Scheduling Multithreaded Applications by Work Stealing

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu
The Challenge

• Efficiently execute a dynamic, multithreaded computation on a MIMD computer
 — parallelism not known a priori
 – dynamically grows and shrinks as computation unfolds
 – ill-suited to static scheduling
 — threads depend upon one another

• Scheduler goals
 — ensure that an appropriate # of threads are active at each step
 – enough to keep all processors busy
 — bound memory footprint of active threads
 — minimize interprocessor communication
 – keep related computations on same processor
Two Scheduling Paradigms

• Work sharing
 —migrate new threads to other processors that might be underutilized

• Work stealing
 —underutilized processors attempt to steal work from others

Intuition: thread migration is less frequent with work stealing

Why? When all processors have work
 work sharing migrates threads
 work stealing does not
History of Work Stealing

- Use of work stealing
 - 1981 Burton and Sleep: execution of functional programs on a virtual tree of processors
 - 1984 Halstead: Multilisp

- Analysis of work stealing
 - 1991 Rudolph, Slivkin-Allalouf, and Upfal: randomized work stealing for load balancing independent jobs
 - 1993 Karp and Zhang: randomized work stealing for backtracking search
 - 1994 Zhang and Ortynski: bounds on communication requirements for work stealing of backtracking search
Focus of This Work

- Fully-strict, multithreaded computations
 —includes backtrack search, divide & conquer, data flow
- Randomized work stealing
- Analysis of space, time, and communication of computations scheduled using randomized work stealing
Topics

- Graph model of multithreaded computations
- Simple scheduling algorithm using a central queue
- Work stealing scheduler based on “busy leaves” algorithm
- Atomic access model to analyze execution time and communication costs
A DAG Model for Multithreaded Computation

- **Thread**: sequential ordering of unit-time instructions
- **Dependency edges**: partial ordering on instructions
 - continue
 - **spawn** edges form a spawn tree
 - join

![Diagram of DAG model]

- child instruction can’t execute until after parent instruction completes
- spawn allocates activation frame for child
- at most one child for any v_i
- constant # incident joins
- root thread
- leaf threads
DAG Model Notes

- An instruction is ready if all its predecessors have executed
- A parent thread is alive until all its children die
 —its activation frame has the same lifetime
- Strict computation
 —all join edges from a thread go to an ancestor in the spawn tree
- Fully-strict computation
 —all join edges from a thread go to its parent in the spawn tree

Claim: any multithreaded computation that can be executed depth first can be made strict or fully strict without changing the semantics
DAG Performance Measures

- T_1 (work) = total number of instructions = 23
- T_∞ (critical path length) = longest path in DAG = 10
Greedy Scheduling

• Types of schedule steps
 — complete step
 – at least P threads ready to run
 – select any P and run them
 — incomplete step
 – strictly < P threads ready to run
 – greedy scheduler runs them all

• Theorem: On P processors, a greedy scheduler executes any computation G with work T_1 and critical path of length T_∞ in time $T_p \leq \frac{T_1}{P} + T_\infty$

• Proof sketch
 — only two types of scheduler steps: complete, incomplete
 — cannot be more than T_1/P complete steps, else work > T_1
 — every incomplete step reduces remaining critical path length by 1
 – no more than T_∞ incomplete steps
Efficient Greedy Schedules

- Execution time for greedy schedule: $T_p \leq T_1/P + T_\infty$
- Interested in schedules that achieve linear speedup, $O(T_1/P)$
- Linear speedup occurs when $T_1/P >> T_\infty$, i.e., $T_1/T_\infty = \Omega(P)$
 —namely, T_1/T_∞ is bounded from below by P
 —“parallel slackness”
Space for a Multithreaded Computation

- Stack depth of a thread
 —sum of the sizes of all its ancestors, including itself

- $S_1 =$ minimum possible space for a 1-processor execution
 —stack depth of the execution

- Let $S(x)$ be space for P-processor execution of schedule x of a multithreaded computation

- Interested in execution schedules that exhibit at most a linear expansion of space, i.e., $S(x) = O(S_1 P)$
Busy Leaves

- In a strict computation
 - once a thread Γ as been spawned
 - a single processor can complete the computation rooted at Γ
 - even if no other thread makes any progress

- Corollary
 - there is always one ready thread in computation Γ that is ready

- No leaf thread in a strict multithreaded computation can stall
 - enables a multithreaded computation to keep leaves busy

Greedy schedule + busy leaves = schedules that achieve linear speedup and linear expansion of space
Busy Leaves Algorithm

