A Waypoint Service Approach to Connect Heterogeneous Internet Address Spaces

T. S. Eugene Ng Hui Zhang Ion Stoica
Carnegie Mellon University UC Berkeley
The Problem in a Nutshell

32-bit IP (IPv4) address space is too small

Internet becomes a heterogeneous network

Bi-directional connectivity between hosts is lost
Outline

- Formulate the problem
- Solution design goals
- Proposed solution: AVES
- Implementation and performance
The Original IP (IPv4) Internet

- Every host has a globally unique IP address
- Bi-directional connectivity is a fundamental property
32-Bit IP Address Space Is Too Small

- Upper bound: 31% of IP address space is covered by aggregated routing table
- Poor utilization
- Increasing demand
 - Always-on access (e.g., DSL, cable modem)
 - Internet enabled devices (e.g., mobile phones, PDAs)

- Fear of exhaustion leads to aggressive conservation
- IP addresses are increasingly difficult to obtain
Two Trends

• Deploy networks using reusable-IP addresses
 – a.k.a. private-IP addresses
 – IP network prefixes 10/8, 172.16/12, 192.168/16
 – not globally unique, not routable
 – hosts and routers remain running IP

• Deploy networks using IPv6 addresses
 – enormous 128-bit address space
 – globally unique
 – hosts and routers run IPv6
Using Reusable-IP Addresses

- NAT (Network Address Translation) gateway may have only one IP address
 - shared by reusable-IP network hosts
- NAT provides reusable-IP to IP connectivity
The Problem with NAT

- Bob has no globally unique IP address and so Alice cannot directly address Bob

\[IP_{Alice} \rightarrow IP_{NAT} \]

NAT cannot provide bi-directional connectivity
Even Worse

- No connectivity between Alice and Bob at all!
Using IPv6 Addresses

- IPv6 can be fully compatible with IP
- Key: every IPv6 host must consume a globally unique IPv4 address!
- In reality, many IPv6 networks will be IPv6-only
 - connect to IP Internet via NAT-Protocol Translation (PT) gateway
 - NAT-PT has the same problem as NAT
Heterogeneous Internet Address Spaces

- NAT and NAT-PT cannot provide bi-directional connectivity

- Key problems: IP to reusable-IP and IP to IPv6 connectivity
 - all other cases reduce to these

- For simplicity, only consider IP to reusable-IP connectivity
Solution Design Goals

• Should provide general connectivity
Solution Design Goals

- Should provide general connectivity
- Should be application independent
Solution Design Goals

- Should provide general connectivity
- Should be application independent
- Should not require changes to existing IP hosts and IP network routers
 - there is no incentive for them to make changes

\[IP_{Alice} \rightarrow IP_{NAT} [IP_{Alice} \rightarrow IP'_{Bob}] \]
Key Constraints

• Without IP addresses, reusable-IP hosts cannot be addressed by IP hosts
• IP addresses are a scarce resource
• Existing IP hosts and routers will not change

Must efficiently share IP addresses among many reusable-IP hosts simultaneously

Key Insight:
Design a 3rd-party service provider-based solution
Proposed Solution:

AVES: Address Virtualization Enabling Service
AVES Overview

- Service provider deploys IP agents called waypoints
- Virtualize reusable-IP hosts by the waypoints
- Update customer NAT gateways
AVES Overview (Continued)

- Each initiator has its own unique virtual map
 - Each initiator can connect to 4 reusable-IP hosts simultaneously

![Diagram of AVES overview with Waypoints and Reusable-IP Networks]
Data Path Operations

Step	Packet sent
1 | \[IP_A \rightarrow IP_W \]
2 | \[IP_W \rightarrow IP_R \] \[IP_A \rightarrow IP'_B \]
3 | \[IP_A \rightarrow IP'_B \]
4 | \[IP'_B \rightarrow IP_A \]
5 | \[IP_W \rightarrow IP_A \]
Control Path Operations

- How to dynamically create the reusable-IP host to waypoint virtual mapping for each initiator?
- Fundamentally a reusable-IP host still needs to be identified somehow before communications
- Use a name to uniquely identify a reusable-IP host
- Create waypoint mapping during name resolution
DNS Is Not the Perfect Answer

- Want the identity of the initiator during DNS name resolution
- Recursive DNS name lookup hides this identity
Idealistic Solutions

- Modify the DNS protocol to carry the initiator’s IP address in a DNS query
 - also useful for DNS based load balancing
- Run local caching-only name servers on end hosts
 - has performance benefit
- Use an alternative naming system
What Can We Do Today?

