Global Network Positioning: A New Approach to Network Distance Prediction

Tze Sing Eugene Ng
Department of Computer Science
Carnegie Mellon University
New Challenges

• Large-scale distributed services and applications
 – Napster, Gnutella, End System Multicast, etc
• Large number of configuration choices
• \(K \) participants \(\Rightarrow O(K^2) \) e2e paths to consider
New Challenges

- Large-scale distributed services and applications
 - Napster, Gnutella, End System Multicast, etc
- Large number of configuration choices
- \(K \) participants \(\Rightarrow O(K^2) \) e2e paths to consider
New Challenges

- Large-scale distributed services and applications
 - Napster, Gnutella, End System Multicast, etc
- Large number of configuration choices
- K participants $\Rightarrow O(K^2)$ e2e paths to consider
New Challenges

- Large-scale distributed services and applications
 - Napster, Gnutella, End System Multicast, etc
- Large number of configuration choices
- K participants $\Rightarrow O(K^2)$ e2e paths to consider
Role of Network Distance Prediction

- On-demand network measurement can be highly accurate, but
 - Not scalable
 - Slow
- Network distance
 - Round-trip propagation and transmission delay
 - Relatively stable
- Network distance can be predicted accurately without on-demand measurement
 - Fast and scalable first-order performance optimization
 - Refine as needed
Applying Network Distance

- Napster, Gnutella
 - Use directly in peer-selection
 - Quickly weed out 95% of likely bad choices
- End System Multicast
 - Quickly build a good quality initial distribution tree
 - Refine with run-time measurements

- Key: network distance prediction mechanism must be scalable, accurate, and fast
State of the Art: IDMaps [Francis et al ‘99]

• A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

- A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

• A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

• A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

• A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

- A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

- A network distance prediction service
State of the Art: IDMaps [Francis et al ‘99]

- A network distance prediction service
IDMaps Benefits

- Significantly reduce measurement traffic compared to \((\# \text{ end hosts})^2\) measurements
- End hosts can be simplistic
Challenging Issues

• Scalability
 – Topology data widely disseminated to HOPS servers
 – Requires more HOPS servers to scale with more client queries

• Prediction speed/scalability
 – Communication overhead is $O(K^2)$ for distances among K hosts

• Prediction accuracy
 – How accurate is the “Tracers/end hosts” topology model when the number of Tracers is small?

• Deployment
 – Tracers/HOPS servers are sophisticated; probing end hosts may be viewed as intrusive
Global Network Positioning (GNP)

- Model the Internet as a geometric space (e.g. 3-D Euclidean)
- Characterize the position of any end host with coordinates
- Use computed distances to predict actual distances

- Reduce distances to coordinates
Landmark Operations

Internet
Landmark Operations

- Small number of distributed hosts called Landmarks measure inter-Landmark distances
Landmark Operations

- Small number of distributed hosts called Landmarks
 measure inter-Landmark distances
Landmark Operations

- Small number of distributed hosts called Landmarks measure inter-Landmark distances
- Compute Landmark coordinates by minimizing the overall discrepancy between measured distances and computed distances
 - Cast as a generic multi-dimensional global minimization problem
Landmark Operations

- Small number of distributed hosts called Landmarks measure inter-Landmark distances
- Compute Landmark coordinates by minimizing the overall discrepancy between measured distances and computed distances
 - Cast as a generic multi-dimensional global minimization problem
Landmark Operations

- Landmark coordinates are disseminated to ordinary end hosts
 - A frame of reference
 - e.g. (2-D, \((L_1,x_1,y_1)\), \((L_2,x_2,y_2)\), \((L_3,x_3,y_3)\))
Ordinary Host Operations

Internet

L₁
L₂
L₃

(x₁, y₁)
(x₂, y₂)
(x₃, y₃)

x
y
Ordinary Host Operations

- Each ordinary host measures its distances to the Landmarks, Landmarks just reflect pings
Ordinary Host Operations

