
Design Patterns for Marine Biology Simulation
Dung “Zung” Nguyen

Dept. of Computer Science
Rice University

Houston, TX 77005
+1 713-348-3835

dxnguyen@rice.edu

Mathias Ricken
Dept. of Computer Science

Rice University
Houston, TX 77005
+1 713-348-1940

mgricken@rice.edu

Stephen Wong
Dept. of Computer Science

Rice University
Houston, TX 77005
+1 713-348-3814

swong@rice.edu

ABSTRACT
We specify and implement a GUI application that simulates
marine biological systems by making extensive use of object-
oriented design patterns.

The key design patterns are model-view-control,
observer/observable, visitor, command, factory method and
decorator. These design patterns help delineate the roles and
responsibilities of the objects in the system, establish loose
coupling between objects and arrange for the objects to
communicate and cooperate with one another at the highest level
of abstraction. The result is an application that exhibits minimal
control flow, yet is powerful, robust, flexible and easy to
maintain.

Our work entails a non-trivial redesign of the current AP
Computer Science Marine Biology Simulation case study and may
serve as a case study for an introductory “object-first” curriculum.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
Programming.

General Terms
Design.

Keywords
AP Computer Science, object-first, design patterns, closure, inner
class, lambda, abstract coupling, loose coupling, pedagogy.

1. INTRODUCTION
Starting in the 2003-2004 academic year, the AP Computer
Science curriculum will migrate from C++ to Java with emphasis
on object-oriented programming (OOP) [1]. This precipitates the
need for first year college curricula to accommodate the upcoming
crop of high school graduates with such AP credits. In our effort
to upgrade materials for our object-first introductory curriculum,
we seek to develop a case study that, in order to be effective, must
not only prove to be relevant and challenging, but also build on

the student’s newly acquired understanding of Java and OOP.

Since the AP Marine Biology Simulation (APMBS) case study [1]
is required for all AP students, it is a good candidate for us to
explore and expand. This paper presents the result of our work: a
similar application that, in comparison, puts much more emphasis
on interfaces, abstract classes, design through abstract
decomposition and polymorphism. In the discussion that follows,
we assume that the reader is familiar with the APMBS and the
concepts of OOP, in particular those expressed in the common
design patterns presented in [2].

We take the point of view that an OO program should use
message passing and exploit polymorphism to keep procedural
control flow to a minimum and, as a result, should be declarative
in nature. Loose and abstract coupling between collaborating
objects is critical in building software that is correct, robust, and
easy to maintain due to its flexibility and extensibility. Our case
study illustrates how design patterns help achieve these
objectives.

Section 2 presents the overall design of the system. As a GUI
application, it is based on the well-known model-view-controller
(MVC) pattern. The model itself is a system of cooperating
objects that interact with each other at the highest level of
abstraction by means of messages. Section 3 illustrates how the
loose and abstract coupling between objects facilitates the task of
maintaining invariants to ensure correctness of the system
behavior. Section 4 discusses robustness. To withstand misuse
without sacrificing flexibility, robustness cannot simply be
patched up by external control code but must be inherently
supported by the system structure. Section 5 demonstrates the
flexibility and extensibility of the system.

Interested readers can find the complete source code at
http://www.exciton.cs.rice.edu/research/SIGCSE04.

2. DESIGN OVERVIEW
The overall specification of the Marine Biology Simulation
(MBS) is too involved to completely describe in this short paper.
We will present only some key requirements and an overview of
the main architecture with a few highlighted implementation
details.

The MBS is to be a simulation of the movement of marine life
(“fish” – though not technically restricted to such) in a 2-
dimensional environment. Fish have a notion of direction and
location at all times, though this does not imply that fish know
where they are with respect to anything else in the simulation.
Fish determine their own movement within the constraints
imposed by their immediate surroundings. For instance, a fish
cannot move to a location that is blocked.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’04, March 3—7, 2004, Norfolk, VA, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

mailto:dxnguyen@rice.edu
mailto:mgricken@rice.edu
mailto:swong@rice.edu
http://www.exciton.cs.rice.edu/research/SIGCSE04

