Last Class

- Worklist iterative algorithm for data-flow analysis
- Series of data-flow problems
 - LIVE, AVAIL, VERYBUSY, CONSTANTS
 - Example of non-distributive framework – CONSTANTS
 - Example of non-rapid framework – Interprocedural MOD

If we continue along this direction, the compiler solves one data-flow problem per transformation. Instead, we would like to solve one data-flow problem and use it for multiple transformations.

Instead, the community invented information chains
Information Chains

A tuple that connects 2 data-flow events is a *chain*

- Chains express data-flow relationships directly
- Chains provide a graphical representation
- Chains jump across unrelated code, simplifying search

We can build chains efficiently

Four interesting types of chain

<table>
<thead>
<tr>
<th>Source</th>
<th>Sink</th>
<th>Dependence Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>def</td>
<td>use</td>
<td>true, flow</td>
</tr>
<tr>
<td>use</td>
<td>def</td>
<td>anti</td>
</tr>
<tr>
<td>def</td>
<td>def</td>
<td>output</td>
</tr>
<tr>
<td>use</td>
<td>use</td>
<td>input</td>
</tr>
</tbody>
</table>

Def-Use chains are the most common

Example

```
 a ← 5
 b ← 3
 c ← b + 2
 d ← a - 2
 e ← a + b
 e ← e + c
 e ← 13

 f ← 2 + e
 Write f
```

d is dead
It has no use

def-use chains
Notation

Assume that, \(\forall \) operation \(i \) and each variable \(v \),

- \(\text{DEFS}(v,i) \) is the set of operations that may have defined \(v \) most recently before \(i \), along some path in the CFG
- \(\text{USES}(v,i) \) is the set of operations that may use the value of \(v \) computed at \(i \), along some path in the CFG

\[x \in \text{DEFS}(A,y) \iff y \in \text{USES}(A,x) \]

To construct \(\text{DEF-USE} \) chains, we solve \textit{reaching definitions} (\textit{YADFP})

- A definition \(d \) of some variable \(v \) \textit{reaches} an operation \(i \) if and only if \(i \) reads \(v \) and there is a \(v \)-clear path from \(d \) to \(i \)
 - \(v \)-clear \(\Rightarrow \) no definition of \(v \) on the path
- Prior definition of \(v \) in same block \(\Rightarrow |\text{DEFS}(v,i)| = 1 \)
- No prior definition \(\Rightarrow |\text{DEFS}(v,i)| \geq 1 \)

The chains are non-local in this case

Reaching Definitions

The equations

\[\text{REACHES}(n) = \emptyset, \forall \ n \in \mathcal{N} \]

\[\text{REACHES}(n) = \bigcup_{p \in \text{preds}(n)} \text{DEDEF}(p) \cup (\text{REACHES}(p) \cap \text{DEFKILL}(p)) \]

- \(\text{REACHES}(n) \) is the set of definitions that reach block \(n \)
- \(\text{DEDEF}(n) \) is the set of definitions in \(n \) that reach the end of \(n \)
- \(\text{DEFKILL}(n) \) is the set of defs obscured by a new def in \(n \)

Computing \(\text{REACHES}(n) \)

- Use any data-flow method (\textit{rapid framework})
- Zadeck shows a simple linear-time scheme

\[\text{F.K. Zadeck, “Incremental data-flow analysis in a structured program editor,”} \textit{Proceedings of the SIGPLAN 84 Conf. on Compiler Construction}, \text{June, 1984, pages 132-143.} \]
Building DEF sets

The Plan
1. Find basic blocks & build the CFG
2. \(\forall \) block \(b \), compute \(\text{REACHES}(b) \) (to the fixed point)
3. \(\forall \) block \(b \), \(\forall \) operation \(i \), \(\forall \) referenced name \(v \),
 Set \(\text{DEFS}(v,i) \) according to the earlier rule
 A.) If there is a prior definition, \(d \), of \(v \) in \(b \)
 \(\text{DEFS}(v,i) \leftarrow d \)
 B.) Otherwise
 \(\text{DEFS}(v,i) \leftarrow \{ d \mid d \text{ defines } v \text{ & } d \in \text{REACHES}(b) \} \)

To build USES
- Invert \(\text{DEFS} \), or
- Solve reachable uses, and use the analogous construction

Building DEF-USE Chains

Miscellany
- Domain of \(\text{REACHES} \) is the set of definitions \(\left(\propto |\text{operations}| \right) \)
- Domain of \(\text{DEFS} \& \text{USES} \) is also definitions
- Need a compact representation of \(\text{DEFS} \& \text{USES} \)

