Comp 411 Principles of Programming Languages Lecture 13 Eliminating Lambda Using Combinators

Corky Cartwright October 1, 2012

How to Eliminate λ

Goal: devise a few combinators (functions expressed in lambda-notation with no free variables) that enable us to express all λ -expressions without explicitly using λ .

Notation: let $\lambda^* \times M$ denote $\lambda \times M$ converted to a form that eliminates the starred λ . Then

- λ * x.x \rightarrow I (where I = λ x.x)
- λ * x.y \rightarrow K y (where K = λ y. λ x.y)
- λ * x.(M N) \rightarrow S (λ * x.M) (λ * x.N) (where S = λ x. λ y. λ z.(x z)(y z))

Strategy: eliminate λ-abstractions from inside out, one-at a time. Any order works. Transformation can cause exponential blow-up. (Try converting Y.)

Note: I is technically unnecessary since SKK = I