

Comp 411
Principles of Programming Languages

Lecture 16
Boxes as Values and Call-by-Reference

Corky Cartwright
February 21, 2014

Call-by-Value and Call-by-Reference
Consider this program, which contains a mutation:

(let [(f (lambda (x) (set! x 5)))]
 (let [(y 10)]
 (let [(_ (f y))] ; mutate
 y)))

What result is produced by evaluating this program?
The value of y, which is 10, is placed in a new box (for local x) when f is
applied; this new box (variable) and its contents (value) are thrown away
after the procedure body for f (including the set!) has been evaluated, so
the returned value is the value of y, which is still 10. This behavior is
call-by-value: we passed the value of y, not the containing box (variable
y) itself. which provides the capability to change its value.

Therefore, we cannot write a procedure that takes two variables as
arguments and swaps their values. Why? A procedure cannot change
variables passed as arguments because it only receives the values. It
cannot obtain the names of the corresponding variables.

Supporting a swap operation
To express a swap operation as a program-defined procedure, a
language must support passing the boxes (cells) corresponding to
variables as values the swap procedure.
We can support this capability with a small change change to our LC
interpreter based on the following observation: when the argument
expression in an application is already a variable, it is associated with a
box in the environment. Hence, we can pass this box to the procedure
and don't need to create a new one locally:

((app? M)
 (apply (... fp ...)
 (if (var? (app-rand M))
 (lookup (var-name (app-rand M)) env) ; returns a box
 (...))))

This is ugly! So ugly that I almost cut this slide from the lecture. Why?

Improving Our Ugly Design
This new mode of parameter-passing is called
call-by-reference. Our LC formulation is ugly
because it does not provide a clean way to pass
the value of a variable instead of the variable
(box) itself.
Pascal and Fortran (66/77) support more
reasonable formulations of this parameter-passing
technique. But Fortran is only slightly better than
LC; it passes everything (including constants!) by
reference. Mutating a constant caused havoc – via
mutation of shared constants – in many
implementations because they did not bother to
create new copies of constants for each call site.

Left-hand Evaluation

Algol-like languages (broadly speaking) make a
distinction between left-hand and right-hand
contexts. Left-hand contexts typically include:
 the left-hand sides of assignments; and
 argument expressions passed by reference.
The basic form of evaluation is left-hand evaluation; it
looks like LC (without our ugly call-by-reference
extension) except that boxes are considered values.
Hence unbox is not applied to the box returned by
lookup.
Right hand evaluation performs left-hand evaluation
and then coerces boxes to values.

Variable and Data Aliasing

While passing references enables programmers to write procedures like
swap, it also introduces a new phenomenon into the language: variable
aliasing. Variable aliasing occurs when two syntactically distinct variables
refer to the same mutable location in the environment. In Scheme such a
coincidence is impossible; in Pascal and Fortran it is common.

The absence of variable aliasing in Scheme does not mean that Scheme
escapes the aliasing problem. Scheme only guarantees that distinct variable
names do not refer to the same location (box). Scheme allows data aliasing,
where more than selection path refers to the same location. For example,
two elements of a vector can be exactly the same box. All interesting
programming languages permit data aliasing.

Imperative Call-by-Name
Algol 60 supports call-by-value and call-by-name, but not call-by-reference.
In imperative languages (languages with mutable state), call-by-name has the
same semantics as it does in functional languages, assuming that we equate
left-hand-evaluation in imperative languages with evaluation in functional
languages and coerce boxes to values in right-hand contexts (everywhere but
the left-hand-sides of assignment and arguments passed by reference).
As a result, call-by-name is a baroque alternative to call-by-reference. A
formal reference parameter is typically synonymous with the corresponding
argument expression.
In the underlying implementation, each argument expression passed by
reference is translated to a suspension (thunk) that yields a box (reference,
location) when it is evaluated. In essence, call-by-name repeatedly evaluates
the actual parameter to produce a box every time the corresponding formal
parameter is referenced. If the suspension produces the same location each
time, then call-by-name is equivalent to call-by-reference. But the suspension
can contain references to variables that change (from assignment) during the
execution of the procedure body. In the special case where an argument
expression does not have box type (e.g., a constant like 10), the calling
program generates a dummy box and copies the value into the box.

Abusing Call-by-Name: Jensen's Device

Consider the following Algol-like code (written in C syntax)
that uses assignment to change the box denoted by a call-by-
name parameter.
procedure Sum(int x, int y, int n) {

 // actual x must occur free in actual y

 int sum = 0;

 for (x = 0; x < n, x++) sum = sum + y;

 return sum;

}

int j, sum = 0;
int[10] a;

for (int i = 0; i < 10; i++) a[i] = i; // initialize a

sum = Sum(j, a[j], 10)); // compute the sum

Why Jensen's Device Has Become Obscure

The ugly convention of passing j and a[j] by name and using
modifications to the formal parameter for j to determine different
values for the formal parameter corresponding to a[j] is called
Jensen's device. Parameter passing has become so complex that
simple reasoning about variables is no longer possible.

Imperative call-by-name is deservedly dead (but perhaps for the
wrong reason).

In the imperative world, the call-by-need optimization of call-by-
name does not work because re-evaluations of the suspension for
a call-by-name parameter does not necessarily produce the same
result!

Call by Value-Result
Call-by-reference has a clean semantic definition but some programming
methodologists have shunned it because of variable aliasing. In its place, they
have proposed call-by-value-result.
When an actual parameter is passed by value-result, the calling procedure
left-hand-evaluates the actual parameter exactly as it would for call-by-
reference. It passes the address of the box to the called procedure which saves
it, creates a new local variable (a box) for the corresponding formal parameter
and copies the contents of the passed box into the local box. '
During the execution of the procedure body, the local copy is used whenever
the formal parameter is accessed.
On exit from the called procedure, the called procedure copies the contents of
the local box into the corresponding actual parameter box. In essence, call-by-
value-result creates a temporary copy of the actual parameter box and copies
the contents of this copy into the actual parameter box on exit.
Value-result is sometimes called copy-in/copy-out.

Call by Result
Given the availability of call-by-value-result (copy-in, copy-out) which can be
viewed as an enhancement of call-by-value (copy-in), it makes sense to consider
call-by-result (copy-out) in isolation. This mechanism is actually more useful in
conventional languages than call-by-value-result (which IMO is inferior to call-by-
reference except in context where shared memory may be unavailable or very
expensive). In many situations, it is natural to define a function/method that returns
multiple values. Scheme has an explicit syntax (not covered in Comp 210/211) for
doing this. But Scheme has a unusual syntax that makes inclusion of such a
convention relatively easy.
In languages with more conventional syntax, a good to return multiple results is to
return the primary result normally and the other (auxiliary results) using call-by-
result.
Example: a lookup function on environments that returns the matching index as
well as the matching value

JamVal lookup(value Env e, value Symbol s, result int index)

(In Java, the Env argument e would probably be the receiver rather than an explicit
argument.) In principle, Java could support call-by-result.

Call-by-Reference vs. Boxes as Values

In call-by-reference, boxes are not “first-class” values because
they can only be used in limited (left-hand) contexts.
Everywhere else they are coerced to their contents (right-hand
evaluation). Moreover, it is typically impossible to store a box
inside a box (C pointers are an exception).
If boxes are first class, then boxes can be passed by value!
Call-by-reference is superfluous complication.
In the ML family of languages, boxes (refs) must be explicitly
dereferenced.
In C/C++, boxes are automatically dereferenced in right-hand
contexts but the & operator suppresses this operation (by
defining a local left-hand context). I suspect that this
convention is the source of troublesome bugs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