Figure 1 shows the UML class diagrams for the key classes in the
simulation model. Fish are the main acting agents in the
simulation and are encapsulated in an abstract class called AFish.
The possible actions of a fish depend not on the entire global
environment, but only on the subset of that environment
immediately around the fish, the “local environment”. The local
environment of a fish has knowledge of whether or not the space
in front of a fish is open and is modeled by an interface called
ILocalEnv. A fish is only given access to an individualized
ILocalEnv, which encapsulates coordinate position and direction
and keeps them inaccessible to the fish. UML sequence diagrams
in Figure 2 and Figure 3 depict how a fish interacts with its local
environment: When a fish tries to move forward (tryMoveFwd)
or spawn another fish (tryBreedFwd), it provides its private local
environment with two actions, blockedCmd for when the
forward path is blocked and openCmd for when it is open. These
actions are examples of “commands” in the command design
pattern and are instantiated as anonymous inner objects of an
interface called ILambda. ILambda has one method, Object
apply(Object param), and represents the abstract notion of
functions. The associated ILocalEnv either

• calls blockedCmd.apply(null) or
• instantiates an appropriate ILambda, moveCmd, and calls

openCmd.apply(moveCmd). The application of
moveCmd, at the discretion of the fish, moves the fish by
changing its associated local environment. The moveCmd
is a decorated ILambda which allows the environment to
disable it and prevent its misuse.

Passing commands as anonymous inner objects in the above
protocol enables the fish to perform environment-dependent

behaviors by cooperating with the local environment and yet
remain only loosely coupled with it. Below is a listing of the
move method of a fish to provide an example of how command
passing is used to control the movement of a fish. This fish
moves forward as long as the forward path is open and turns
around 180 degrees if the path is blocked. AFish.tryMoveFwd
simply delegates the call to ILocalEnv.tryMoveFwd.
AFish.tryMoveFwd is a final protected method to prevent the
concrete fish subclass from directly accessing the local
environment.
/**
 * Execute the movement part of a simulation step.
 */
public void move() {
 // attempt to move forward
 tryMoveFwd(new ILambda() {
 public Object apply(Object param) {
 // cannot move forward
 // turn PI radians
 turnRight(Math.PI);
 return null;
 }
 }, new ILambda() {
 public Object apply(Object param) {
 // can move forward, do it
 ((ILambda)param).apply(null);
 return null;
 }
 });
}
The above code demonstrates how commands can be used to
provide flexible yet decoupled communication in a secure and
robust manner.

Figure 1. Model Architecture.

There are global constraints, though, that govern the behaviors of
the local environments, e.g. discrete or continuous movement and
boundary conditions, which can be encapsulated in a global
environment class, AGlobalEnv. Global environmental control
also eases communication between local environments necessary
to determine open vs. blocked conditions. The visitor pattern
allows the global environment to add, edit and locate fish:
AGlobalEnv employs an ILocalEnvVisitor to perform the
appropriate task depending on whether or not the local
environment is attached to a fish.

When a fish is initially created, it does not yet have a local
environment, but it is already subject to global constraints. At the
time the fish is added to the simulation, the global environment is
asked to create a local environment for the fish that enforces such
constraints; thus the global environment acts as a factory for
ILocalEnv. By creating the instances of ILocalEnv as inner
objects, the local environments gain private access to the global
environment.

The MBS runs as a sequential synchronous process, where each
agent (fish) is allowed to perform its behaviors once per time tick.
Therefore AFish implements the Observer interface, which
enables it to be connected to a central command dispatcher,
SimEngine. This class is independent of the simulation and
serves only to send each agent an ILambda command that, when
applied by the agent, will effect the desired behavior, e.g. acting
or drawing. An act command and a draw command are sent out
by SimEngine to all fish at every time tick of the simulation.
These commands are double-dispatching, akin to a degenerate,
single-host visitor [3]. When the agent applies the command, it
passes itself in as the input parameter. The command’s apply
method then calls the desired method on that particular fish, such
as act() or draw(). This scheme provides a flexible, extensible
and robust means of controlling the agents’ behaviors.

To decouple the AGlobalEnv from the SimEngine, the
SimDriver utilizes techniques similar to the command passing
interactions between AFish and ILocalEnv described above. The
SimDriver needs to construct a compound ILambda from
behaviors specified both in the environment and the driver itself,
e.g. the environment’s ability to draw and the driver’s ability to
notify the agents via the SimEngine. This necessitates the use of
a factory, which creates ILambdas from environmental data or

behavior. Space limitation prevents a detailed discussion of this
process here.

