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ABSTRACT 
We specify and implement a GUI application that simulates 
marine biological systems by making extensive use of object-
oriented design patterns. 

The key design patterns are model-view-control, 
observer/observable, visitor, command, factory method and 
decorator.  These design patterns help delineate the roles and 
responsibilities of the objects in the system, establish loose 
coupling between objects and arrange for the objects to 
communicate and cooperate with one another at the highest level 
of abstraction.  The result is an application that exhibits minimal 
control flow, yet is powerful, robust, flexible and easy to 
maintain. 

Our work entails a non-trivial redesign of the current AP 
Computer Science Marine Biology Simulation case study and may 
serve as a case study for an introductory “object-first” curriculum. 

Categories and Subject Descriptors 
D.1.5 [Programming Techniques]: Object-oriented 
Programming. 

General Terms 
Design. 

Keywords 
AP Computer Science, object-first, design patterns, closure, inner 
class, lambda, abstract coupling, loose coupling, pedagogy. 

1. INTRODUCTION 
Starting in the 2003-2004 academic year, the AP Computer 
Science curriculum will migrate from C++ to Java with emphasis 
on object-oriented programming (OOP) [1].  This precipitates the 
need for first year college curricula to accommodate the upcoming 
crop of high school graduates with such AP credits.  In our effort 
to upgrade materials for our object-first introductory curriculum, 
we seek to develop a case study that, in order to be effective, must 
not only prove to be relevant and challenging, but also build on 

the student’s newly acquired understanding of Java and OOP. 

Since the AP Marine Biology Simulation (APMBS) case study [1] 
is required for all AP students, it is a good candidate for us to 
explore and expand.  This paper presents the result of our work: a 
similar application that, in comparison, puts much more emphasis 
on interfaces, abstract classes, design through abstract 
decomposition and polymorphism.  In the discussion that follows, 
we assume that the reader is familiar with the APMBS and the 
concepts of OOP, in particular those expressed in the common 
design patterns presented in [2]. 

We take the point of view that an OO program should use 
message passing and exploit polymorphism to keep procedural 
control flow to a minimum and, as a result, should be declarative 
in nature.  Loose and abstract coupling between collaborating 
objects is critical in building software that is correct, robust, and 
easy to maintain due to its flexibility and extensibility.  Our case 
study illustrates how design patterns help achieve these 
objectives. 

Section 2 presents the overall design of the system.  As a GUI 
application, it is based on the well-known model-view-controller 
(MVC) pattern.  The model itself is a system of cooperating 
objects that interact with each other at the highest level of 
abstraction by means of messages.  Section 3 illustrates how the 
loose and abstract coupling between objects facilitates the task of 
maintaining invariants to ensure correctness of the system 
behavior.  Section 4 discusses robustness.  To withstand misuse 
without sacrificing flexibility, robustness cannot simply be 
patched up by external control code but must be inherently 
supported by the system structure.  Section 5 demonstrates the 
flexibility and extensibility of the system.   

Interested readers can find the complete source code at 
http://www.exciton.cs.rice.edu/research/SIGCSE04. 

2. DESIGN OVERVIEW 
The overall specification of the Marine Biology Simulation 
(MBS) is too involved to completely describe in this short paper.  
We will present only some key requirements and an overview of 
the main architecture with a few highlighted implementation 
details. 

The MBS is to be a simulation of the movement of marine life 
(“fish” – though not technically restricted to such) in a 2-
dimensional environment.  Fish have a notion of direction and 
location at all times, though this does not imply that fish know 
where they are with respect to anything else in the simulation.  
Fish determine their own movement within the constraints 
imposed by their immediate surroundings.  For instance, a fish 
cannot move to a location that is blocked. 
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Figure 1 shows the UML class diagrams for the key classes in the 
simulation model.  Fish are the main acting agents in the 
simulation and are encapsulated in an abstract class called AFish.  
The possible actions of a fish depend not on the entire global 
environment, but only on the subset of that environment 
immediately around the fish, the “local environment”.  The local 
environment of a fish has knowledge of whether or not the space 
in front of a fish is open and is modeled by an interface called 
ILocalEnv.  A fish is only given access to an individualized 
ILocalEnv, which encapsulates coordinate position and direction 
and keeps them inaccessible to the fish.  UML sequence diagrams 
in Figure 2 and Figure 3 depict how a fish interacts with its local 
environment:  When a fish tries to move forward (tryMoveFwd) 
or spawn another fish (tryBreedFwd), it provides its private local 
environment with two actions, blockedCmd for when the 
forward path is blocked and openCmd for when it is open.  These 
actions are examples of “commands” in the command design 
pattern and are instantiated as anonymous inner objects of an 
interface called ILambda.  ILambda has one method, Object 
apply(Object param), and represents the abstract notion of 
functions.  The associated ILocalEnv either  

