Comp 311
Principles of Programming Languages
Lecture 12
The Semantics of Recursion III

Corky Cartwright
Swarat Chaudhuri
September 19, 2011
Call-by-value Fixed-Point Operators

Given a recursive definition in a call-by-value language

\[f = E_f \]

where \(E_f \) is an expression constructed from constants in the based data domain \(D \), operations (continuous functions) on \(D \), and \(f \), what does it mean?

Example: let \(D \) be the domain of Scheme values. Then

\[\text{fact} = \]

\[(\lambda (n) \ (\text{if} \ (\text{zero?} \ n) \ 1 \ (* \ n \ (\text{fact} \ (- n 1)))))) \]

is a program defining a function in \(D \to D \).

In a call-by-name language, the meaning of \text{fact} is

\[Y \ (\lambda (f) \ E_f) \]

where \(Y = \)

\[(\lambda (F) \ (\lambda (x) \ (F \ (x \ x))) \ (\lambda (x) \ (F \ (x \ x)))) \]

but this expression diverges using call-by-value beta-reduction.
Formulating Υ_v (Call-by-Value Υ)

Key trick: use η-conversion to delay evaluation.

In the mathematical literature on the λ-calculus, η-conversion is often assumed as an axiom. In models of the λ-calculus, it is typically required to hold.

Definition: η-conversion is the following equation:

$$M = \lambda x. \ M x$$

where x is not free in M.

Examples:

$$y = \Box \lambda x. \ y x$$

$$\lambda y. y = \lambda x. (\lambda y. y) x$$
What Is the Code for Y_v?

$$
\lambda F. (\lambda x. \lambda y. F(x \ x) \ y) (\lambda x. \lambda y. F(x \ x) \ y)
$$

- Recall that application associates to the left: $F(x \ x) \ y = (F(x \ x)) \ y$
- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!

- Let G be some functional $G = \lambda f. \lambda n. M_f$ like FACT for a recursive function definition. G is a value. Then

 $$
 Y_v G \rightarrow (\lambda x. \lambda y. G(x \ x) \ y) (\lambda x. \lambda y. G(x \ x) \ y) \rightarrow
 \lambda y. G ((\lambda x. \lambda z. G(x \ x) \ z) (\lambda x. \lambda z. G(x \ x) \ z)) \ y
 $$

 is a value.

- Hence, $G(Y_v G) \rightarrow (\lambda n. M_f) [f := Y_v G]$ is a value.

- Moreover,

 $$
 Y_v G = \lambda y. G ((\lambda x. \lambda z. G(x \ x) \ z) (\lambda x. \lambda z. G(x \ x) \ z)) \ y =
 \lambda y. G (Y_v G) \ y
 $$

 which is the η-conversion of $G(Y_v G)$.
Loose Ends

• Meta-errors
• Read the notes!
 • Explains how to implement rec-let more thoroughly