Recursive Definitions

• Given a Scott-domain D, we can write equations of the form:

$$ f = E_f $$

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and f.

• Example: let D be the domain of Scheme values. Then

$$ \text{fact} = (\lambda (n) (\text{if} \ (\text{zero?} \ n) \ 1 \ (* \ n \ (\text{fact} \ (- \ n \ 1)))))) $$

is such an equation.

• Such equations are called recursive definitions.
Solutions to Recursion Equations

Given an equation:
\[f = E_f \]
what is a solution? All of the constants and operations in \(E_f \) are known except \(f \).

A solution is any function \(f^* \) such that
\[f^* = E_{f^*} \]
is a solution. But there may be more than one solution. We want to select the “best” solution. Note that \(f^* \) is an element of whatever domain \(D^* \) is the type of \(E_f \). In the most common case, it is \(D \rightarrow D \), but it can be \(D, D^k \rightarrow D, \ldots \). The best solution (the one that always exists, is unique, and is computable) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation $f = E_f$?

We will construct the least solution and prove it is a solution!

Since the domain D^* for f is a Scott-Domain, it has a least element bot_{D^*}. Hence, bot_{D^*} approximates every solution to the equation $f = E_f$.

Now form the function $F: D^* \rightarrow D^*$ defined by

$$F(f) = E_f$$

or equivalently,

$$F = \lambda f . E_f$$

Consider the sequence $S: \text{bot}_{D^*}, F(\text{bot}_{D^*}), F(F(\text{bot}_{D^*})), \ldots, F^k(\text{bot}_{D^*}), \ldots$

Claim: S is an ascending chain (chain for short) in $D^* \rightarrow D^*$.

Proof. $\text{bot}_{D^*} \leq F(\text{bot}_{D^*})$ by the definition of Bot_{D^*}. If $M \leq N$, then $F(M) \leq F(N)$ by monotonicity. Hence, $F^k(\text{bot}_{D}) \leq F^{k+1}(\text{bot}_{D})$ for all k. Q.E.D.

Claim: S has a least upper bound f^*

Proof. Trivial. S is a chain in D^* and hence must have a least upper bound because D^* is a Scott-Domain.
Proving f^* is a fixed point of F

Must show: $F(f^*) = f^*$ where $F = \lambda f \cdot E_f$.

Claim: By definition $f^* = \bigcup F^k(\text{bot}_{D^*})$. Since F is continuous

$$F(f^*) = F(\bigcup F^k(\text{bot}_{D^*}))$$

$$= \bigcup F^{k+1}(\text{bot}_{D^*}) \quad \text{(by continuity)}$$

$$= \bigcup F^k(\text{bot}_{D^*}) \quad \text{(since } \text{bot}_{D^*} \leq F(\text{bot}_{D^*}))$$

$$= f^*$$

Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step justified by continuity.
Examples

Look at factorial in detail using DrScheme.
How Can We Compute f^* Given F?

Need to construct $F^\infty(\bot)$ from F. Let $Y(F) = f^* = F^\infty(\bot)$.

Can we write code for Y?

Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.

- Preliminary attempt:
 $$(\lambda x. F(x x)) (\lambda x. F(x x))$$

- Reduces to (in one step):
 $$F ((\lambda x. F(x x)) (\lambda x. F(x x)))$$

- Reduces to (in k steps):
 $$F^k ((\lambda x. F(x x)) (\lambda x. F(x x)))$$
What Is the Code for \mathbf{Y}?

$$\lambda F. \ (\lambda x. \ F(x \ x)) \ (\lambda x. \ F(x \ x))$$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!
- Why not? What about divergence? Assume G is a λ-expression defining a functional like FACT
 $$(\lambda F. \ (\lambda x. \ F(x \ x)) \ (\lambda x. \ F(x \ x))) \ G$$
 $$= G((\lambda x. \ G(x \ x)) \ (\lambda x. \ G(x \ x)))$$
 $$= \ldots \ (\text{diverging})$$
What If We Use Call-by-name?

By assumption G must have the form \((\lambda f. (\lambda n. M))\)

\[
(\lambda F. (\lambda x. F(x x)) (\lambda x. F(x x))) \ G \\
= G ((\lambda x. G(x x)) (\lambda x. G(x x))) \\
= (\lambda f. (\lambda n. M)) ((\lambda x. G(x x)) (\lambda x. G(x x))) \\
= (\lambda n. M[x:=(\lambda x. G(x x)) (\lambda x. G(x x))])
\]

If the evaluation M of does not require evaluating an occurrence of f, then x is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition \(f = \lambda n. M\).

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam? Hint: if M is a divergent term denoting a unary function \(\lambda x. Mx\) is an “equivalent” term that is not divergent! (As a concrete example, assume that M is the term \(\Omega\).)