- Each ordinary host measures its distances to the Landmarks. Landmarks just reflect pings.
• Each ordinary host measures its distances to the Landmarks. Landmarks just reflect pings.
• Ordinary host computes its own coordinates relative to the Landmarks by minimizing the overall discrepancy between measured distances and computed distances.
 – Cast as a generic multi-dimensional global minimization problem.
Ordinary Host Operations

- Each ordinary host measures its distances to the Landmarks. Landmarks just reflect pings.
- Ordinary host computes its own coordinates relative to the Landmarks by minimizing the overall discrepancy between measured distances and computed distances.
 - Cast as a generic multi-dimensional global minimization problem.
GNP Advantages Over IDMaps

• High scalability and high speed
 – End host centric architecture, eliminates server bottleneck
 – Coordinates reduce $O(K^2)$ communication overhead to $O(K^*D)$
 – Coordinates easily exchanged, predictions are locally and quickly computable by end hosts

• Enable new applications
 – Structured nature of coordinates can be exploited

• Simple deployment
 – Landmarks are simple, non-intrusive (compatible with firewalls)
Evaluation Methodology

- 19 Probes we control
 - 12 in North America, 5 in East Asia, 2 in Europe
- Select IP addresses called Targets we do not control

- Probes measure
 - Inter-Probe distances
 - Probe-to-Target distances
 - Each distance is the minimum RTT of 220 pings
Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be Landmarks, and use the rest for evaluation
Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be Landmarks, and use the rest for evaluation
Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be Landmarks, and use the rest for evaluation
Evaluation Methodology (Cont’d)

- Choose a subset of well-distributed Probes to be Landmarks, and use the rest for evaluation
Evaluation Methodology (Cont’d)

- Choose a subset of well-distributed Probes to be Landmarks, and use the rest for evaluation
Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be Landmarks, and use the rest for evaluation
Computing Coordinates

- Multi-dimensional global minimization problem
 - Will discuss the objective function later
- Simplex Downhill algorithm [Nelder & Mead ‘65]
 - Simple and robust, few iterations required
Computing Coordinates

- Multi-dimensional global minimization problem
 - Will discuss the objective function later
- Simplex Downhill algorithm [Nelder & Mead ’65]
 - Simple and robust, few iterations required
Computing Coordinates

- Multi-dimensional global minimization problem
 - Will discuss the objective function later
- Simplex Downhill algorithm [Nelder & Mead ’65]
 - Simple and robust, few iterations required
Computing Coordinates

• Multi-dimensional global minimization problem
 – Will discuss the objective function later
• Simplex Downhill algorithm [Nelder & Mead ’65]
 – Simple and robust, few iterations required
Computing Coordinates

• Multi-dimensional global minimization problem
 – Will discuss the objective function later
• Simplex Downhill algorithm [Nelder & Mead ’65]
 – Simple and robust, few iterations required
Computing Coordinates

- Multi-dimensional global minimization problem
 - Will discuss the objective function later
- Simplex Downhill algorithm [Nelder & Mead ’65]
 - Simple and robust, few iterations required
Computing Coordinates

- Multi-dimensional global minimization problem
 - Will discuss the objective function later
- Simplex Downhill algorithm [Nelder & Mead ’65]
 - Simple and robust, few iterations required
Computing Coordinates

• Multi-dimensional global minimization problem
 – Will discuss the objective function later
• Simplex Downhill algorithm [Nelder & Mead ’65]
 – Simple and robust, few iterations required
Data Sets

Global Set
• 19 Probes
• 869 Targets uniformly chosen from the IP address space
 – biased towards always-on and globally connected nodes
• 44 Countries
 – 467 in USA, 127 in Europe, 84 in East Asia, 39 in Canada,
 ..., 1 in Fiji, 65 unknown

Abilene Set
• 10 Probes are on Abilene
• 127 Targets that are Abilene connected web servers
Performance Metrics

- **Directional relative error**
 - Symmetrically measure over and under predictions

\[
\frac{\text{predicted} - \text{measured}}{\min(\text{measured}, \text{predicted})}
\]

- **Relative error** = abs(Directional relative error)

- **Rank accuracy**
 - % of correct prediction when choosing some number of shortest paths
GNP vs IDMaps (Global)
GNP vs IDMaps (Global)

![Graph showing directional relative error vs measured path distances. The graph compares GNP with 15 landmarks in 7D to IDMaps with 15 tracers.]