• calls blockedCmd.apply(null) or 
• instantiates an appropriate ILambda, moveCmd, and calls 

openCmd.apply(moveCmd).  The application of 
moveCmd, at the discretion of the fish, moves the fish by 
changing its associated local environment.  The moveCmd 
is a decorated ILambda which allows the environment to 
disable it and prevent its misuse. 

Passing commands as anonymous inner objects in the above 
protocol enables the fish to perform environment-dependent 

behaviors by cooperating with the local environment and yet 
remain only loosely coupled with it.  Below is a listing of the 
move method of a fish to provide an example of how command 
passing is used to control the movement of a fish.  This fish 
moves forward as long as the forward path is open and turns 
around 180 degrees if the path is blocked.  AFish.tryMoveFwd 
simply delegates the call to ILocalEnv.tryMoveFwd.  
AFish.tryMoveFwd is a final protected method to prevent the 
concrete fish subclass from directly accessing the local 
environment. 
/** 
 * Execute the movement part of a simulation step. 
 */ 
public void move() { 
    // attempt to move forward 
    tryMoveFwd(new ILambda() { 
        public Object apply(Object param) { 
            // cannot move forward 
            // turn PI radians 
            turnRight(Math.PI); 
            return null; 
        } 
    }, new ILambda() { 
        public Object apply(Object param) { 
            // can move forward, do it 
            ((ILambda)param).apply(null); 
            return null; 
        } 
    }); 
} 
The above code demonstrates how commands can be used to 
provide flexible yet decoupled communication in a secure and 
robust manner. 

 
Figure 1. Model Architecture. 



There are global constraints, though, that govern the behaviors of 
the local environments, e.g. discrete or continuous movement and 
boundary conditions, which can be encapsulated in a global 
environment class, AGlobalEnv.  Global environmental control 
also eases communication between local environments necessary 
to determine open vs. blocked conditions.  The visitor pattern 
allows the global environment to add, edit and locate fish: 
AGlobalEnv employs an ILocalEnvVisitor to perform the 
appropriate task depending on whether or not the local 
environment is attached to a fish. 

When a fish is initially created, it does not yet have a local 
environment, but it is already subject to global constraints. At the 
time the fish is added to the simulation, the global environment is 
asked to create a local environment for the fish that enforces such 
constraints; thus the global environment acts as a factory for 
ILocalEnv.  By creating the instances of ILocalEnv as inner 
objects, the local environments gain private access to the global 
environment. 

The MBS runs as a sequential synchronous process, where each 
agent (fish) is allowed to perform its behaviors once per time tick.  
Therefore AFish implements the Observer interface, which 
enables it to be connected to a central command dispatcher, 
SimEngine.  This class is independent of the simulation and 
serves only to send each agent an ILambda command that, when 
applied by the agent, will effect the desired behavior, e.g. acting 
or drawing.  An act command and a draw command are sent out 
by SimEngine to all fish at every time tick of the simulation.  
These commands are double-dispatching, akin to a degenerate, 
single-host visitor [3].  When the agent applies the command, it 
passes itself in as the input parameter.   The command’s apply 
method then calls the desired method on that particular fish, such 
as act() or draw().  This scheme provides a flexible, extensible 
and robust means of controlling the agents’ behaviors.  

To decouple the AGlobalEnv from the SimEngine, the 
SimDriver utilizes techniques similar to the command passing 
interactions between AFish and ILocalEnv described above.  The 
SimDriver needs to construct a compound ILambda from 
behaviors specified both in the environment and the driver itself, 
e.g. the environment’s ability to draw and the driver’s ability to 
notify the agents via the SimEngine.  This necessitates the use of 
a factory, which creates ILambdas from environmental data or 

behavior.  Space limitation prevents a detailed discussion of this 
process here. 