Figure 4 shows the overall model-view-controller (MVC)
architecture of the MBS where

• the view, MBSView, is the graphical use interface,
• the model, is the main simulation driver, SimDriver, that

coordinates the global environment and the simulation
engine and

• the controller, MBSController, is the coordinator that sets up
the system and instantiates and installs the adapters needed to
connect the view to the model.

We now proceed to discuss our design in terms of correctness,
robustness, flexibility and extensibility. We also contrast it with
the current APMBS to illustrate how our use of message passing,
polymorphism and loose and abstract coupling leads to a design
that meets the aforementioned criteria.

3. CORRECTNESS
Correctness of a program means the program behaves and
performs as specified. In order for a program to achieve
correctness, it must maintain its invariants. In the APMBS, the
fish has a location that must always be synchronized with the
location kept in the environment. This replication of data
produces a tight coupling between the two objects that makes
enforcing the synchronization invariant difficult. The
responsibility for maintaining this invariant is partially assigned to
the fish, which is a variant component of the system. The
designers of the system have no control over the variant code in
different fish subclasses; therefore, it is impossible to a priori
enforce the invariant and ensure program correctness.

In contrast, in our design the coupling between the fish and its
environment is loose and abstract. The location is stored and
managed by invariant code in the environment. The fish does not
have access to it and therefore is unable to do anything the
environment does not specifically allow. Thus, the environment
strictly enforces its constraints, guaranteeing correct behavior.

The command, factory and visitor patterns are crucial in creating
the necessary decoupling to maintain invariance but still allow
interaction. Additionally, the null object pattern [4] provides
well-defined behavior for uninitialized components.

Figure 3. Command passing for moving into a blocked

local environment.

Figure 2. Command passing for moving into an open local

environment.

4. ROBUSTNESS
Robustness is the ability to withstand abuses and other unexpected
input while continuing to function in a well-defined manner.

The APMBS imposes certain requirements, e.g. that fish can only
move to adjacent locations or that the destination must not contain
another fish, but does nothing to enforce them. Since the fish are
at liberty to violate these requirements, a maliciously or
erroneously designed fish can crash the APMBS. For instance, a
fish that simply sets its location to valid but random coordinates
clearly violates the adjacency requirement, yet is still accepted by
the system even though it quickly crashes it. Such a fish will not
even compile in our system.

The adjacency requirement in the APMBS, for example, exists
only as a coding style stipulation and as after-the-fact value
checks. It is not intrinsically built into the system. Inherent
robustness is a result of clear delineations of responsibility and
knowledge that are enforced by the very structure of the system.
This prevents objects from performing operations that are outside
their domain and removes the need for programmatic value
checks. In our system, the local environment encapsulates the
movement information and behavior. It simply provides a
command to move a fish the proper amount forward. The fish
then can only use or ignore that command, either way, forcing it
to be in accordance with the system’s requirements. Such
robustness is achieved by careful and precise analysis of the
components of the original problem.

Robustness without sacrificing a high degree of flexibility and
extensibility requires loose and abstract coupling. Loose coupling
requires that objects interact with other objects at very high
abstraction levels, preventing them from performing potentially
dangerous low-level operations. Once again, command, factory,
and visitor patterns are central in creating the necessary
abstraction.

5. FLEXIBILITY AND EXTENSIBILITY
A flexible system is easy to modify without breaking other
components of the software; it has the proverbial capability to
“bend without breaking.” We can make reasonable changes to the
system without breaking all the pieces of the system. That is, a
small change in one class only causes a manageable number of
changes in other classes.

An extensible system is easy to augment with new capabilities
without modifying any of the existing components. We should be

able to add more (unforeseen) functionality to the system without
incurring any changes to existing code.

Both flexibility and extensibility are based upon modularity. In a
modular system the classes organized in a cohesive manner and in
such a way that they can be developed and tested in small and
independent units. Flexibility and extensibility require
modularity, but the reverse does not hold because code cannot
simply be modularized in an ad hoc manner. A system must be
decomposed into the abstract representations of its components.
Only if the modules represent the proper abstractions will
flexibility and extensibility be achieved.

