Denotational Semantics

• The primary alternative to *syntactic* semantics is *denotational* semantics. A denotational semantics maps abstract syntax trees to a set of *denotations* (mathematical values like numbers, lists, and functions).

• Simple denotations like numbers and lists are essentially the same mathematical objects as syntactic values: they have simple inductive definitions with exactly the same structure as the corresponding abstract syntax trees.

• But denotations can also be complex mathematical objects like *functions* or *sets*. For example, the denotation for a λ-expression in “pure” (functional) Scheme is a function mapping denotations to denotations—*not* some syntax tree as in a syntactic semantics.
Meta-interpreters

• Denotational semantics is rooted in mathematical logic: the semantics of terms (expressions) in the predicate calculus is defined denotationally by *recursion* on the syntactic structure of terms. The meaning of each term is a value in an mathematical *structure* (as used in first-order logic).

• In the realm of programming languages, purely functional interpreters (defined by pure recursion on the structure of ASTs) constitute a restricted form of denotational definition.
 – The defect is that the output of an actual interpreter is restricted to values that can be characterized syntactically. (How do you output a function?)
 – On the other hand, interpreters naturally introduce a simple form of functional abstraction. A recursive interpreter accepts an extra input, an environment mapping free variables to values, thus defining the meaning of a program expression as a function from environments to values.
 – Syntactic interpreters are *not denotational* because they transform ASTs. A denotational interpreter uses pure structural recursion. To handle the bindings to variables, it cannot perform substitutions; it must maintain an environment of bindings instead.
Meta-interpreters cont.

- Interpreters written in a denotational style are often called *meta*-interpreters because they are defined in a meta-mathematical framework where programming language expressions and denotations are objects in the framework. The definition of the interpreter is a level above definitions of functions in the language being defined.

- In mathematical logic, meta-level definitions are expressed informally as definitions of mathematical functions.

- In program semantics, meta-level definitions are expressed in a convenient functional framework with a semantics that is easily defined and understood using informal mathematics. *Formal* denotational definitions are written in a mathematical meta-language corresponding to some formulation of a *Universal Domain* (a mathematical domain in which all relevant programming language domains can be simply embedded, usually as projections). This material is subject of a graduate level course on domain theory.

- A functional interpreter for language L written in a functional subset of L is called a *meta-circular* interpreter. It really isn't circular because it reduces the meaning of all programs to a single purely functional program which can be understood independently using simple mathematical machinery (inductive definitions over familiar mathematical domains).
Denotational Building Blocks

• Inductively defined ASTs for program syntax. We have thoroughly discussed this topic.

• What about denotations? For now, we will only use simple inductively defined values (without functional abstraction) like numbers, lists, tuples, etc.

• What about environments? Mathematicians like to use functions. An environment is a function from variables to denotations. But environment functions are special because they are *finite*. Software engineers prefer to represent them as lists of pairs binding variables to denotations.

• In “higher-order” languages, functions are data objects. How do we represent them? For now we will use ASTs possibly supplemented by simple denotations (as described above).
Critique of Deferred Substitution Interpreter from Lecture 6

• How did we represent the denotations of λ-expressions (functions) in environments? By their ASTs. Is this implementation correct? No!

• Counterexample: twice

```latex
(let
  ([twice (\lambda (f) (\lambda (x) (f (f x))))])
  [x 5])
  ((twice (\lambda (y) (+ x y))) 0))
```
Evaluate (syntactically)

\[
\begin{align*}
\text{(let} & \quad \text{[(twice}
\quad \text{(λ} (f) \quad (λ \quad (x) \quad (f
\quad (f
\quad x)))])
\quad \text{)} \quad (x
\quad 5)])
\quad \text{([twice} \quad (λ \quad (y) \quad (+
\quad x
\quad y))) \quad 0))
\quad \text{)}
\quad \text{=} \quad \text{)}} \quad \text{=>}
\quad (((λ \quad (f) \quad (λ \quad (x) \quad (f
\quad (f
\quad x)))])
\quad (λ \quad (y) \quad (+
\quad 5
\quad y)))) \quad 0)
\quad \text{)}
\quad \text{=>}
\quad (((λ \quad (x)
\quad (((λ \quad (y) \quad (+
\quad 5
\quad y))) \quad ((λ \quad (y) \quad (+
\quad 5
\quad y))) \quad x))))
\quad 0)
\quad \text{)}
\quad \text{=>}
\quad (((λ \quad (y) \quad (+
\quad 5
\quad y))) \quad ((λ \quad (y) \quad (+
\quad 5
\quad y))) \quad 0)) \quad =>
\quad (((λ \quad (y) \quad (+
\quad 5
\quad y))) \quad (+
\quad 5
\quad 0)) \quad =>
\quad (((λ \quad (y) \quad (+
\quad 5
\quad y))) \quad 5) \quad => \quad (+
\quad 5
\quad 5) \quad => \quad 10
\end{align*}
\]
Closures Are Essential

• Exercise: evaluate the same expression using our broken interpreter.

• The computed “answer” is 0!

• The interpreter uses the wrong binding for the free variable \(x \) in \((\lambda (y) (+ x y))\).

• The environment records deferred substitutions. When we pass a function as an argument, we need to pass a “package” including the deferred substitutions. Why? The function will be applied in a different environment which may associate the wrong bindings with free variables. In the PL (programming languages) literature, these packages (code representation, environment) are called closures.

• Note the similarity between this mistake and the “capture of bound variables”.

• Unfortunately, this mistake has been labeled as a feature rather than a bug in much of the PL (programming languages) literature. It is called “dynamic scoping” rather than a horrendous mistake.
Correct Semantic Interpretation

sealed trait Exp
sealed trait Value

case class Num(n: Int) extends Exp with Value
case class Var(s: Symbol) extends Exp
case class App(rator: Exp, rand: Exp) extends Exp
case class Lambda(s: Symbol, b: Exp) extends Exp with Value // s is a Symbol, not a Var
case class Sum(left: Exp, right: Exp) extends Exp

object Exp {
 type Env = Map[Symbol, Value]
 case class Closure(code: Exp, env: Env) extends Value

 def eval(e: Exp, env: Env): Value = {
 e match {
 case v: Num => v
 case Var(s) => env(s)
 case App(rator, rand) => apply(eval(rator, env), eval(rand, env))
 case l: Lambda => Closure(l, env)
 case Sum(left, right) => Num(toInt(eval(left, env).asInstanceOf[Num]) +
 toInt(eval(right, env).asInstanceOf[Num]))
 }
 }

 def toInt(n: Num): Int = n match { case Num(i) => i }

 def apply(fun: Value, arg: Value) = {
 fun match {
 case Closure(Lambda(s, b), env) => eval(b, bind(s, arg, env))
 case _ => throw new IllegalArgumentException("Attempted to apply non-function " +
 fun + " in an application")
 }
 }

 def bind(s: Symbol, v: Value, env: Env): Env = env + (s -> v)
}