- On line algorithm: executes each step w/o knowledge of future
- Maintain all live threads in a single pool, available to all P
 — spawn: add new thread to pool
 — work step: remove ready thread from pool
- Start with root thread in global pool, all processors idle
- At beginning of each step, each processor is idle or has work
- Each idle thread attempts to remove a ready thread from pool
 — if enough threads in pool, each processor gets one
- Each processor with a thread executes next instruction in thread until spawn, stall, or die
Busy Leaves Algorithm

- **Spawn**: if a thread spawns a child in a step
 - finish step by returning parent thread to pool
 - begin next step working on child thread

- **Stall**: if a thread stalls
 - finish step by returning current thread to pool
 - begin next step idle

- **Die**: If a thread dies in a step
 - finish step by checking if parent thread has any living children
 - if parent has no living children, begin next step executing parent
 - else begin next step idle
Busy Leaves Example

Two processor execution

<table>
<thead>
<tr>
<th>step</th>
<th>thread pool</th>
<th>processor activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>p_1</td>
</tr>
<tr>
<td>1</td>
<td>Γ_1</td>
<td>v_1</td>
</tr>
<tr>
<td>3</td>
<td>Γ_2</td>
<td>Γ_3: v_4</td>
</tr>
<tr>
<td>5</td>
<td>Γ_1</td>
<td>Γ_2: v_5</td>
</tr>
<tr>
<td>6</td>
<td>Γ_1</td>
<td>Γ_2: v_6</td>
</tr>
<tr>
<td>7</td>
<td>Γ_1</td>
<td>Γ_2: v_7</td>
</tr>
<tr>
<td>8</td>
<td>Γ_2</td>
<td>Γ_1: v_{21}</td>
</tr>
<tr>
<td>9</td>
<td>Γ_1</td>
<td>Γ_2: v_9</td>
</tr>
<tr>
<td>10</td>
<td>Γ_1</td>
<td>Γ_5: v_{10}</td>
</tr>
<tr>
<td>11</td>
<td>Γ_1</td>
<td>v_{11}</td>
</tr>
<tr>
<td>12</td>
<td>Γ_2</td>
<td>v_{12}</td>
</tr>
<tr>
<td>13</td>
<td>Γ_1</td>
<td>Γ_2: v_{15}</td>
</tr>
<tr>
<td>14</td>
<td>Γ_1</td>
<td>v_{23}</td>
</tr>
</tbody>
</table>

Properties: greedy; maintains “busy leaves” - every leaf has a processor working on it in every step it is live
Busy Leaves Properties

• Lemma 2 For any multithreaded computation with stack depth S_1, any P processor schedule x that maintains busy leaves has space $S(x) \leq S_1P$
 — each spawn subtree has at most P leaves at time t
 — for each leaf, space used by it and ancestors is at most S_1
 — therefore, space in use at any time is at most S_1P

• Theorem 3 For any number P of processors, and any strict multithreaded computation with work T_1, and critical path T_∞ and stack depth S_1, busy leaves algorithm computes an execution schedule x that satisfies $T(x) \leq T_1/P + T_\infty$ and whose space satisfies $S(x) \leq S_1P$
 — time bound follows from greedy schedule theorem
 — space bound follows from Lemma 2

• Weakness of busy leaves: centralized queue
Randomized Work Stealing

- Each processor maintains a ready deque, with top & bottom
 - local thread pushes and pops at bottom
 - steals occur at top
- Spawn: if a thread spawns a child in a step
 - return parent thread to bottom of ready deque
 - begin next step working on child thread
- Stall: if a thread stalls
 - check ready deque
 - if non-empty, begin work on bottom thread
 - else, begin work on thread stolen from top of randomly chosen deque
- Die: If a thread dies in a step, follow rule for stall
- Enable: if a thread enables another, place the enabled thread on the bottom of the processor’s ready deque
- Note: a thread can simultaneously enable a stalled thread, and stall or die
Lemma 4: For $k > 0$, threads in a ready deque satisfy:

— for $i=1,2,...,k$, thread Γ_i is the parent of Γ_{i-1}

—if we have $k > 1$, then for $i=1,2,...,k-1$, thread Γ_i has not been worked on since it spawned Γ_{i-1}

Proof: Induction on execution time. Initially, root thread in some processor’s deck. All others empty. The lemma holds initially and the execution rules preserve the lemma (see paper for details).
Space Bound of Work Stealing

• Theorem 5: For any fully strict multithreaded computation with stack depth S_1, the work stealing algorithm run on P processors uses at most $S_1 P$ space