There are numerous examples of proper abstraction leading to
flexibility and extensibility in our MBS:

• The menu options for simulation behavior are now
commands and thus can be extended without necessitating
changes in the control logic. In the APMBS, on the other
hand, if-statements have to be written for each option, forcing
a change in the control logic whenever the options are
changed.

• Environments that are decoupled from the rest of the system
mean that new and vastly different environments can easily
be added, not only statically but also at runtime. The process
of creating a global environment is realized by a series of
factory methods. This factory-based process enables
environments to create their own options panels, to use an
arbitrary number of parameters and to bootstrap themselves.
The APMBS lacks this capability and is rigid in that it
restricts the environment to only quadrilateral bounded or
unbounded regions.

• Existing fish can run in wildly different environments, such
as both discrete and continuous coordinate systems, even
though they may have been programmed with only one
system in mind. The fish in the APMBS do not have this
capability since the simulation is not scalable on the
environment side. Locations, for example, are hard-coded as
pairs of integers for all environments, making it impossible
to add environments with continuous movement.

• Complex compound behaviors are easily achieved by
composing the modularized behaviors in our system. Since
the fish and the environments are decoupled, a new fish or
environment can be added without affecting the other class
hierarchy. This results in a code complexity that scales
linearly. If the APMBS were to support more different kinds
of environments, such as a non-discrete environment, the

Figure 4. MVC Architecture.

tight coupling would lead to changes in both hierarchies and
quadratic growth.

6. CONCLUSION
The Marine Biology Simulation presented here is intended as a
case study for use at or near the conclusion of an objects-first
college-level introductory curriculum. It is not intended as a tool
for introducing object-oriented concepts. Currently at our
institution, at the end of our first year curriculum, we use a final
project of similar complexity that requires the same level of
OOP/OOD knowledge and skills. Our plan is to replace the
current final project with the MBS.

We strongly believe that an objects-first approach that emphasizes
abstract decomposition of problems, polymorphic flow control
and delegation-model programming will properly prepare students
for this case study as well as large-scale OOP. This approach will
equip the students with a solid foundation in programming and
design fundamentals such as abstract classes and interfaces,
separating the variant and invariant pieces of a problem,
identification of responsibilities, and core design patterns such as
command, state, composite, strategy, factory and visitor. Our case
study illustrates how object–oriented design using appropriate
design patterns helps express real-world problems in declarative
and abstract forms. This reinforces the knowledge and skills
learned throughout the course.

It is very important to take students through the problem analysis
portion of the development process. In object-oriented design, a
crucial ability is to be able to simply and clearly express the
abstract interactions that are occurring. It does not suffice to
merely show students the code for an OO system such as the
MBS. Simple “make another one of these” programming
assignments will not illuminate the true nature of the system.

Uncovering the intrinsic way in which objects interact is a vital
skill that OOP students need to develop. The MBS is set up to

lead students through hotly contested issues such as whether or
not a fish “knows” its location. In the end, the students discover
that “location” is related to local environment-dependent
behavior, not to an x-y coordinate value. Debating how
decoupled objects can cooperatively interact through abstract
message passing is a very useful exercise to explore the nature of
programming under the constraints of strictly delineated roles and
responsibilities.

The full power of OOP is not realized until the size of the problem
or system grows beyond simple “toy” exercises. In the beginning,
students need to work with small, easily managed systems. An
objects-first approach can utilize scalable techniques that teach
“coding in the large” concepts, but on a more comprehensible
scale. The MBS project immerses the students in sufficient
complexity to accentuate the strengths of OOP. The students
easily see the power, utility, flexibility and scalability of the
design. The concepts running through the MBS are applicable in
a diverse field of problems, which can strongly motivate students
to expand their horizons and tackle larger, more complex
problems.

7. REFERENCES
[1] Java Marine Biology Simulation Case Study, The College

Board, http://apcentral.collegeboard.com.

[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[3] Nguyen, D. and Wong, S. Design Patterns for Decoupling
Data Structures and Algorithms, SIGCSE Bulletin, 31, 1
(Mar 1999), 87-91.

[4] Woolf, B., The Null Object. Pattern Language of Program
Design 3, Martin, R. C., Riehle, D., and Buschmann, F. eds.,
Addison-Wesley, 1998.

http://apcentral.collegeboard.com

