexist in the Internet, they are IP, IPv6, and reusable-IP.
Table 1 describes the connectivity between all combina-
tions of the three address space types. In a connection,
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Figure 2: Out-bound connectivity via NAT gateway

the initiator is the“caller” host that sends the first packet
to start the connection; the responder is the“callee” host
that answers the in-coming connection. For example, to
connect a reusable-IP (R-IP) initiator to an IP responder,
it is well known that NAT [25] can be used and it works
well in practice. Similarly, NAT-PT [27] can be used to
connect an IPv6 initiator to an IP responder. On the other
hand, to connect an IP initiator to an IPv6 responder (case
(a), Table 1), or to connect an IP initiator to a reusable-IP
responder (case (b), Table 1) is hard because the responder
does not have any IP address and the initiator cannot ad-
dress the responder directly. Solving these problems is the
key challenge in maintaining the bi-directional connectiv-
ity abstraction of the Internet.

We emphasize that the problems underlying case (a) and
case (b) are essentially identical, except that case (a) re-
quires additional packet header format conversion which
has been well documented in [18, 27]. Thus for simplicity,
for the remainder of this paper, we only consider case (b),
where an IP initiator is connecting to a reusable-IP respon-
der. The results can be mapped to case (a).

Note that because there are multiple coexisting instances
of the reusable-IP address space, connecting a reusable-IP
initiator to a reusable-IP responder in a different instance
of the address space is non-trivial. However, under NAT,
this is equivalent to the initiator’s NAT gateway (which is
an IP host) connecting to the reusable-IP responder. There-
fore, this case can be reduced to case (b) as indicated in
Table 1. Similarly, connecting a reusable-IP initiator to an
IPv6 responder reduces to case (a), and connecting an IPv6
initiator to a reusable-IP responder reduces to case (b).

In summary, the key difficulty in achieving bi-directional
connectivity across heterogeneous address spaces is to pro-
vide connectivity from IP hosts to non-IP hosts.

2.1.1 NAT and Its Limitation

It is helpful to understand the capability and limitation
of NAT, but as we shall see, NAT can only provide uni-
directional connectivity to the IP Internet. Figure 2 illus-
trates a typical scenario where a network is constructed us-
ing the reusable-IP address space and is attached to the IP
Internet via a NAT gateway,R.

AssumeR only owns a single IP address. Consider the



case where a reusable-IP hostB (the initiator) is connecting
to an IP hostA (the responder). A reusable-IP address that
belongs to hostX is denotedIP0

X, and an IP address that
belongs to hostY is denotedIPY. AssumeB already knows
the IP address ofA.3 B simply initiates the connection by
sending a packet toA. Suppose this is a TCP connection,
and the packet sent byB has a source port numberPB and
a destination port numberPA. We denote this packet by
[IP0

B;PB! IPA;PA] (the transport protocol is omitted for sim-
plicity). The goal of NAT is to representB in the IP Internet
by R. As this packet is forwarded byR, R replacesIP0

B by
its own IP addressIPR, andPB by an available port num-
ber onR, say,PR. The resulting packet is[IPR;PR! IPA;PA]

and is forwarded out of the reusable-IP network. When a
corresponding response packet[IPA;PA! IPR;PR] is received
by R, R simply replaces the destination address byIP0

B and
the destination port number byPB. Since each 16-bit port
number onRcan be reused for different transport protocols,
roughly 65,000 TCP and 65,000 UDP connections can be
simultaneously active from initiating reusable-IP hosts to
every port of every responding IP host even thoughR only
has one IP address.

In contrast, ifA is the initiator andB is the responder, the
situation becomes very different. Because the only IP ad-
dress owned by the reusable-IP network isIPR, a DNS ap-
plication level gateway [26] for in-bound NAT must resolve
the name lookup forB to IPR. Unfortunately, sinceIPR can
only refer to one reusable-IP host at any given time, with
one IP address, NAT can only provide general in-bound
connectivity to one responder in the entire reusable-IP net-
work at a time. Since having one IP address is typical, NAT
cannot provideacceptable in-bound connectivity.

3 AVES

In this section, we describe AVES (Address Virtualization
Enabling Service), which can non-intrusively provide IP to
IPv6 or IP to reusable-IP connectivity. Again, for simplic-
ity, we only consider the reusable-IP scenario. The discus-
sion also applies to the IPv6 scenario. For non-IP to IP
connectivity, we simply rely on NAT and NAT-PT.

3.1 Overview

The key idea behind AVES is tovirtualizenon-IP hosts by
a set of IP addresses assigned to waypoints. The waypoints
then act as relays to connect IP hosts to non-IP hosts. Fig-
ure 3 illustrates this idea. In this example, there are two
reusable-IP networks connected to the IP Internet, and the
reusable-IP hostsB and C are virtualized by the IP ad-
dresses of waypointsW2 andW4. As a result, IP initiators
A and D can connect to respondersB andC through the

3Such an IP address is usually obtained through DNS, and since a DNS
server’s address is known by configuration, we can assume any IP host’s
address can be known byB without any loss of generality.
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Figure 3: Overview of AVES

waypoints. Note that the bindings between non-IP hosts
and waypoint IP addresses areinitiator-specific. That is,
each IP initiator has its own view. In our example, toA,
B is bound toIPW2 andC is bound toIPW4 . On the other
hand, toD, B is bound toIPW4 andC is bound toIPW2 . This
ability to simultaneously bind an unlimited number of non-
IP hosts to a waypoint IP address allows AVES to provide
connectivity to an unlimited number of non-IP hosts. An-
other point worth noting is that the number of waypoint IP
addresses only limits the number of non-IP hosts that each
IP initiator can simultaneously connect to. Thus, for all
practical proposes AVES requires only a small number of
IP addresses, say a few tens, to achieve high connectivity.