Figure 4 shows the overall model-view-controller (MVC) 
architecture of the MBS where 

• the view, MBSView, is the graphical use interface, 
• the model, is the main simulation driver, SimDriver, that 

coordinates the global environment and the simulation 
engine and 

• the controller, MBSController, is the coordinator that sets up 
the system and instantiates and installs the adapters needed to 
connect the view to the model. 

We now proceed to discuss our design in terms of correctness, 
robustness, flexibility and extensibility.  We also contrast it with 
the current APMBS to illustrate how our use of message passing, 
polymorphism and loose and abstract coupling leads to a design 
that meets the aforementioned criteria. 

3. CORRECTNESS 
Correctness of a program means the program behaves and 
performs as specified.  In order for a program to achieve 
correctness, it must maintain its invariants.  In the APMBS, the 
fish has a location that must always be synchronized with the 
location kept in the environment.  This replication of data 
produces a tight coupling between the two objects that makes 
enforcing the synchronization invariant difficult.  The 
responsibility for maintaining this invariant is partially assigned to 
the fish, which is a variant component of the system.  The 
designers of the system have no control over the variant code in 
different fish subclasses; therefore, it is impossible to a priori 
enforce the invariant and ensure program correctness. 

In contrast, in our design the coupling between the fish and its 
environment is loose and abstract.  The location is stored and 
managed by invariant code in the environment.  The fish does not 
have access to it and therefore is unable to do anything the 
environment does not specifically allow.  Thus, the environment 
strictly enforces its constraints, guaranteeing correct behavior. 

The command, factory and visitor patterns are crucial in creating 
the necessary decoupling to maintain invariance but still allow 
interaction.  Additionally, the null object pattern [4] provides 
well-defined behavior for uninitialized components. 

 
Figure 3. Command passing for moving into a blocked 

local environment. 

 
Figure 2. Command passing for moving into an open local 

environment. 



4. ROBUSTNESS 
Robustness is the ability to withstand abuses and other unexpected 
input while continuing to function in a well-defined manner. 

The APMBS imposes certain requirements, e.g. that fish can only 
move to adjacent locations or that the destination must not contain 
another fish, but does nothing to enforce them.  Since the fish are 
at liberty to violate these requirements, a maliciously or 
erroneously designed fish can crash the APMBS.  For instance, a 
fish that simply sets its location to valid but random coordinates 
clearly violates the adjacency requirement, yet is still accepted by 
the system even though it quickly crashes it.  Such a fish will not 
even compile in our system. 

The adjacency requirement in the APMBS, for example, exists 
only as a coding style stipulation and as after-the-fact value 
checks.  It is not intrinsically built into the system.  Inherent 
robustness is a result of clear delineations of responsibility and 
knowledge that are enforced by the very structure of the system.  
This prevents objects from performing operations that are outside 
their domain and removes the need for programmatic value 
checks.  In our system, the local environment encapsulates the 
movement information and behavior.  It simply provides a 
command to move a fish the proper amount forward.  The fish 
then can only use or ignore that command, either way, forcing it 
to be in accordance with the system’s requirements.  Such 
robustness is achieved by careful and precise analysis of the 
components of the original problem. 

Robustness without sacrificing a high degree of flexibility and 
extensibility requires loose and abstract coupling.  Loose coupling 
requires that objects interact with other objects at very high 
abstraction levels, preventing them from performing potentially 
dangerous low-level operations.  Once again, command, factory, 
and visitor patterns are central in creating the necessary 
abstraction. 

5. FLEXIBILITY AND EXTENSIBILITY 
A flexible system is easy to modify without breaking other 
components of the software; it has the proverbial capability to 
“bend without breaking.”  We can make reasonable changes to the 
system without breaking all the pieces of the system.  That is, a 
small change in one class only causes a manageable number of 
changes in other classes.   

An extensible system is easy to augment with new capabilities 
without modifying any of the existing components.  We should be 

able to add more (unforeseen) functionality to the system without 
incurring any changes to existing code. 

