Call-by-name vs. Call-by-value
Fixed-Point Operators

Given a recursive definition in a call-by-value language

\[f \equiv E_f \]

where \(E_f \) is an expression constructed from constants in the base language and \(f \). What does it mean?

Example: let \(D \) be the domain of Scheme values. Then the base operations are continuous functions on \(D \) and

\[\text{fact} \equiv \]

\[\text{map } n \text{ to if } n = 0 \text{ then } 1 \text{ else } n * \text{fact}(n - 1) \]

is a recursive definition of a function on \(D \).

In a call-by-name language (\(\text{map } n \text{ to } \ldots \) is interpreted using call-by-name), the meaning of \(\text{fact} \) is

\[Y(\text{map } f \text{ to } E_f) \]

What if \(\text{map} \) (\(\lambda \)-abstraction) has call-by-value semantics?
Defining \(Y \) in a Call-by-value Language

We want to define \(Y_v \), a call-by-value variant of \(Y \).

Key trick: use \(\eta \) (eta)-conversion to delay the evaluation.

In the mathematical literature on the \(\lambda \)-calculus, \(\eta \)-conversion is often assumed as an axiom. In models of the pure \(\lambda \)-calculus, it typically holds.

Definition: \(\eta \)-conversion is the following equation:

\[
M = \lambda x . Mx
\]

where \(x \) is not free in \(M \). If the \(\lambda \)-abstraction used in the definition of \(Y \) has call-by-value semantics, then given the functional \(F \) corresponding to recursive function definition, the computation \(YF \) diverges. We can prevent this from happening by \(\eta \)-converting both occurrences of \(F(x x) \) within \(Y \).
What Is the Code for Y_v?

$\lambda F. \lambda x. (\lambda y. (F(x x)) y) (\lambda y. (F(x x)) y)$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!
- Let G be some functional $\lambda f. M$, like FACT, for a recursive function definition. G and M are values (λ-expressions). Then

$Y_v G = \lambda x. (\lambda y. (G(x x)) y) (\lambda y. (G(x x)) y) = \lambda y. (G((\lambda y. (G(x x)) y) (\lambda y. (G(x x)) y)) y$ is a value.

- Hence, $G(Y_v G) = (\lambda f. M)(Y_v G) = M[f:=Y_v G]$, which is a value.
- It is straightforward to prove (using conversion rules) that

$Y_v G = G(Y_v G)$
Loose Ends

- Meta-errors
- Read the notes!
- rec-let (in notes)