• Proof
 — enough to prove work stealing algorithm maintains busy leaves
 — at every time step, every leaf must be ready, so it is either
 – in the ready deque
 – has a processor working on it
 — Lemma 4 guarantees that no leaf sits in the ready deque while a processor works on another thread
Main Result

- If requests are
 - made randomly by P processors to P deques
 - each processor has at most one outstanding request

- then, total amount of time processors spend waiting for their requests to be satisfied is likely to be proportional to the total number M of requests
 - no matter which processors make the requests
 - no matter how the requests are distributed over time

- Proof by balls and bins game
(P,M) Recycling Game

- P: # balls in the game, which is equal to the # of bins
- M: total # ball tosses executed by the adversary

Game rules
- adversary removes some balls in the reservoir, tosses each ball to a bin, which is selected uniformly and independently at random
- for each bin that has at least one ball, adversary removes any one of the balls in the bin and returns it to the reservoir

Model servicing of steal requests
- each ball and each bin owned by distinct processor
- if ball is in reservoir: owner is not making steal request
- ball in bin: owner has made steal request to bin’s owner
- ball removed from bin and returned to owner: request serviced
Contestation Delay Analysis

- n_t denotes # balls left in the bins at step t
- Delay of a ball r is a random variable that denotes the total number of steps that finish with ball r in a bin
- Define the total delay $D = \sum_{t=1,T} n_t$
- Goal of adversary: maximize D
- Lemma 6
 —for any $\varepsilon > 0$, with probability at least $1 - \varepsilon$, the total delay of the (P, M) recycling game is $O(M + P \lg P + P \lg (1/\varepsilon))$, and the expected total delay is at most M
Atomic Accesses

• Assumption: concurrent accesses to a data structure are serially queued by an adversary

• If concurrent steal requests are made to a deque, in one time step
 — one request is satisfied
 — others are queued by an adversary

• Adversary cannot choose to serve none if there is at least one request
Execution Time Analysis

• At each step, we collect P dollars, one from each process

• At each step, each processor places its dollar in one of three buckets
 —if it executes an instruction, put it in the WORK bucket
 —if it executes a steal, put it in the STEAL bucket
 —if it waits, put it into the WAIT bucket

• Lemma 7
 —The execution of a fully strict computation with work T_1 by the work stealing algorithm on a computer with P processors terminates with exactly T_1 dollars in the WORK bucket.

• Lemma 12
 —For any epsilon > 0, with probability at least 1 - ε, at most $O(P(T_\infty + \log(1/\varepsilon)))$ work steal attempts occur. The expected number is $O(PT_\infty)$.
Contributions

Randomized work stealing algorithm for fully strict computations

• Provably efficient in time, space, and communication
 —expected running time = $T_1/P + O(T_\infty)$
 - T_1 is the serial time
 - T_∞ is the minimum execution time on an infinite number of processors
 —space bound = S_1P
 - S_1 is the minimum serial space
 - better than previous bound for work stealing
 helped in part by fully-strict model of computation
 —expected total communication is at most $O(P T_\infty(1+n_d)S_{\text{max}})$
 - S_{max} : size of the largest activation record of any thread
 - n_d : maximum number of times any thread synchronizes with its parent
 - bound justifies intuition that work stealing has less communication than work sharing

• Results are practical and the basis for Cilk’s scheduler

• Next two slides provide examples that show these bounds apply in practice
knary(k,n,r) benchmark: generates a tree of branching factor k, depth n, first r children at every level are executed serially

\[\frac{(T_1/T_p)}{(T_1/T_\infty)} \]

Measured Value: +

- Model 1: \(1.000 \cdot T_1/P + 1.000 \cdot T_\infty\)
- Model 2: \(1.000 \cdot T_1/P + 2.000 \cdot T_\infty\)
- Curve Fit: \(0.954 \cdot T_1/P + 1.540 \cdot T_\infty\)
Work Stealing Performance: Socrates

\[
\frac{(T_1/T_p)}{(T_1/T_\infty)}
\]

\[
P/(T_1/T_\infty)
\]

![Graph showing normalized speedup versus normalized machine size with comparison to theoretical bounds.]

Measured Value: +

- Model 1: \(1.000 \cdot T_1/P + 1.000 \cdot T_\infty\)
- Model 2: \(1.000 \cdot T_1/P + 2.000 \cdot T_\infty\)
- Curve Fit: \(1.067 \cdot T_1/P + 1.042 \cdot T_\infty\)