Both flexibility and extensibility are based upon modularity.  In a 
modular system the classes organized in a cohesive manner and in 
such a way that they can be developed and tested in small and 
independent units.  Flexibility and extensibility require 
modularity, but the reverse does not hold because code cannot 
simply be modularized in an ad hoc manner.  A system must be 
decomposed into the abstract representations of its components.  
Only if the modules represent the proper abstractions will 
flexibility and extensibility be achieved. 

There are numerous examples of proper abstraction leading to 
flexibility and extensibility in our MBS:   

• The menu options for simulation behavior are now 
commands and thus can be extended without necessitating 
changes in the control logic.  In the APMBS, on the other 
hand, if-statements have to be written for each option, forcing 
a change in the control logic whenever the options are 
changed. 

• Environments that are decoupled from the rest of the system 
mean that new and vastly different environments can easily 
be added, not only statically but also at runtime.  The process 
of creating a global environment is realized by a series of 
factory methods.  This factory-based process enables 
environments to create their own options panels, to use an 
arbitrary number of parameters and to bootstrap themselves. 
The APMBS lacks this capability and is rigid in that it 
restricts the environment to only quadrilateral bounded or 
unbounded regions. 

• Existing fish can run in wildly different environments, such 
as both discrete and continuous coordinate systems, even 
though they may have been programmed with only one 
system in mind.  The fish in the APMBS do not have this 
capability since the simulation is not scalable on the 
environment side.  Locations, for example, are hard-coded as 
pairs of integers for all environments, making it impossible 
to add environments with continuous movement. 

• Complex compound behaviors are easily achieved by 
composing the modularized behaviors in our system.  Since 
the fish and the environments are decoupled, a new fish or 
environment can be added without affecting the other class 
hierarchy. This results in a code complexity that scales 
linearly.  If the APMBS were to support more different kinds 
of environments, such as a non-discrete environment, the 

 
Figure 4. MVC Architecture. 



tight coupling would lead to changes in both hierarchies and 
quadratic growth. 

6. CONCLUSION 
The Marine Biology Simulation presented here is intended as a 
case study for use at or near the conclusion of an objects-first 
college-level introductory curriculum.  It is not intended as a tool 
for introducing object-oriented concepts.  Currently at our 
institution, at the end of our first year curriculum, we use a final 
project of similar complexity that requires the same level of 
OOP/OOD knowledge and skills.  Our plan is to replace the 
current final project with the MBS. 

We strongly believe that an objects-first approach that emphasizes 
abstract decomposition of problems, polymorphic flow control 
and delegation-model programming will properly prepare students 
for this case study as well as large-scale OOP.  This approach will 
equip the students with a solid foundation in programming and 
design fundamentals such as abstract classes and interfaces, 
separating the variant and invariant pieces of a problem, 
identification of responsibilities, and core design patterns such as 
command, state, composite, strategy, factory and visitor.  Our case 
study illustrates how object–oriented design using appropriate 
design patterns helps express real-world problems in declarative 
and abstract forms.  This reinforces the knowledge and skills 
learned throughout the course. 

It is very important to take students through the problem analysis 
portion of the development process.  In object-oriented design, a 
crucial ability is to be able to simply and clearly express the 
abstract interactions that are occurring.  It does not suffice to 
merely show students the code for an OO system such as the 
MBS.  Simple “make another one of these” programming 
assignments will not illuminate the true nature of the system.  

Uncovering the intrinsic way in which objects interact is a vital 
skill that OOP students need to develop.  The MBS is set up to  

lead students through hotly contested issues such as whether or 
not a fish “knows” its location.  In the end, the students discover 
that “location” is related to local environment-dependent 
behavior, not to an x-y coordinate value.  Debating how 
decoupled objects can cooperatively interact through abstract 
message passing is a very useful exercise to explore the nature of 
programming under the constraints of strictly delineated roles and 
responsibilities. 

The full power of OOP is not realized until the size of the problem 
or system grows beyond simple “toy” exercises.  In the beginning, 
students need to work with small, easily managed systems.  An 
objects-first approach can utilize scalable techniques that teach 
“coding in the large” concepts, but on a more comprehensible 
scale.  The MBS project immerses the students in sufficient 
complexity to accentuate the strengths of OOP.  The students 
easily see the power, utility, flexibility and scalability of the 
design.  The concepts running through the MBS are applicable in 
a diverse field of problems, which can strongly motivate students 
to expand their horizons and tackle larger, more complex 
problems. 
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