More precisely, to implement AVES, a service provider
deploys a small number of IP waypoints (W1 - W4) and
AVES-aware DNS servers (not shown) for the reusable-
IP domains. The waypoints have the following character-
istics: (1) Waypoints are assigned IP addresses, possibly
more than one per waypoint, in which caseeach IP address
is logically a distinct waypoint. Here we assume only one
IP address is assigned per waypoint. (2) Waypoints are
capable of performing address (and protocol, in the case
of IPv6) translation, they serve as relays for traffic cross-
ing heterogeneous address spaces. (3) Because waypoints
are network agents, they can be deployed non-intrusively
without global coordination. Under AVES, for IP initiator
A to connect to reusable-IP responderB, it first performs
a DNS name lookup forB; this marks the beginning of a
session. The name lookup operation serves two purposes.
First, the DNS name will uniquely identify the responder
even though it does not have a unique IP address. Sec-
ond, when the DNS query is processed by an AVES-aware
DNS server, the non-IP host is bound to the IP address of
a chosen waypoint, in this caseIPW2 . Again, this bind-
ing is initiator-specific so that a waypoint IP address can
be bound to multiple non-IP hosts simultaneously. Instruc-
tions are then sent by the AVES-aware DNS server toW2

so that it can correctly relay packets.IPW2 is returned toA
in the DNS reply with the time-to-live field set to zero (i.e.
no caching of IP address records is allowed; however name
server records can be cached). The session is now estab-
lished, andA can open arbitrary connections toB through
W2. A session is terminated when a timeout occurs after
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a period of inactivity. Afterwards, an initiator can regain
connectivity by starting another session. This example il-
lustrates several key ideas underlying AVES:

� Virtual expansion of IP address space– A waypoint
IP address can virtually represent, or virtualize, an
unlimited number of non-IP responders in the IP In-
ternet simultaneously because the binding isinitiator-
specific. Hence, AVES virtually expands the IP ad-
dress space, achieving high connectivity when only a
small number of IP addresses are used.

� Heterogeneity hiding– From the point of view of an
IP initiator, with AVES, all responders appear to be
IP hosts with IP addresses. Thus, there is no need
to modify existing IP hosts or IP network routers to
achieve connectivity.

� Transparent access– An initiating IP hostaccesses
AVES transparently via DNS host name resolution.
The IP address of the selected waypoint is returned to
the initiating IP host. The service abstraction provided
by AVES is therefore simply an IP address, which is
most compliant with existing applications.

In the following, we first explain the data path opera-
tions, then we explain the control path operations for con-
figuring the data path and discuss deployment scenarios in
relation to our case study in Section 2. The connectivity
achieved by AVES is summarized precisely in Section 4.

3.2 Data Path Operations

Figure 4 shows a typical data path between an initiatorA
and a reusable-IP responderB. W is a waypoint andR is an
AVES-aware NAT gateway.W virtualizesB for A. Thus,
to A, the IP address ofB is IPW. To correctly relay pack-
ets fromA to B, W has been configured by an AVES-aware
DNS server via the control path protocol described in Sec-
tion 3.3 with the following translation table entry (we omit
the port numbers as they are unimportant):

Original packet Translated packet Encapsulation header
[IPA! IPW] [IPA! IP0

B] [IPW! IPR]

That is, when a packet fromIPA is received byW (recall
that the binding is initiator-specific), the destination ad-
dress of the packet is translated toIP0

B, and the resulting
packet is tunneled fromIPW to IPR. Note that we pro-
pose a tunneling based mechanism here despite the header
overhead because the encapsulation header allows com-
plete information about the session to be carried along with
each data packet so thatR can process each in-coming data
packet purely based on its packet headers. This eliminates
the need for a control path mechanism to configureRahead
of time, resulting in a simpler protocol. In the following,
we describe two versions of the data path operations. The
first version applies when the reusable-IP network is con-
nected to the IP Internet via a single NAT gateway. The
second one applies when the reusable-IP network is “multi-
homed”, that is, it is connected to the IP Internet via multi-
ple NAT gateways.

The data path operations without multi-homing support
are as follows.A initiates a connection toB by sending
the packet[IPA ! IPW] (step 1). WhenW receives such a
packet, it transforms the packet into[IPA! IP0

B] and encap-
sulates the packet with the header[IPW ! IPR]. We denote
the final packet by[IPW ! IPR[IPA ! IP0

B]]. To enhance se-
curity, this packet is authenticated byW. The packet is
then forwarded (step 2) and later received byR. In addi-
tion to supporting the basic functionalities of a NAT gate-
way,R is extended such that whenR receives an authentic
encapsulated packet fromW, it first determines whether a
packet of the same connection (matching addresses in both
outer and inner packet headers and port numbers, if any)
has been seen before. If not,Rcreates a local translation ta-
ble entry such that, when a corresponding out-bound packet
[IP0

B! IPA] (with matching port numbers, if any) is received,
it will modify this out-bound packet to[IPW ! IPA] before
forwarding it out of the reusable-IP network. After creat-
ing this translation table entry,R removes the encapsulat-
ing packet header from the in-coming packet and forwards
the inner packet toB (step 3). Finally, whenB sends a re-
ply to A (step 4), the packet[IP0

B! IPA] is modified byR to
[IPW! IPA] and then forwarded toA (step 5). Through these
mechanisms, a connection fromA to B is established.

The operations above prevent a reusable-IP network
from being multi-homed because they do not guarantee that
the out-bound packets of a session will traverse the same
NAT gateway as the in-bound packets, consequently out-
bound packets might not be translated correctly. Toaccom-
modate a multi-homed network, we modify the data path
operations as follows. In step 3, the source address of an
in-bound packet is translated to the reusable-IP address of
R (IP0

R), and the source port number is translated to a cho-
sen number (PR) to maintain the binding. The resulting
packet for step 3 is[IP0

R;PR! IP0

B], and the packet for step 4
is [IP0

B! IP0

R;PR]. As a result, out-bound packets are guaran-
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teed to traverse the same border gateway as in-bound pack-
ets. For an in-bound ICMP [19] query packet, the Identifier
field can be translated instead since there is no port number.

We have implemented both variations of the data path in
our prototype system, see Section 5 for details. Limitations
of these mechanisms are discussed in Section 6.

3.3 Control Path Operations

The AVES control path mechanisms are used to configure
the data path. That is, when a DNS query for a reusable-IP
responder is processed by an AVES-aware DNS server, a
waypoint is selected to virtualize the reusable-IP responder
and the appropriate translation table entry is installed at the
selected waypoint so it can correctly relay packets.

It is important to recall that the bindings between way-
point IP addresses and reusable-IP responders must be
initiator-specific. This allows a waypoint IP address to si-
multaneously virtualize many reusable-IP responders, and
as a result high connectivity can be achieved with a small
number of IP addresses assigned to waypoints. Unfortu-
nately, creating initiator-specific bindings is not easy be-
cause the IP address of the initiator is typically not available
in a DNS query received by an AVES-aware DNS server.
This is because, in practice, virtually all end host systems
implementrecursiveDNS query [15]. That is, an end host
sends arecursiveDNS query to its local DNS server, and
this local DNS server generates additionaliterativequeries
on behalf of the end host, and eventually returns the answer
to the end host. Thus, an AVES-aware DNS server gener-
ally only interacts with the local DNS server of the initiator,
the IP address of the initiator is obscured. In the following,
we describe two deployment scenarios and the appropriate
techniques in each case to create initiator-specific bindings.

