Major Challenge

• LC does not include a recursive binding operation (like Scheme `letrec/local`) or Scala binding. How would we define `eval` for such a construct?

• Key problem: the closure structure for a recursive `lambda` must include an environment that refers to itself!

• In imperative Java, how would we construct such an environment. Hint: how did you build “circular” data structures in basic OO/imperative programming courses? Imperativity is `brute force`. But it works. We will use it in Project 3 and thereafter.
Minor Challenge

How could we define an environment that refers to itself in *functional* Scheme or Scala (without *lazy*)?

- Key problem: observe that in `let` and `lambda` the expression defining the value of a variable cannot refer to itself.
- Solution: does functional Scheme contain a recursive binding construct?
- How can we use this construct to define a recursive environment?
- What environment representation must we use?
A Bigger Challenge

Assume that we want to write LC in a purely functional language without a recursive binding construct (say functional Scheme without define and letrec)?

- Key problem: must expand letrec into lambda
- No simple solution to this problem. We need to invoke syntactic magic or (equivalently) develop some sophisticated mathematical machinery.
Key Intuitions

• Computation is incremental—not monolithic

• Slogan: general computation is successive approximation (typically in response to successive demands for more information).

• Familiar example: a program mapping a potentially infinite input stream of characters to a potentially infinite output stream of characters. Generalization: infinite trees mapped to infinite trees.
Key Mathematical Concepts

- A partially ordered set (po) is a pair \((S, \leq)\) where \(S\) is a set of data values and \(\leq\) is a reflexive, symmetric, and transitive binary relation on \(S\).
- A finitary basis (set of finite approximations) is po that is
 - countable
 - closed under LUBs (least upper bounds) on finite bounded subsets
- Every finitary basis contains a least element denoted \(\bot\) ("bottom").
- A chain in a po \((S, \leq)\) is a countable sequence \(s_0, s_1, \ldots, s_k, \ldots\) that is totally ordered (\(s_i \leq s_j\) if \(i\) is less than \(j\))
- A po \((S, \leq)\) is complete iff every chain in \(S\) has a LUB (least upper bound) in \(S\). (All limit points exist.) The LUB of a set \(C \subseteq S\) is written \(\bigcup C\)
- A Scott-domain is a po which is the completion of a finitary basis (a finitary basis with limit points added where needed).
- Every Scott-domain is a cpo.
- The "home-plate" cpo is a simple example of a cpo that is not a Scott domain.
- Flat domain: monolithic set of values formulated as domain. All values other than \(\bot\) are maximal.
 - integers, booleans, strings, conventional finite lists, ASTs
Key Mathematical Concepts cont.

Computable functions:

• A function f in the domain $A \rightarrow B$ is **monotonic** iff for all $a \leq a'$ in A, $f(a) \leq f(a')$.

• A function f in the domain $A \rightarrow B$ is **continuous** iff for every chain c in S, $f(\bigcup c) = \bigcup f(c)$

• A function f in the domain $A \rightarrow B$ is **strict** iff $f(\bot) = \bot$

Computable functions are necessarily continuous (which implies monotonic!) and typically are strict. (But not in Haskell or Scala [sort of])
Examples

Domains

- flat domains
- strict function spaces on flat domains
- lazy trees of boolean (of D where D is flat)
- factorial functional