
Exp:

Term

Binop

If

Let

Map

Exp ::= Term (Binop Term)*

 | If

 | Let

 | Map

referenced by:

Def
ExpList
Factor
If
Let
Map

If:

if Exp then Exp else Exp

If ::= if Exp then Exp else Exp

referenced by:

Exp

Let:

let Def in Exp

Let ::= let Def+ in Exp

referenced by:

Exp

Map:

map IdList to Exp

Map ::= map IdList to Exp

referenced by:

Exp

Term:

Unop

Factor

(ExpList)

Null

Int

Bool

Term ::= Unop?* (Factor ('(' ExpList ')')? | Null | Int | Bool)

referenced by:

Exp

Factor:

(Exp)

Prim

Id

Factor ::= '(' Exp ')'

 | Prim

 | Id

referenced by:

Term

ExpList:

Exp

,

ExpList ::= (Exp (',' Exp)*)?

referenced by:

Term

IdList:

Id

,

IdList ::= (Id (',' Id)*)?

referenced by:

Map

Def:

Id := Exp ;

Def ::= Id ':=' Exp ';'

referenced by:

Let

Null:

null

Null ::= null

referenced by:

Term

Bool:

true

false

Bool ::= true

 | false

referenced by:

Term

Unop:

Sign

~

Unop ::= Sign

 | '~'

referenced by:

Term

Sign:

+

-

Sign ::= '+'

 | '-'

referenced by:

Binop
Unop

Binop:

Sign

*

/

=

!=

<

>

<=

>=

&

|

Binop ::= Sign

 | '*'

 | '/'

 | '='

 | '!='

 | '<'

 | '>'

 | '<='

 | '>='

 | '&'

 | '|'

referenced by:

Exp

Prim:

number?

function?

list?

null?

cons?

cons

first

rest

arity

Prim ::= 'number?'

 | 'function?'

 | 'list?'

 | 'null?'

 | 'cons?'

 | 'cons'

 | 'first'

 | 'rest'

 | 'arity'

referenced by:

Factor

 ... generated by Railroad Diagram Generator R R

http://www.bottlecaps.de/rr/ui
http://www.bottlecaps.de/rr/ui

