Comp 311
Principles of Programming Languages
Lecture 12
The Semantics of Recursion III & Loose Ends

Corky Cartwright
September 24, 2010
Call-by-value Fixed-Point Operators

Given a recursive definition in a call-by-value language

\[f = E_f \]

where \(E_f \) is an expression constructed from constants in the based data domain \(D \), operations (continuous functions) on \(D \), and \(f \), what does it mean?

- Example: let \(D \) be the domain of Scheme values. Then

\[
\text{fact} = \ (\lambda (n) \ (\text{if} \ (\text{zero?} \ n) \ 1 \ (* \ n \ (\text{fact} \ (- n 1))))))
\]

is such a definition.

In a call-by-name language, the meaning is

\[Y (\lambda (f) E_f) \]

We need to define \(Y_v \)
Solutions to Recursion Equations

Key trick: use η-conversion to delay evaluation.

In the mathematical literature on the λ-calculus, η-conversion is often assumed as an axiom. In models of the λ-calculus, it is typically required to hold.

Definition: η-conversion is the following equation:

$$M = \lambda x . Mx$$

where x is not free in M
What Is the Code for Y_v?

$\lambda F. (\lambda x. \lambda y. F(x x)y) (\lambda x. \lambda y. F(x x)y)$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!

- Let G be some functional $G = \lambda f. \lambda n. M_f$ like FACT for a recursive function definition. G is a value. Then

 $Y_v G \rightarrow (\lambda x. \lambda y. G(x x)y) (\lambda x. \lambda y. G(x x)y) \rightarrow \lambda y. G ((\lambda x. \lambda z. G(x x)z) (\lambda x. \lambda z. G(x x)z)) y$

 is a value.

- Hence, $G(Y_v G) \rightarrow (\lambda n. M_f) [f := Y_v G]$ is a value.

- Moreover,

 $Y_v G = \lambda y. G ((\lambda x. \lambda z. G(x x)z) (\lambda x. \lambda z. G(x x)z)) y = \lambda y. G (Y_v G) y$

 which is the η-conversion of $G(Y_v G)$
Loose Ends

• Meta-errors
• Read the notes!
• rec-let (in notes)