3.3.1 Scenario 1 – Intranet Deployment

Let us reconsider the scenario discussed in Section 2. CMU
can deploy AVES to restore bi-directional connectivity

within the CMU intranet so that DSL users will be able to
access their home computers directly from any host within
the CMU intranet. To do so, CMU would deploy waypoints
and upgrade its local DNS servers to make them AVES-
aware. By upgrading the local DNS servers, initiator-
specific bindings can be created easily since an initiator’s
IP address is now available in the IP headers of its DNS
queries to the AVES-aware local DNS servers.

Figure 5 shows how this scheme works. Under this
scheme, reusable-IP networks will use a common domain
name suffix, sayaves.cmu.edu, for easy identification. In
our example, the reusable-IP network has a domain name
home1.aves.cmu.edu. D1 - Dn are upgraded AVES-
aware local DNS servers. The control path operations are
as follows. InitiatorA’s DNS query forB is directly sent
to one of the AVES-aware local DNS servers,D1 (step
1). D1 is by configuration aware of the IP address of the
AVES-aware NAT gatewayR and the reusable-IP address
of B. Upon receiving the DNS query,D1 selects at ran-
dom a waypoint among a set it knows, in this caseW,
and sends a SETUP message toW (step 2).4 The SETUP
message containsIPA, IPR, and IP0

B, which are necessary
to create a data path translation table entry onW. When
W receives the SETUP message, it examines its data path
translation table to see if it can accept the request. Let us
denote a translation table entryE onW more compactly by
fIPinit iator ; IPNAT; IP0

responderg. Then,W can accept the request
for initiator IPA, NAT gatewayIPR, and responderIP0

B if
and only if,

8E ; IPinit iator = IPA) (IPNAT; IP0

responder) = (IPR; IP0

B):

That is, ifW already has a translation table entry for initia-
tor IPA, and the responder of that entry is not the same as
the one in the SETUP message, thenW must reject the re-
quest and reply with a REJECT message becauseW cannot
be used to relay a particular initiator to more than one re-
sponder. On receiving a REJECT message, for simplicity,
the AVES-aware DNS server will simply do nothing and let
the initiator perform the DNS name lookup again to retry.
In our example, the admission control criterion is satisfied,
soW accepts the request, creates the corresponding transla-
tion table entry, and sends back an ACCEPT message (step
3). Finally, whenD1 receives the ACCEPT message, it re-
sponds toA’s DNS query forB with the IP address of the
selected waypoint,IPW, with the time-to-live field set to
zero (step 4). Note that the messages between waypoints
and the AVES-aware DNS servers are authenticated to pre-
vent unknown sources from gaining control of the system.
Also, the messages can be lost in the network. Waypoint
failure and packet loss are simply handled by initiatorA’s
DNS query timeout/retry mechanism. Limitations of this
scheme are discussed in Section 6.

4Selecting a waypoint based on performance metrics is a topic for fu-
ture research.



X  fg;
on receivingnew connection packet[IPS! IPW] :

if IPS should be rejected
discard packet;
return;

if 9E s.t. IPinit iator = IPS and
(IPNAT; IPresponder) 6= (IPR; IP0

B)
/� violation�/
discard packet;
X  X [ fIPSg;

else
acceptpacket;
if 6 9E s.t. IPinit iator = IPS

createE = fIPS; IPR; IP0

Bg;
on exiting wait state afterTwait :

reject connections from8IPS2 X for Tre ject;

Figure 6: Waypoint wait state algorithm for general deployment

3.3.2 Scenario 2 – General Deployment

There are two major disadvantages of the previous deploy-
ment scheme. First, reusable-IP hosts are still unreachable
from hosts that do not belong to CMU’s intranet. Second,
deployment requires upgrading CMU’s local DNS servers
and thus requires CMU’s consent.

It is possible to overcome both of these short-comings
by using a technique calleddelayed bindingat the expense
of lowered performance. The basic idea is that, a waypoint
does not need to know the identity of the initiator to ac-
cept a request. It can accept the request optimistically and
wait for the connection from the initiator to arrive, and only
at that time admission control is performed and the actual
binding is created.

Under this scheme, reusable-IP networks will use a com-
mon domain name suffix that is independent of any or-
ganization, sayavesnet.net. Waypoints and AVES-
aware DNS servers are independently deployed for the
avesnet.net domain. No upgrade to any existing DNS
server is needed. When a DNS query is received by an
AVES-aware DNS server foravesnet.net, although the
initiator’s IP address (IPA) is no longer known, the AVES-
aware DNS server can still select a waypointW and send it
a SETUP message containingIPR, IP0

B, andIPDNS (the IP
address of the initiator’s local DNS server). Without know-
ing IPA,W can no longer perform the admission control test
stated in Section 3.3.1. However,W can make use of what-
ever information it has and decide whether to accept the re-
quest (in the simplest case,W always accepts the request).
If W accepts the request, it replies with an ACCEPT mes-
sage, and immediately enters await statefor a short period
of time, Twait, and executes the algorithm shown in Fig-
ure 6. During this time,W does not accept other in-coming
SETUP requests. Thus, requests are serialized.

In summary, during this wait state, when a new connec-
tion from some initiatorSarrives (indicated by a TCP SYN
packet or any non-TCP packet),S is potentially the initia-

tor thatW is waiting for. Thus,W checks to see ifS vi-
olates the admission control criterion (note thatE in Fig-
ure 6 denotes a waypoint translation table entry as defined
in Section 3.3.1). If so, the packet must be rejected, and
S is recorded in the setX of violators. If later a new con-
nection from initiatorA arrives, andA does not violate the
admission control criterion, andW has no existing trans-
lation table entry forA, then a new translation table entry
is created forA and bound to responderB. Upon exiting
the wait state, connections from initiators inX must be re-
jected for a time periodTre ject to force these initiators to
retry their connections. Note thatTre ject should not be too
large or it may negatively affect future requests from the
same initiator.

We have fully implemented delayed binding in our pro-
totype system and it works well (see Section 5 for de-
tails). Since this technique is independent of organizational
boundaries, it is actually feasible for our prototype system
to provide service to reusable-IP networks outside of CMU.