• In some specific deployment scenarios like Intranet deployment the right incentives exist to overcome the initiator identity problem

• When the incentives do not exist, trade performance for deployability
Scenario 1 -- Intranet Deployment

• CMU can deploy AVES so that people working at school can initiate connections back to their home computers behind NAT gateways

• Solution: CMU will upgrade local DNS servers to become AVES-aware

• Since local DNS servers interact directly with initiators, their identities can be known
Scenario 1 -- Intranet Deployment

Step	**Action**
1 | DNS query for B |
2 | SETUP message \((IP_A, IP_R, IP'_B)\) |
3 | ACCEPT message |
4 | DNS reply for B \((IP_W)\)
Scenario 2 -- General Deployment

- Cannot upgrade the local DNS servers used by initiators

- Solution: Delayed binding
 - serialize requests at waypoint
 - trades performance for deployability
Delayed Binding

Reuseable-IP Network
bob-home.avesnet.net

AVES-aware DNS servers
for avesnet.net

IP Internet

[IP_A \rightarrow IP_W]
Delayed Binding Is Imperfect

• Significantly lowers the maximum rate at which names can be resolved
 – e.g. with 50 waypoint IP addresses and a wait period of 2 seconds, 25 host-to-host sessions can be created per second

• This is what we have implemented and deployed
 – quite usable so far
 – see our paper for full details
Connectivity Properties

• Using N IP addresses, every IP initiator can simultaneously reach up to N reusable-IP hosts
• Every reusable-IP host can be reached by an unlimited number of IP hosts
Deployability Properties

- Waypoints can be easily deployed
- NAT gateways need to be extended to process packets
 - necessary and the right incentive exists
- No change to existing IP hosts or IP network routers
- Intranet deployment
 - upgrading existing local DNS servers provide best performance
- General deployment
 - with delayed binding, no existing DNS server upgrade necessary, but performance is reduced significantly
Implementation

- AVES DNS Server: Modified named running on Linux
- AVES Waypoint: Linux user-level daemon (with delayed binding)
- AVES NAT: Linux user-level daemon

Diagram:
- AVES daemon
 - NETLINK_FIREWALL Socket
 - Raw socket
 - User Kernel
 - Input firewall filter
 - IP
Performance Measurement Testbed

Initiator
400 MHz Pentium II
128 MB SDRAM
(aves DNS runs here)

Waypoint
866 MHz Pentium III Xeon
512 MB Rambus memory

Responder
266 MHz Pentium II
64 MB SDRAM

NAT Gateway
866 MHz Pentium III Xeon
512 MB Rambus memory

100baseTX Ethernet Hub

All links are 100baseTX Ethernet
Data Path Performance

- Waypoint
- NAT in-bound
- NAT out-bound

AVES MD5
AVES protocol
Overhead

- 36 Bytes
- 1464 Bytes

CPU Cycles vs. Waypoint and NAT in-bound/out-bound.
Data Path Performance

- Theoretical maximum throughput 233Mbps with 1464 byte UDP packets
 - probably higher when overhead is amortized over a train of packets
- End-to-end throughput experiments
 - 96 Mbps with 1464 byte UDP packets
 - 80 Mbps with 1464 byte TCP packets
 - 41 Mbps with 48 byte TCP packets
 - could not get result for 48 byte UDP due to problem with Intel EtherExpress Pro driver
Prototype System

- Registered domain name avesnet.net
- 50 waypoint IP addresses assigned to two PCs
- One AVES-aware DNS server
- 10 trial customers
- Applications tested: telnet, ssh, ftp, scp, NFS, httpd, X windows, VNC, ping, traceroute
Summary

• AVES can provide high connectivity from IP hosts to reusable-IP or IPv6 hosts without
 – consuming many IP addresses
 – changing existing IP hosts or IP network routers
• Can provide connectivity even when both initiator and responder are behind NAT or NAT-PT
 – more sophisticated proposed solutions (IPNL, TRIAD) exist
• Optimized for deployability
Summary (Continued)

• Explore different ways of using 3rd-party agents to add functionality to the difficult to change Internet infrastructure
 – many previous application level services: web caches, CDN
 – AVES provides a fundamental addressing service

• http://www.avesnet.net
 – online demo
 – source code (really really soon)