Detecting Anomalies
- \(\text{DEFS}(v,i) = \emptyset \) implies use of a never initialized variable
- Add a definition for each \(v \) to \(n_0 \) to detect larger set of anomalies
 - If initial def \(\in \text{DEFS}(v,i) \) then \(\exists \) a path to \(i \) with no initialization

And, how do we use these information chains?
Constant Propagation over DEF-USE Chains

Worklist ← ∅

while (Worklist ≠ ∅)
remove a definition i from WorkList
for each j ∈ USES(out, i)
set x so that out of i is in of j
Value(in₁,i) ← Value(in₁,j) ∧ Value(out,i)

if (Value(in₁,i) is a constant & Value(in₂,i) is a constant)
then Value(out,i) ← evaluate op i
Worklist ← Worklist ∪ { i }
else Value(out,i) ← T

Optimism

Initializations

Prior version used ⊥ (implicit)

In general

• Optimism helps inside loops
• Largely a matter of initial value

Constant Propagation over DEF-USE Chains

Complexity

• Initial step takes $O(1)$ time per operation
• Propagation takes
 > $|USES(v, i)|$ for each i pulled from Worklist
 > Summing over all ops, becomes $|edges$ in DEF-USE graph$|$
 > A definition can be on the worklist twice (lattice height)
 > $O(|operations| + |edges$ in DU graph$|)$

This approach (on a sparse graph) is faster than the straightforward iterative approach in the Kildall style

Reminder of last lecture

Constant Propagation (Classic formulation)

Transformation: Global Constant Folding

• Along every path to p, v has same known value
• Specialize computation at p based on v's value

Data-flow problem: Constant Propagation

Domain is the set of pairs $<v_i, c_i>$ where v_i is a variable and $c_i \in C$

$$CONSTANTS(b) = \bigwedge_{p \in \text{preds}(b)} f_p(CONSTANTS(p))$$

• \bigwedge performs a pairwise meet on two sets of pairs
• $f_p(x)$ is a block specific function that models the effects of block p on the $<v_i, c_i>$ pairs in x

Constant propagation is a forward flow problem
Example

Meet operation requires more explanation

- \(c_1 \land c_2 = c_1 \) if \(c_1 = c_2 \), else \(\perp \) (bottom & top as expected)

What about \(f_p \) ?

- If \(p \) has one statement then

 \[
 x \gets y \text{ with } \text{CONSTANTS}(p) = \{\ldots<x,l_1>,\ldots<y,l_2>,\ldots\}
 \]

 then \(f_p(\text{CONSTANTS}(p)) = \text{CONSTANTS}(p) - <x,l_1> + <x,l_2> \)

- If \(p \) has \(n \) statements then

 \[
 f_p(\text{CONSTANTS}(p)) = f_n(f_{n-1}(f_{n-2}(\ldots f_2(f_1(\text{CONSTANTS}(p)))\ldots)))
 \]

 where \(f_i \) is the function generated by the \(i \)th statement in \(p \)

Constant Propagation over DEF-USE Chains

Complexity

- Initial step takes \(O(1) \) time per operation

- Propagation takes

 - \(|\text{USES}(v,i)| \) for each \(i \) pulled from Worklist

 - Summing over all ops, becomes \(|\text{edges in DEF-USE graph}| \)

 - A definition can be on the worklist twice (lattice height)

 - \(O(|\text{operations}| + |\text{edges in DU graph}|) \)

Can we do better?

- Not on the def-use chains …

- Would like to compute \(\land \) when new values are “born”

 - Where control flow brings chains together …
Constant Propagation over DEF-USE Chains

Birth points

We should be able to compute the values that we need with fewer meet operations, if only we can find these birth points.

- Need to identify birth points
- Need to insert some artifact to force the evaluation to follow the birth points
- Enter Static Single Assignment form

Constant Propagation over DEF-USE Chains

Making Birth Points Explicit

There are three birth points for x
Constant Propagation over DEF-USE Chains

Making Birth Points Explicit

Each needs a definition to reconcile the values of x

- Insert a ϕ-function at each birth point
- Rename values so each name is defined once
- Now, each use refers to one definition

\Rightarrow Static Single Assignment Form

Constant Propagation over DEF-USE Chains

Making Birth Points Explicit

How do we build SSA form?

- Simple algorithm
 1. Insert a ϕ at each join point for each name
 2. Rename to get single definition & single use

This produces

- Correct SSA form
- More ϕ's than any other known algorithm for SSA construction

The rest is optimization (!)

Next class:

SSA Construction

COMP 512, Spring 2009