One disadvantage of delayed binding is that connections
need to be retried whenever an admission control violation
is committed. Fortunately, when the number of waypoints
is greater than the average number of simultaneous sessions
opened by an initiator, the chance of this can be kept small.
Another disadvantage is that the peak rate at which the
whole system can accept new sessions is limited toN=Twait

sessions per second, whereN is the number of IP addresses
assigned to waypoints. Our prototype system, with 50 IP
addresses and aTwait of 2 seconds, canaccept 25 sessions
per second. While this is quite reasonable for CMU’s DSL
users, we do not advocate the use of our system to serve
a popular web server. Other limitations regarding security
and state consistency are discussed in Section 6.

3.3.3 Final Comment

Note that if we can extend the DNS protocol to always
carry the original initiator’s IP address in all DNS queries,
deployment of AVES can be greatly simplified. General
deployment can be achieved without making existing DNS
servers AVES-aware or using delayed binding.

4 AVES Connectivity and Deployability

In Section 3.2, we described two data path designs. Assum-
ing N IP addresses are assigned to waypoints, the in-bound
connectivity achieved by each design is as follows. For the
regular data path design without support for multi-homing:

� All hosts in non-IP networks are simultaneously
reachable directly by IP hosts, regardless of the size
of N.

� Each IP host can simultaneously openN sessionsto
reach a maximum ofN non-IP hosts.



With multi-homing support, since port or identifier num-
bers are used for connection demultiplexing, the following
additional restriction is imposed:

� Each port number of eachnon-IP host can be reached
by no more than 65,000 TCP and 65,000 UDP connec-
tions simultaneously througheach AVES-aware NAT
gateway. Also, througheach AVES-aware NAT gate-
way, eachnon-IP host can be reached by no more than
65,000 ICMP connections simultaneously. If a proto-
col does not use port or identifier number, then each
non-IP host can only be reached by one connection of
such protocol througheach AVES-aware NAT gate-
way at a time.

Thus, as long asN is greater than the average number of si-
multaneoussessionsto non-IP hosts opened by a typical IP
initiator, sayN= 50, in-bound connectivity can be restored
to a high level.

To summarize AVES’s deployability, waypoints can be
independently deployed; NAT gateways need to be ex-
tended, however this is necessary and acceptable because
their operators have the right incentives to perform the up-
grade. To deploy AVES for an intranet, upgrading the lo-
cal DNS server software will provide the best performance.
However, even when it is impossible to upgrade existing
DNS servers, the delayed binding technique can be used at
the expense of lowered performance. In all cases, no exist-
ing IP hosts or IP network routers need to be modified.

5 Implementation

For fast prototyping and simple deployment, we have im-
plemented AVES for reusable-IP networks as a suite of
user-level software on the Linux platform. The three com-
ponents are (1) the AVES-aware DNS server daemon, (2)
the AVES waypoint daemon, and (3) the AVES NAT gate-
way daemon. To enhance security, data and control mes-
sages between the three components are authenticated by
including with a message the 16-byte MD5 checksum [22]
of the message together with a 16-byte secret key. One se-
cret key is shared between the AVES-aware DNS servers
and waypoints whileeach AVES-aware NAT gateway has
a specific secret key. We save the discussion of some safe-
guarding security features until Section 6.2. In the follow-
ing, we describe the three individual components, then we
report some performance figures. Finally, we describe our
current prototype system.

5.1 AVES-Aware DNS Server Daemon

Our AVES-aware DNS server daemon is based on the
named DNS server in the BIND 8.2.3 distribution [11] and
runs on a Linux PC. We modifiednamed to intercept any
outgoing DNS reply message containing a DNS name with
theavesnet.net suffix because such a reply contains the

reusable-IP address of the named responder. This is ac-
complished by inserting a function call inns req() (to in-
tercept answers from the local cache) andns resp() (to
intercept answers from other origins). Once a reply is in-
tercepted, a lookup table is consulted to obtain the IP ad-
dress of the reusable-IP domain’s NAT gateway and a way-
point IP address is chosen. NAT gateway IP addresses are
obtained from the NAT gateways periodically to accommo-
date dynamic address assignment (see Section 5.3 for more
details), while the waypoint IP addresses and the reusable-
IP host addresses are kept in configuration files. A SETUP
message with a unique serial number is then sent via UDP
to the chosen waypoint, the intercepted DNS reply is al-
tered to contain the chosen waypoint IP address and is set
aside. When the corresponding ACCEPT message is re-
ceived from the waypoint, the DNS reply is finally sent to
the requester. DNS replies that have been set aside are re-
moved if the corresponding ACCEPT messages are not re-
ceived within 3 seconds.

5.2 AVES Waypoint Daemon

Our AVES waypoints are based on Linux PCs. Each ma-
chine can be assigned multiple waypoint IP addresses as
aliases of its network interface. The AVES waypoint dae-
mon uses the Linux IP firewall (ipfw) API to filter se-
lected data packets to user-level for manipulation, it re-
quires Linux kernel version 2.2 or higher. To filter in-
coming data packets to user-level, the waypoint daemon
opens a raw NETLINKFIREWALL netlink socket. Fil-
ter entries can then be added to the input firewall via the
ipfw API and the kernel can be instructed to direct match-
ing packets to the netlink socket. After data packets are
manipulated in user-level, they are reinjected into the net-
work via a raw socket with the IP header included option
(IP HDRINCL) enabled.

We have fully implemented the delayed binding tech-
nique as described in Section 3.3.2. When there are multi-
ple alias waypoint IP addresses on the machine,each ad-
dress is treated independently by the waypoint daemon.
The wait periodTwait in our implementation is 2 seconds
which should provide sufficient time for a connection to
be made. When the waypoint IP addressIPW is in a wait
state, the waypoint daemon filters all in-coming packets
with destination addressIPW regardless of the source ad-
dress. Packets that do not indicate a new connection are
processed normally according to existing translation ta-
ble entries. A new connection (indicated by a TCP SYN
packet, or any non-TCP packet) toIPW is either accepted
or rejected according to the algorithm shown in Figure 6. If
the connection is accepted, a filter for the source and desti-
nation address pair is added to the firewall and a translation
table entry is created. The packet is then processed nor-
mally. If the connection is rejected, the packet is dropped,
and an ICMP “destination host unreachable” message [19]
is sent back to the initiator. This signals to the initiator that