T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University
Why the Difference?

- IDMaps tends to heavily over-predict short distances
- Consider (measured ≤ 50ms)
 - 22% of all paths in evaluation
 - IDMaps on average over-predicts by 150%
 - GNP on average over-predicts by 30%
Why the Difference?

- IDMaps tends to heavily over-predict short distances
- Consider (measured ≤ 50ms)
 - 22% of all paths in evaluation
 - IDMaps on average over-predicts by 150%
 - GNP on average over-predicts by 30%
GNP vs IDMaps (Abilene)

Cumulative Probability vs Relative Error

- GNP, 9 Landmarks, 8D
- IDMaps, 9 Tracers
GNP vs IDMaps (Abilene)
GNP vs IDMaps (Abilene)
Basic Questions

- How to measure model error?
- How to select Landmarks?
- How does prediction accuracy change with the number of Landmarks?
- What is geometric model to use?
- How can we further improve GNP?
Measuring Model Error

\[
error = \sum (f (d_{ij}, \hat{d}_{ij}))
\]

- \(d_{ij}\) is measured distance
- \(\hat{d}_{ij}\) is computed distance
- \(f (d_{ij}, \hat{d}_{ij})\) is an error measuring function
Error Function

- Squared error

\[f(d_{ij}, \hat{d}_{ij}) = (d_{ij} - \hat{d}_{ij})^2 \]

- May not be good because one unit of error for short distances carry the same weight as one unit of error for long distances
More Error Functions

- Normalized error

\[
f(d_{ij}, \hat{d}_{ij}) = \left(\frac{d_{ij} - \hat{d}_{ij}}{d_{ij}} \right)^2
\]

- Logarithmic transformation

\[
f(d_{ij}, \hat{d}_{ij}) = \left(\log(d_{ij}) - \log(\hat{d}_{ij}) \right)^2
\]
Comparing Error Functions

<table>
<thead>
<tr>
<th></th>
<th>6 Landmarks</th>
<th>15 Landmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squared Error</td>
<td>1.03</td>
<td>0.74</td>
</tr>
<tr>
<td>Normalized Error</td>
<td>0.74</td>
<td>0.50</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>0.75</td>
<td>0.51</td>
</tr>
<tr>
<td>Transformation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Selecting N Landmarks

- Intuition: Landmarks should be well separated
- Method 1: Clustering
 - start with 19 clusters, one probe per cluster
 - iteratively merge the two closest clusters until there are N clusters
 - choose the center of each cluster as the Landmarks
- Method 2: Find “N-Medians”
 - choose the combination of N Probes that minimizes the total distance from each not chosen Probe to its nearest chosen Probe
- Method 3: Maximum separation
 - choose the combination of N Probes that maximizes the total inter-Probe distances
K-Fold Validation

- Want more than just one set of \(N \) Landmarks to reduce noise
- Select \(N+1 \) Landmarks based on a criterion
- Eliminate one Landmark to get \(N \) Landmarks
- i.e., \(N+1 \) different sets of \(N \) Landmarks that are close to the selection criterion
Comparing Landmark Selection Criteria

(6 Landmarks)

<table>
<thead>
<tr>
<th></th>
<th>Clustering</th>
<th>N-Medians</th>
<th>Max sep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP</td>
<td>0.74</td>
<td>0.78</td>
<td>1.04</td>
</tr>
<tr>
<td>IDMaps</td>
<td>1.39</td>
<td>1.43</td>
<td>5.57</td>
</tr>
</tbody>
</table>
Comparing Landmark Selection Criteria
(9 Landmarks)

