Review

- In Algol-like languages, the collection of environments that exist at any point during a computation is embedded in the machine control stack supporting (recursive) procedure calls.
- When the frames of the control stack are used in this way, they are called activation records.
- In each activation record, a pointer called the static link points to the environment parent of the record. Similarly, a pointer called the dynamic link points to the preceding stack frame (activation record).
- The static link is used for looking up bindings in the environment.
- The dynamic link is used to return control from the current procedure to its caller (whose local variables may not be accessible from the current frame).
Consider the following Scheme program to reverse a list:

```
(define rev (lambda (l)
  (local
    [(define revhelp
        (lambda (tl acc)
          (if (empty? tl) acc
              (revhelp (rest tl) (cons (first tl) acc))))])
  (revhelp l empty)))
```

What happens when

```
(rev '(0 1 2))
```

is called?
Example II

Consider the following Scheme program to reverse a list:

```
(define lookup (lambda (sym env)
  (local
    [(define lookup-help
        (lambda (env)
          (lambda (env)
            (cond [[(empty? env) null]
                  [(eq? sym (pair-var (first env))
                   (pair-val (first env))]
                  [else (lookup-help (rest env) tl)])]
                 (lookup-help-help env)))))

What happens when

```

```
(lookup 'a (cons (make-pair 'a 5) null))
```

is called?
Snapshots

On board.
Exceptions

- Exceptions were not included in Algol 60 or most of its successors (Pascal, Algol W, C). But the Algol 60 run-time stack can easily handle the Java **try/catch** construct.

- How does exception handling work? The activation record must include a **catch** table for the active **catch** (assuming one exists) listing the caught exception classes (types) and their handlers (the bodies of the **catch** clauses). (A **catch** is active if control is within the corresponding **try** block.)

- When an exception is thrown the executing code (interpreter or compiled code) searches back through the dynamic chain --- popping exited frames off the stack --- to find the first matching **catch** clause.