it needs to retry the connection. The reject periodTre ject

is 3 minutes in our implementation, which we think is suf-
ficient to prompt the initiator to retry the connection, and
does not makeIPW unavailable to the initiator again for too
long. Note that, whenIPW is in a wait state, AVES SETUP
messages sent toIPW are ignored for simplicity. Below is a
summary of the other noteworthy features supported by the
waypoint daemon:
Fragmentation & Path MTU Discovery – Because the
waypoint daemon encapsulates a translated packet in an IP
header and adds a 16-byte MD5 checksum, typical 1500
byte in-coming Ethernet packets will have to be fragmented
on their way out. It turns out that Linux does not perform
fragmentation for packets sent through a raw socket with
the IPHDRINCL option enabled, therefore IP fragmenta-
tion has been implemented in the waypoint daemon. The
waypoint daemon also supports path MTU discovery [16].
That is, when the “Don’t Fragment” flag of an in-coming IP
packet is set but fragmentation is necessary, the waypoint
daemon drops the packet, and returns an ICMP “destina-
tion unreachable fragmentation needed” message [19] to
the initiator with the MTU field set to 1464 bytes. Finally,
a consequence of IP fragmentation is that, the AVES NAT
gateway must be configured to reassemble all in-coming
fragmented packets so that the AVES NAT daemon can
function properly.
Protocol Specific Timeouts– A translation table entry rep-
resents a session opened by an initiator and will expire if
there is no traffic activity for a period of time. To opti-
mize resource usage, we use different timeout values for
different protocols. The protocols the waypoint daemon
recognizes are ICMP, TCP, and UDP. First, if an initiator
is transmitting an unknown protocol or a mixed set of pro-
tocols to the responder, a default timeout value of 15 min-
utes is used. For ICMP, since it is mostly generated by
ping or traceroute, we aggressively timeout these en-
tries in 1 minute. For UDP, the timeout value is set to 15
minutes. For TCP, the timeout value is set to 30 minutes.
These choices are somewhat arbitrary, but we think they
are reasonable. To further optimize, we keep track of the
TCP connections that correspond to a translation table en-
try, and when all of them have terminated (indicated by
TCP FIN packets), the translation table entry is removed
immediately without waiting for the timeout. An exception
to this is when the traffic is HTTP (i.e. port 80) because
popular browser software such as Netscape and Internet
Explorer always cache DNS replies for 15 minutes. Thus,
for HTTP, we simply use a timeout value of 20 minutes
without checking for TCP FIN packets.

5.3 AVES NAT Daemon

Our AVES-aware NAT gateways are based on Linux PCs
as well, and they are assumed to be already configured to
perform defragmentation of in-bound packets and IP mas-
querading (i.e. out-bound NAT), which is fully compatible

with AVES. Similar to the waypoint daemon, the AVES
NAT daemon also filters selected packets to user-level for
manipulation. To handle NAT gateway dynamic IP address
assignment, periodically, the NAT daemon sends authen-
ticated registration messages via UDP to the AVES-aware
DNS severs to report its current IP address. These mes-
sages are sent more frequently when an address change is
detected to ensure with high probability that the update is
completed promptly.

The basic operations performed by the NAT daemon is as
described in Section 3.2. The NAT daemon by default fil-
ters all in-coming encapsulated packets. When an authentic
encapsulated packet is received and the connection has not
been seen before, a filter is installed for the corresponding
out-bound packets, and a translation table entry is created.
Several other noteworthy features of the NAT daemon are
summarized below:

Protocol Specific Timeouts– Similar to the waypoint dae-
mon, different timeout values for the translation table en-
tries are used for different protocols. The policy is exactly
the same as that in the waypoint daemon.

ICMP Handling – Fortraceroute, even though the in-
bound packet is UDP, an out-bound ICMP packet is trig-
gered. To supporttraceroute, when an in-bound UDP
connection is received, we install an extra filter and trans-
lation table entry for the potential out-bound ICMP pack-
ets. The timeout is set to 5 seconds so that if no ICMP
packets are triggered, the state is removed quickly. In ad-
dition, since many ICMP message types carry IP addresses
and port numbers in the packet payload, the AVES NAT
daemon translates the payload accordingly as well.

Multi-Homing Support – To support multi-homing as de-
scribed in Section 3.2, the source address and port num-
ber (or ICMP Identifier) of an in-bound packet are trans-
lated. To choose a suitable port number, we simply pick
a port number between 1024 and 65535 at random, and
test to see if that port number can be bound to a TCP and a
UDP socket. The process repeats until a port number that is
free is found. This makes sure that our port number alloca-
tion will not interfere with the other operations of the NAT
gateway. However, notice that our straight-forward imple-
mentation does not achieve the theoretical highest connec-
tivity as discussed in Section 4. In our implementation,
only 64,512 in-bound connections (TCPor UDP) can be
simultaneously active regardless of the destinations of the
connections. This is however more than sufficient for the
purpose of our prototype.
Limitations of Multi-Homing Support – When multi-
homing is enabled, only one reusable-IP network can be
connected to a NAT gateway because when there are mul-
tiple reusable-IP networks attached, our implementation
is not yet capable of translating the source address of an
in-bound packet to the address of the correct output net-
work interface. Also, some applications, most notablyftp,
will not work when multi-homing is enabled because the
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Figure 7: Performance measurement testbed

reusable-IPftp server cannot open the data connection to
the IP client since the IP client’s address has been trans-
lated. And because the server passes its reusable-IP ad-
dress, say 10.0.0.1, to the client, even if “passive mode” [1]
is enabled, the client will attempt to open the data connec-
tion to the address 10.0.0.1 instead of the waypoint IP ad-
dress. The only way to get around this is to translateftp

control packets’ content.

5.4 Performance

To measure the performance of our system, we set up a
small 100 Mbps Ethernet testbed as shown in Figure 7.
For data path performance, we instrumented the Linux ker-
nel version 2.2.14 and our daemon software to measure,
with the Pentium CPU cycle counter, the processing time
of a packet in the waypoint and the NAT gateway (both in-
bound and out-bound directions). We measured three quan-
tities: (1) the total packet processing time from the moment
netif rx() was called by the Ethernet device driver after
receiving a packet until the momentdev queue xmit()

was called to pass a processed packet to the device driver
for transmission; (2) the AVES daemon processing time
from the moment a packet was received by a daemon socket
until the moment before the processed packet was sent out
on a socket; (3) the time spent on computing the MD5 au-
thentication checksum in the AVES daemon. We sent UDP
packets of varying sizes between the initiator and the re-
sponder and recorded the processing times. Our experi-
ments show that all the processing times scale linearly as
the packet size varies. Figure 8 shows the partial results,
averaged over 10,000 packets, for the smallest (36 bytes)
and largest (1464 bytes) packet sizes we have tried.