<table>
<thead>
<tr>
<th></th>
<th>Clustering</th>
<th>N-Medians</th>
<th>Max sep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP</td>
<td>0.68</td>
<td>0.7</td>
<td>0.83</td>
</tr>
<tr>
<td>IDMaps</td>
<td>1.16</td>
<td>1.09</td>
<td>1.74</td>
</tr>
</tbody>
</table>
Landmark Placement Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Max</th>
<th>Min</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP</td>
<td>0.94</td>
<td>0.64</td>
<td>0.74</td>
<td>0.069</td>
</tr>
<tr>
<td>IDMaps</td>
<td>1.84</td>
<td>1.0</td>
<td>1.29</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Number of Landmarks/Tracers

Cumulative Probability

Relative Error

GNP, 15 Landmarks, 7D
GNP, 12 Landmarks, 7D
GNP, 9 Landmarks, 5D
GNP, 6 Landmarks, 5D
IDMaps, 15 Tracers
IDMaps, 12 Tracers
IDMaps, 9 Tracers
IDMaps, 6 Tracers
What Geometric Model to Use?

- Spherical surface, cylindrical surface
 - No better than 2-D Euclidean space
- Euclidean space of varying dimensions
Euclidean Dimensionality

Cumulative Probability vs. Relative Error

- 15 Landmarks, 9D
- 15 Landmarks, 8D
- 15 Landmarks, 7D
- 15 Landmarks, 6D
- 15 Landmarks, 5D
- 15 Landmarks, 4D
- 15 Landmarks, 3D
- 15 Landmarks, 2D
Why Additional Dimensions Help?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Why Additional Dimensions Help?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2-dimensional model
Why Additional Dimensions Help?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2-dimensional model

3-dimensional model
Reducing Measurement Overhead

- Hypothesis: End hosts do not need to measure distances to all Landmarks to compute accurate coordinates.
Reducing Measurement Overhead

- Hypothesis: End hosts do not need to measure distances to all Landmarks to compute accurate coordinates.

![Diagram showing end hosts and landmarks](image)
Reducing Measurement Overhead

- Hypothesis: End hosts do not need to measure distances to all Landmarks to compute accurate coordinates
Reducing Measurement Overhead

- Hypothesis: End hosts do not need to measure distances to all Landmarks to compute accurate coordinates.

![Diagram showing end host T and various landmarks P1, P2, P3, P4, P5, P6, with coordinates (x', y')](image-url)
Using 9 of 15 Landmarks in 8 Dimensions
Using 9 of 15 Landmarks in 8 Dimensions
Triangular Inequality Violations
Removing Triangular Inequality Violations

• Remove Target (t) from data if
 – t in \{a, b, c\}
 – \frac{(a,c)}{((a,b)+(b,c))} > \text{threshold}

• Try two thresholds
 – 2.0; 647 of 869 Targets remain
 – 1.5; 392 of 869 Targets remain
 – Note: at 1.1, only 19 of 869 Targets remain!!!
Removing Triangular Inequality Violations

![Graph showing cumulative probability against relative error. The graph has a red line labeled "Original data."]
Removing Triangular Inequality Violations

![Graph showing cumulative probability against relative error]

T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University
Removing Triangular Inequality Violations

Cumulative Probability vs. Relative Error

- Original data
- > 2.0 removed
- > 1.5 removed
Removing Triangular Inequality Violations

Cumulative Probability vs. Relative Error

- Original data
- > 2.0 removed
- > 1.5 removed
- Random removal

T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University
Why Not Use Geographical Distance?
Summary

- Network distance prediction is key to performance optimization in large-scale distributed systems
- GNP is scalable
 - End hosts carry out computations
 - $O(K*D)$ communication overhead due to coordinates
- GNP is fast
 - Distance predictions are fast local computations
- GNP is accurate
 - Discover relative positions of end hosts
Future Work

• Understand the capabilities and limitations of GNP
• Can we learn about the underlying topology from GNP?
• Is GNP resilient to network topology changes?
• Can we reduce the number of measured paths while not affecting accuracy?
• Design better algorithms for Landmark selection
• Design more accurate models of the Internet
• Apply GNP to overlay network routing problems
• Apply GNP to geographic location problems