

Comp 411
Principles of Programming Languages

Lecture 2

Syntax

Corky Cartwright

January 14, 2015

Syntax: The Boring Part of
Programming Languages

• Programs are represented by sequences of symbols.

• These symbols are represented as sequences of characters
that can be typed on a keyboard (ASCII).

• What about Unicode?

• To analyze or execute the programs written in a language,
we must translate the ASCII representation for a program
to a higher-level tree representation. This process, called
parsing, conveniently breaks into two parts:
– lexical analysis, and

– context-free parsing (often simply called parsing).

Lexical Analysis
• Consider this sequence of characters: begin middle end

• What are the smallest meaningful pieces of syntax in this phrase?

• The process of converting a character stream into a
corresponding sequence of meaningful symbols (called
tokens or lexemes) is called tokenizing, lexing or lexical
analysis. A program that performs this process is called a
tokenizer or a lexer.

• In Scheme, we tokenize (set! x (+ x 1)) as
(set! x (+ x 1))

• Similarly, in Java, we tokenize

System.out.println("Hello World!"); as
 System . out . println ("Hello World!") ;

Lexical Analysis, cont.

• Tokenizing is straightforward for most languages
because it can be performed by a finite automaton
(equivalent to a regular grammar for those of you
who have take 412 or 481). Fortran is an
interesting exception!.

– The rules governing this process are (a very
boring) part of the language definition.

• Parsing a stream of tokens into structural
description of a program (typically a tree) is
harder.

Parsing

• Consider the Java statement: x = x + 1;
where x is an int variable.

• The grammar for Java stipulates (among other things):
– The assignment operator may be preceded by an

identifier and must be followed by an expression.
– An expression may be two expressions separated by a

binary operator, such as +.
– An assignment expression can serve as a statement if it

is followed by the terminator symbol. Hence, we can
deduce from the grammatical rules of Java that the
above sequence of characters (tokens) is a legal
program statement.

Parsing Token Streams into Trees
• Consider the following ways to express an assignment

operation:

x = x + 1
x := x + 1
(set! x (+ x 1))

• Which of these do you prefer?
• It should not matter much.

• To eliminate the irrelevant syntactic details, we can create
a data representation that formulates program syntax as
trees. For instance, the abstract syntax for the assignment
code given above could be (in Scheme)
(make-assignment <Rep of x> <Rep of x + 1>)

• Or (in Java)
new Assignment(<Rep of x> , <Rep of x + 1>)

A Simple Example

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp)

Num is the set of numeric constants (given in the lexer spec)
Var is the set of variable names (given in the lexer spec)

• To represent this syntax as trees (abstract syntax) in Scheme

; exp := (make-num number) + (make-var symbol) + (make-app exp exp)
+

; (make-proc symbol exp)
(define-struct (num n))
(define-struct (var s))
(define-struct (app rator rand))
(define-struct (proc param body)) ;; param is a symbol not a var!

• app represents a function application
• proc represents a function definition

Top Down (Predictive) Parsing
Idea: design the grammar so that we can always tell what rule
to use next starting from the root of the parse tree by looking
ahead some small number (k) of tokens (LL(k) parsing).

Can easily be implemented by hand: called recursive descent.

Conceptual aid: syntax diagrams to express context free
grammars.

Intuition: k-symbol look-ahead is used to determine which
branch to take at a fork in a syntax diagram.

We try to design LL(k) grammars so that k is 1.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