There are several noteworthy points. First, implementing
our software in user-level adds a very significant overhead
due to the memory copies and context switches. We can
expect a kernel-level implementation of our software will
have a total processing time very close to the AVES dae-
mon processing time. Second, almost all the AVES daemon
processing time is spent on computing the MD5 authenti-
cation checksum (note that no authentication is needed for
out-bound packets at the NAT gateway). This overhead can
be reduced if we only authenticate the packet headers but at
the cost of lowered security. Finally, based on these mea-
surements, our software can theoretically sustain a through-
put of 233 Mbps with 1464 byte packets in our testbed.
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Figure 8: Packet processing times

We have also conducted end-to-end throughput experi-
ments. When we sent 1464 byte packets from the initiator
to the responder, the throughput was limited only by the
link capacity, as the system achieved 96 Mbps with UDP
and 80 Mbps with TCP. However, when we sent 48 byte
packets, our software was only able to achieve 41 Mbps
with TCP. This is actually higher than the calculated max-
imum of 19 Mbps based on the processing times measure-
ments due to the amortization of kernel overheads over a
sequence of packets. We expect the throughput with UDP
to be slightly better; however, due to a device driver bug
with the Intel EtherExpress Pro 100 network interface card,
we were unable to send 48 byte UDP packets faster than 10
Mbps without causing the interface card to shutdown.

Next we measured the performance of the control path.
Typically, the time required to resolve an AVES DNS name
is dominated by the network delays of the DNS and AVES
control messages. To factor out the network delays, we ran
both the AVES-aware DNS server daemon and the way-
point daemon on the initiator machine. A program running
on the initiator that repeatedly issuedgethostbyname sys-
tem calls for the responder was used to drive the system.
We then measured the number of CPU cycles, including
socket reads and writes, averaged over 20 requests, con-
sumed by each control path component.

We found that the total time required to complete a
gethostbyname system call was on average 357,000 cy-
cles. This total time can be further broken down as follows.
First, it took 142,000 cycles to process the DNS query at
the AVES-aware DNS server daemon and send the SETUP
message to the waypoint daemon. Second, the waypoint
daemon took 71,000 cycles to process the SETUP mes-
sage and send back the ACCEPT message. Finally, another
17,900 cycles were spent at the AVES-aware DNS name
server daemon to process the ACCEPT message and send
out the final DNS reply message. Computing the MD5 au-
thentication checksum of an AVES control message took
3,100 cycles. Thus, the DNS query processing is the bot-
tleneck. With a 400 MHz AVES-aware DNS server, at
most 2,800 sessions can be set up per second. Of course



if delayed binding is used, the protocol will impose a much
stricter limit.

5.5 Prototype System

We have registered the domain name suffixavesnet.net

and deployed an AVES prototype system. A Linux
PC serves as the AVES-aware DNS server for the
avesnet.net domain. Two other Linux PCs serve as
waypoints,each with 25 IP aliases for a total of 50 way-
point IP addresses. We currently have ten trial subscribers.
Subscribing to AVES is a simple three step process. A
reusable-IP network operator needs to (1) obtain a sub-
domain underavesnet.net from the service operator,
(2) inform the service operator the desired DNS name to
reusable-IP address mappings, and (3) run the AVES NAT
gateway daemon.

Using our prototype, we have shown that a diverse set
of applications work seamlessly with AVES. We are able
to remote login from any IP host to a demo reusable-
IP host calleddemo1 usingtelnet or ssh, perform file
transfers usingftp (when multi-homing is disabled, us-
ing non-passive mode) orscp, export a NFS file sys-
tem on demo1 and mount the file system on any IP
host. We are also able to host a web server ondemo1

and access the content from any IP host. When log-
ging in fromdemo1 to an IP server (by out-bound NAT),
we are able to directly bring upX Windows applica-
tions ondemo1 after the DISPLAY environment variable
has been correctly set. Diagnostic tools such asping

and traceroute also work transparently (with limita-
tions described in Section 6). An on-line demo of our
prototype can be found athttp://www.cs.cmu.edu/~
eugeneng/research/aves/.

6 Discussion

In this section, we discuss the limitations imposed by our
approach. This is by no means an exhaustive account. It
is important to realize that AVES is making a trade-off be-
tween non-intrusively restoring bi-directional connectivity
to a high degree and the limitations it imposes. We believe
that most of the limitations can be coped with, and the ben-
efits of AVES significantly out-weigh the limitations.

6.1 Application Requirements

There are three types of limitations imposed by AVES that
may conflict with an application’s behavior, they are (1)
limitations due to address translation, (2) limitations due to
the need for session creation, and (3) limitations due to the
need for consistent state maintenance. In the following, we
discuss what rules must an application obey in order to be
compatible with AVES.

The first type of limitation is not specific to AVES, but
it is a fundamental limitation of any address translation
scheme such as NAT, TRIAD [3] and IPNL [6] (discussed
in Section 7). The main problem is that some applications
breakthe layering semantics by exchanging lower layer in-
formation such as IP addresses and use the information di-
rectly. In [10] and [24], some NAT-friendly application de-
sign guidelines are given. Because AVES also performs
address translation, some of these guidelines are relevant
(guidelines that aim to avoid in-bound connections are no
longer needed under AVES). Specifically, with respect to
address translation, in order to be compatible with AVES
coupled with NAT, an application should not pass IP ad-
dresses in the packet payload; instead, DNS names should
be passed, and name resolution should always be used to
determine the IP addresses. Listener port number passing
is actually no longer a problem if DNS names are used.
Also, applications should not expect the network and trans-
port headers to be unmodified in transit. Clearly IPsec [13]
would not work across NAT or AVES. In IETF, there is on-
going work on making NAT more IPsec-friendly [2]. In
Section 6.4, we will also describe a change to the AVES
data path that may make AVES more IPsec-friendly.

AVES fundamentally requires a session to be opened by
an initiator before connectivity is provided. Therefore, an
application must perform a DNS lookup before commu-
nication begins. Moreover, communication must begin im-
mediately after the DNS lookup to work with delayed bind-
ing sinceTwait is typically small. When a connection is re-
jected, the application must perform a DNS lookup again
to restart the session. Note that aTwait of 2 seconds used
by our prototype might not work for an application like
traceroute, since it progressively probe the network hop-
by-hop and this process may take more than 2 seconds to
reach the waypoint.

