Comp 311
Principles of Programming Languages
Lecture 11
The Semantics of Recursion II

Corky Cartwright
Swarat Chaudhuri
September 16, 2010
Recursive Definitions

• Given a Scott-domain D, we can write equations of the form:
 \[f = E_f \]
 where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and f.

• Example: let D be the domain of Scheme unary functions on numbers. Then
 \[
 \text{fact} = \\
 (\lambda (n) (\text{if} \ (\text{zero?} \ n) \ 1 \ (* \ n \ (\text{fact} \ (- \ n \ 1)))))
 \]
 is such an equation.
Solutions to Recursion Equations

Given an equation:

\[f = E_f \]

what is a solution? All of the constants and operations in \(E_f \) are known except \(f \).

A solution is any function \(f^* \) such that

\[f^* = E_{f^*} \]

is a solution. But there may be more than one solution. We want to select the “best” solution. Note that \(f^* \) is an element of whatever domain \(D^* \) is the type of \(E_f \). In the most common case, it is \(D \to D \), for a domain of values \(D \), but it can be \(D, D^k \to D, \ldots \) The best solution (the one that always exists, is unique, and is computable) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation \(f = E_f \)?

We will construct the least solution and prove it is a solution!

Since the domain \(D^* \) for \(f \) is a Scott-Domain, it has a least element \(\text{bot}_{D^*} \). Hence, \(\text{bot}_{D^*} \) approximates every solution to the equation \(f = E_f \).

Now form the function \(F: D^* \to D^* \) defined by
\[
F(f) = E_f
\]
or equivalently,
\[
F = \lambda f . E_f
\]
Consider the sequence \(S: \text{bot}_{D^*}, F(\text{bot}_{D^*}), F(F(\text{bot}_{D^*})), ..., F^k(\text{bot}_{D^*}), ... \).

Claim: \(S \) is an ascending chain (chain for short) in \(D^* \to D^* \).

Proof. \(\text{bot}_{D^*} \leq F(\text{bot}_{D^*}) \) by the definition of \(\text{bot}_{D^*} \). If \(M \leq N \), then \(F(M) \leq F(N) \) by monotonicity. Hence, \(F^k(\text{bot}_D) \leq F^{k+1}(\text{bot}_D) \) for all \(k \). Q.E.D.

Claim: \(S \) has a least upper bound \(f^* \)

Proof. Trivial. \(S \) is a chain in \(D^* \) and hence must have a least upper bound because \(D^* \) is a Scott-Domain.
Proving \(f^* \) is a fixed point of \(F \)

Must show: \(F(f^*) = f^* \) where \(F = \lambda f . E_f \).

Claim: By definition \(f^* = \bigcup F^k(\text{bot}_{D^*}) \). Since \(F \) is continuous

\[
F(f^*) = F(\bigcup F^k(\text{bot}_{D^*})) \\
= \bigcup F^{k+1}(\text{bot}_{D^*}) \quad \text{(by continuity)} \\
= \bigcup F^k(\text{bot}_{D^*}) \quad \text{(since \(\text{bot}_{D^*} \leq F(\text{bot}_{D^*}) \))} \\
= f^*
\]

Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step justified by continuity.
Examples

Look at factorial in detail using DrScheme.
How Can We Compute f^* Given F?

Need to construct $F^\infty(\bot)$ from F using only abstraction and application. We need to define an operator Y such that:

$$Y(F) = f^* = F^\infty(\bot).$$

Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.

• Preliminary attempt:

$$(\lambda x. F(x x)) (\lambda x. F(x x))$$

• Reduces to (in one step):

$F ((\lambda x. F(x x)) (\lambda x. F(x x)))$

• Reduces to (in k steps):

$F^k ((\lambda x. F(x x)) (\lambda x. F(x x)))$
What Is the Code for Y?

\[\lambda F. (\lambda x. F(x x)) (\lambda x. F(x x)) \]

• Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!

• Why not? What about divergence? Assume \(G \) is a \(\lambda \)-expression defining a functional like \(\text{FACT} \)

\[(\lambda F. (\lambda x. F(x x)) (\lambda x. F(x x))) G \]

\[= G((\lambda x. G(x x)) (\lambda x. G(x x))) \]

\[= \ldots \text{ (divergence forced by CBV)} \]
What If We Use Call-by-name?

By assumption \(G \) must have the form \((\lambda f. (\lambda n. M))\)

\[
(\lambda F. (\lambda x. F(x x)) (\lambda x. F(x x))) \ G
\]

\[
=> (\lambda x. G(x x)) (\lambda x. G(x x)) \quad <**>
\]

\[
=> G \quad <**>
\]

\[
= (\lambda f. (\lambda n. M)) \quad <**>
\]

\[
=> (\lambda n. M[f:=<**>]) \quad <**>
\]

which is a value. If this value \(<**>\) is applied to a value \(k \) and \(M[f:=<**>][n:=k] \) does not require evaluating an occurrence of \(<**>\), then the computation returns a base answer determined by \(M \). Otherwise, \(<**>\) is unwound once, as in the computation above to produce \(<**>\) applied to its argument. If the argument is less than \(k \) (in some well-founded ordering) this process eventually terminates when \(k \) reaches a value that does not force the evaluation of \(<**>\). At this point, the subcomputation \(<**> \ b\) returns a base value and the enclosing computation (not involving recursive calls \(<**>\)) is performed, returning a value. If the top-level application of

Exercise: how can we workaround the divergence problem to create a version of the \(\mathbf{Y} \) operator that works for call-by-value Scheme and Jam? Hint: if \(N \) is a divergent term denoting a unary function, then \(\lambda x. Nx \) is an “equivalent” term that is not divergent (assuming \(x \) does occur in \(N \)).