Finally, an application must obey some rules to main-
tain consistency between its state and the waypoints’ state.
From a waypoint’s point of view, a session is terminated
when an idle timeout occurs, or when all connections of the
session (assuming they are all TCP) are terminated. There-
fore, an application must send periodic keep-alive mes-
sages. In addition, it must not reuse DNS lookup results
across sessions (as in the web browser example). An appli-
cation must also begin communication withinTwait after a
DNS reply is received, otherwise, the application’s view is
stale. When a connection is rejected, an application must
also restart the session by performing another DNS lookup.
These rules will prevent the initiator from having a stale
view. If an application does not follow these rules, then it
may have a stale view, in that case, there are two possible
outcomes. First, the connection may get rejected by the
waypoint because it has no state for the initiator. Second,
the connection may get relayed to the wrong responder be-
cause the waypoint has other state for the same initiator.
On the other hand, a waypoint may have a stale view if



a session has ended (e.g. a UDP session is terminated by
the application) but it still keeps state about it. This type
of inconsistency only affects performance, not correctness,
because it simply makes the waypoint unavailable to the
same initiator for a longer period.

6.2 Security

An obvious concern with AVES is whether it is secure. Can
attackers flood the system? Will AVES reusable-IP hosts be
exposed to attackers at the level of regular IP hosts? Can
attackers cause the system to mis-behave? In the follow-
ing, we discuss these issues in detail. We assume a general
deployment scenario where delayed binding is used since a
secure environment is assumed in intranet deployment. To
summarize, the connectivity to AVES reusable-IP hosts is
more easily disrupted by flooding attacks than that to reg-
ular IP hosts, however, AVES reusable-IP hosts are some-
what less vulnerable to other security exploits. Attackers
also cannot cause waypoints to incorrectly relay traffic.

First and foremost, we acknowledge that AVES way-
points are no better at handling packet flooding type of de-
nial of service attacks than any other network systems. The
only method to prevent this is to traceback to the origin
of the flooding and filter those packets out of the network.
There has been some recent advances in this area [23].
Ingress filtering [5] also helps reduce the problem by dis-
allowing address spoofed packets from entering the net-
work. When the waypoints are flooded, reusable-IP net-
works will only have out-bound connectivity through NAT
as in without AVES. In our implementation, we simply
put some hard limits on resource consumptions to prevent
overloading of each AVES component during a flooding
attack. At a different level, to cope with aggressive users,
the AVES-aware DNS server can potentially be extended to
allocate the available session creation capacity more fairly
by scheduling requests based on the initiators’ and respon-
ders’ identities. This way, an initiator or a responder (e.g.
a popular web server) cannot occupy all resources and pre-
vent other normal users from opening sessions. Currently,
our implementation simply limits the peak rate at which
sessions can be opened to each responder.

To address the second question, although AVES provides
in-bound connectivity, it does not fully expose reusable-
IP hosts and attacking them is somewhat more difficult.
We have disabled the zone transfer [15] function of the
AVES-aware DNS server to prevent malicious users from
obtaining host names. In addition, to prevent scanning of
host names, our implementation ignores and penalizes a re-
quester that queries for host names that do not exist in our
database. Without knowing any host name, the only op-
portunity for an attacker to connect to a reusable-IP host is
to transmit packets to a waypoint during the time it is in a
wait state. To lower the chance of this succeeding, our way-
point daemon monitors for in-coming packets with source

addresses that it has no state for while it is not in a wait
state and reject all packets from these sources for 3 hours.

Finally, an attacker may hope to cause waypoints to mis-
behave by sending malicious packets to a waypoint while it
is in a wait state. However, we have designed the wait state
algorithm such that these malicious packetscannotcause a
waypoint to mis-behave, theycannotprevent a legitimate
initiator from connecting to the correct responder. The rea-
son is that the wait state period is fixed and does not end
simply because a malicious new initiator has arrived. The
rejection algorithm is also conservatively designed to make
sure all admission control violations are caught even in the
presence of malicious packets.

6.3 Scalability

Because AVES is optimized for deployment, its scalabil-
ity is a key concern. First, on the control path, since the
AVES-aware DNS server can be replicated easily, DNS
query processing should not present scalability problems.
For intranet deployment, when local DNS server upgrades
are possible, there is no protocol imposed limit on the rate
at which sessions can be opened, and we have shown that a
Linux PC waypoint can process thousands of requests per
second. However, if the delayed binding technique is used,
the rate at which the system can accept sessions is limited
by the protocol. For our prototype system, 25 sessions can
be accepted per second. Under such constraints, AVES
should not be used to serve a busy web server. Note that
this session acceptance rate limitdoes notreduce the con-
nectivity achievable by the system as stated in Section 4.

On the data path, the scalability concern is whether the
service provider’s waypoints can handle the data traffic
from initiators. Our experiments have demonstrated that
our un-tuned implementation of AVES achieves a reason-
able level of performance. With the advances in tera-bit
class router technologies, we believe the data path oper-
ations can be performed at very high-speed. An alterna-
tive approach is to harness the resources of the NAT gate-
ways of AVES subscribers, and use these NAT gateways as
waypoints to relay subscribers’ traffic. This way, the num-
ber of waypoints increases with the number of AVES sub-
scribers, ensuring scalability. Although our software can
be extended easily to support this service model, it intro-
duces several new problems. Since waypoints are no longer
owned by a trusted service provider, it is not clear what type
of security protection can be achieved. Also, because way-
points can no longer be assumed to be always-on, maintain-
ing the set of waypoints dynamically and providing fault
tolerance are important problems to be addressed.

6.4 Potential Extensions

IPv6 Support – Our implementation currently does not
support IPv6 header conversion, this is an important ex-
tension that is needed.



Coexisting with Ingress Filtering – Consider the exam-
ple in Figure 4 again. In step 5,R is effectively spoofing
IPW. This is done for simplicity and performance reasons.
Routers that implement ingress filtering [5] will drop such
packets. AVES can easily be enhanced to work with ingress
filtering by makingR tunnel the packet toW, and letW for-
ward the packet toA. The disadvantage is that the load on
W is increased.
Coexisting with IPsec– To make NAT IPsec-compatible,
RSIP [2] has recently been proposed in the IETF. In or-
der for AVES to be compatible with IPsec, packet content
must not be altered in transit. This can be achieved if the
responder is made aware of the fact that it is being virtual-
ized by a waypoint. This idea is in-spirit similar to that in
RSIP. Using the example in Figure 4 again, the waypoint
can generate the packet[IPW! IPR[IPA! IPW]] (step 2),Rcan
forward the packet[IP0

R! IP0

B[IPA! IPW]] (step 3), and the re-
sponder itself can generate the packet[IP0

B! IP0

R[IPW ! IPA]]

(step 4). The reusable-IP responder now needs to be heav-
ily modified, although there are some incentives to do so.
Connectivity for Non-IP Initiators – AVES is designed to
solve the connectivity problem of cases (a) and (b) in Ta-
ble 1. Since other cases are reducible to either case (a) or
(b), AVES functions correctly in all cases. However, be-
cause AVES perceives all non-IP initiators belonging to the
same non-IP network as a single IP initiator (since they are
masked by their NAT or NAT-PT gateway), the connectiv-
ity provided by AVES to each individualnon-IP initiator
is correspondingly reduced. Precisely, withN IP addresses
allocated for AVES waypoints,eachnon-IPnetworkcan si-
multaneously reach up toN non-IP responders. Although
the connectivity is reduced, it is important to realize that
this is perhaps the best one can achieve if the initiatingnon-
IP network has no incentive to make any upgrade. If up-
grading is acceptable, higher connectivity for these cases
can be achieved by extending the NAT or NAT-PT gate-
ways to implement a more sophisticated solution such as
TRIAD [3] or IPNL [6]. A discussion on TRIAD and IPNL
can be found in Section 7.

7 Related Work

In this section, we first review some well known partial
work-arounds to cope with the lack of in-bound connectiv-
ity. Then we discuss a solution that is currently proposed
in the IETF. Finally, we discuss other related work that are
not directly addressing the in-bound connectivity problem.

A common work-around for the lack of in-bound con-
nectivity is to forward a port number of the NAT gateway
to a specific host inside the reusable-IP network. For exam-
ple, in-coming traffic to port 23 (i.e.,telnet) of the NAT
gateway can be blindly redirected to port 23 of a particular
reusable-IP host. With this transport layer work-around, al-
though more than one reusable-IP host is reachable, no two
reusable-IP hosts can offer the same service (e.g. no two

reusable-IP host can simultaneously support port 22ssh

login), thus unacceptable connectivity is provided. Tedious
per application manual configurations are also required.

A related technique is to take advantage of a new type
of DNS resource record proposed in [9], called the SRV re-
source record, which can specify the port number of a ser-
vice. When both the service providerandthe client support
DNS SRV, the client can retrieve both the IP address of the
host that is offering the service and the exact port number
it should use to use the service. Suppose the port num-
ber binding can be dynamically assigned by a NAT gate-
way, then better in-bound connectivity to non-IP hosts can
be achieved than port number forwarding. Unfortunately
most applications and operating systems today do not sup-
port this feature.

Another work-around exists for UDP communication.
Assume both the initiator and the responder are behind
NAT gateways. The idea is to have both the initiator
and the responder contact an IP server to exchange their
NAT gateways’ IP addresses, then both initiator and re-
sponder simultaneously sendeach other UDP packets with
the same source and destination port numbers. Assum-
ing the NAT gateways do not alter the source port num-
bers of these packets, bi-directional communication can be
achieved. This work-around has been applied to some net-
worked games [12]. Note that this scheme only works for
UDP, requires a third party connection broker, and both
parties must be actively involved, which is not suitable for
client-server applications.

Another possibility is to insert a globally unique host
name into packets so that a NAT gateway can dynamically
determine the destination of a packet by looking up the host
name. Host Identity Payload [17], proposed in the IETF,
may be used for this purpose. Existing IP hosts or edge
routers must however be modified to insert such host names
into packets. With HTTP/1.1 [7], it is possible to embed
the name of the destination in the HTTP header. This tech-
nique has been used to perform HTTP virtual hosting. This
is however not a general solution for applications that are
not based on HTTP.

Recently, a solution based on the SOCKS protocol has
been proposed in the IETF [14]. The idea is that, when
an application performs a DNS lookup for a responder, a
“fake” IP address (e.g. 0.0.0.1) is returned to the applica-
tion. When the application actually makes a socket call to
communicate with the “fake” IP address, the SOCKS li-
brary on the initiator intercepts the call and connects to the
SOCKS server on the responder’s NAT gateway. The DNS
name of the responder is communicated to the SOCKS
server, and the SOCKS server connects to the real respon-
der. Data packets are then copied between the two spliced
connections at the NAT gateway. The downside of this
scheme is that existing IP hosts need to be upgraded. It
is conceivable that the initiator-side’s SOCKS processing
can be pushed to the initiator’s edge router; in that case,



existing edge routers need to be upgraded.
Next we discuss two on-going research projects that

are closely related to AVES. In [3], Cheritonet al. pro-
pose a solution called TRIAD that can solve the IP ad-
dress scarcity problem. TRIAD makes it possible to ex-
pand the Internet by arbitrarily connecting an unlimited
number of IP network realms, each with its own 32-bit
address space. TRIAD uses DNS names rather than ad-
dresses for global identification. During DNS name reso-
lution, a sort of realm-to-realm source route is computed.
A simple “shim” protocol header is added to every packet
to carry this realm-to-realm source route to assist routing
across multiple realms.

IPNL [6] is another recent proposal to provide an al-
ternative to IPv6. IPNL also uses DNS names as global
identifiers and allows multiple IP realms to be connected.
However, rather than allowing IP realms to be connected
arbitrarily as in TRIAD, IPNL allows IP realms to be or-
ganized hierarchically, with a single global “middle realm”
and many smaller realms connected to the “middle realm”.
This allows IPNL to have better routing efficiency com-
pared to TRIAD. IPNL introduces two extra levels of op-
tional headers to permit communication across realms. To
communicate, the initial packet contains the DNS names
of the source and the destination. As the packet traverses
the realms, various addresses are resolved and stored in
the packet headers. These addresses are then used for fast
packet forwarding and the DNS names can be omitted.

While the goal of TRIAD and IPNL is to provide an al-
ternative to IPv6, the goal of AVES is to maintain connec-
tivity between today’s IP Internet and emerging networks
of IPv6 and reusable-IP address spaces. In contrast to
AVES, TRIAD and IPNL only allows hosts within realms
running those respective protocols to communicate with
each other. However, unlike TRIAD, AVES cannot route
packets over an arbitrary number of IP networks, nor can
AVES achieve the level of connectivity of TRIAD or IPNL.
Nevertheless, we believe that maintaining connectivity be-
tween existing IP hosts and IPv6 or reusable-IP hosts is an
important problem, therefore the trade-off is justified.

8 Summary

The main contribution we make in this paper is that we
propose a waypoint service called AVES that can provide
high connectivity from IP hosts to IPv6 or reusable-IP hosts
without consuming many IP addresses or changing exist-
ing IP hosts and IP network routers. AVES is optimized
for deployability and can be deployed easily as a 3rd-party
network service. We have implemented and deployed a
prototype system at CMU, and have received very posi-
tive feedbacks from our subscribers. Further information
on AVES can be found athttp://www.cs.cmu.edu/~
eugeneng/research/aves/.
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