
Adaptive Optimizing Compilers for the 21st Century

Keith D. Cooper Devika Subramanian Linda Torczon

Department of Computer Science
Rice University

6100 Main Street, MS 132
Houston, TX 77005

Abstract

Historically, compilers have operated by applying a fixed set of optimizations in a predetermined
order. We call such an ordered list of optimizations a compilation sequence. This paper describes a
prototype system that uses biased random search to discover a program-specific compilation sequence
that minimizes an explicit, external objective function. The result is a compiler framework that adapts
its behavior to the application being compiled, to the pool of available transformations, to the objective
function, and to the target machine.

This paper describes experiments that attempt to characterize the space that the adaptive compiler
must search. The preliminary results suggest that optimal solutions are rare and that local minima
are frequent. If this holds true, biased random searches, such as a genetic algorithm, should find good
solutions more quickly than simpler strategies, such as hill climbing.

1 The Changing Landscape

Each year, microprocessors, microcontrollers, and other computing engines find application in new areas.
The number of computers in use is growing rapidly, as is the diversity of those systems. The variety among
processors—different instruction sets, different performance parameters, different memory hierarchies—is
increasing. Even commodity microprocessors come in low-power versions, embedded versions, and a variety
of high-performance versions; the performance parameters of these versions can differ widely. Processors
have also grown more complex, with multiple functional units, exposed pipelines, and myriad latencies that
must be managed. In most cases, these computers execute code produced by a compiler—a translator that
consumes source code and produces equivalent code for some target machine.

At the same time, the application of computing to new problems has created demand for compilers that
optimize programs for new criteria, or new objective functions. In the 1980s and the early 1990s, the speed
of compiled code was the dominant concern of users. In the late 1990s, the size of compiled code became
an issue, driven by limited memory in embedded systems and by the importance of compiled applications
transmitted over the Internet. The rise of embedded systems has also sparked interest in compiler techniques
that can reduce the power consumed during execution [27, 28, 4, 15]. The classic approach to the appearance
of a new objective function has been to formulate new transformations and add them to the optimizer.

The community has been building optimizing compilers for forty years. We know how to build optimizing
compilers that produce efficient code for a single uniprocessor target. We can do this for most modern
processors. We have learned to build compilers that are easier to retarget but produce less optimized
code. Such “retargetable” compilers are used in many situations where the economics cannot justify a large
standalone compiler effort. What we have not developed is an economical way to produce high-quality
compilers for a wide variety of target machines.1 Unfortunately, we have also learned that building high-
quality compilers is expensive, primarily because it requires years of effort by experts, who are usually in
short supply.

1The resources devoted to compiler development vary widely. Contrast, for example, the excellent code produced by the compiler
for Cray’s (Tera’s) Mta architecture (with 1 or 2 installed systems) against the code quality achieved by typical compilers for
Pentium-based systems (with a huge number of installed units).

1

Keith Cooper
This paper will be presented at the Los Alamos Computer Science Institute's 2001 Symposium, October 2001, in Santa Fe, NM, USA.

-source

code
- - - - - - - - - - - - - - - - - - - -target

code

Front End Back EndOptimizer

Figure 1: Classic Compiler Structure

This paper describes a framework for implementing optimizing compilers that will easily and automat-
ically adapt their behavior to the circumstances under which they operate—to different applications, to
different target-machine performance parameters, to different sets of transformations, and to different objec-
tive functions for optimization. Our goal is to change the economics of producing high-quality compilers in a
fundamental way—by automating much of the work required to tune a compiler for new circumstances—and
make it possible to build retargetable compilers that produce excellent code.

Today, we are exploring these ideas in a research compiler. We expect that, within five years, the combi-
nation of faster processors and better understanding will make adaptive compilation fast enough for routine
use. These same improvements will then let us apply these ideas to harder problems in compilation, such as
selecting the best strategy for data distribution and parallelization (using fast performance estimators).

2 A New Structure for Compilers

Since the 1960s, compilers have consisted of a fixed sequence of passes, applied in some preselected order,
as shown in Figure 1. The compiler runs through the same sequence of passes on every input program. For
example, the original Fortran translator had six passes [3, 2], the classic Fortran H compiler had ten [18, 23],
and the Bliss-11 compiler had seven [31]. Ibm’s Pl.8 compiler [1] and Hp’s compiler for the pa-risc [14]
also followed this same basic organization. Modern systems retain this basic structure, with more passes.
For example, the Suif compiler has eighteen or more passes for its optimizer [16], and the recently released
Pro64 compiler from Silicon Graphics has over twenty passes [25]. These compilers differ in the number of
passes, the selection of specific algorithms for these passes, and the order of application for those passes, but
their basic structure remains the same.

The choice of specific transformations and an order for their application play a major role in determin-
ing the effectiveness of an optimizing compiler. We call an ordered list of transformations a compilation
sequence. Since the 1960s, compiler writers have chosen compilation sequences in an ad hoc fashion, guided
by experience and limited benchmarking. Efforts to find the “best” sequence have foundered due to the
complexity of the problem. Transformations both create and suppress opportunities for other transforma-
tions. Different techniques for the same problem catch different subsets of the available opportunities. (For
example, different ways of performing redundancy elimination miss different cases [6].) Finally, combinations
of techniques can achieve the same result as some single techniques.

Unfortunately, the best compilation sequence depends on many factors, including: 1) the specific details of
the code being compiled, 2) the pool of available transformations, 3) the target machine and its performance
parameters (which vary from model to model), and 4) the particular aspect of the code that the user desires to
improve (speed, space, power, page faults, etc). Classic compilers try to address the second and third factors
through design-time decisions, but ignore the first and last. This makes it difficult to predict the impact
that changes in the compilation sequence will have on the compiled code. Today, we lack the knowledge to
analytically predict the results of a particular sequence in a particular set of circumstances; this prevents
a purely analytical process from deriving good code sequences. In this paper, we describe a new approach

2

-source

code
- - - - - - - -target

code

Front End Back End

'

&

$

%Pool of Transformations

Steering Algorithm

6
@

@I
�
�� A

AK
�
��

HH
HHY

��
��*

Objective
Function

�� Measured results

Figure 2: Structure of the new compiler

to structuring compilation that promises to simplify the construction of high-quality optimizing compilers
across a wide variation in all four of these factors.

Our new system, shown in Figure 2, replaces the fixed-order optimizer with a pool of transformations, a
steering algorithm, and an explicit, external objective function. The steering mechanism selects a compilation
sequence and compiles the program with that sequence. The compiler evaluates the objective function
on the resulting target-machine program. The measured results serve as input to the steering algorithm,
allowing it to refine its choices and to explore the space of possible compilation sequences. Through repeated
experiments, the steering algorithm discovers a compilation sequence that minimizes the objective function,
given the source code, the available transformations, and the target machine.

This approach addresses one of the fundamental challenges in the design and implementation of an
optimizing compiler—choosing a specific set of transformations and an order of application for them—by
computing the solutions. It relies on the speed of modern computers to replace the fixed-order compiler of
the 1960s with a structure that adapts to new performance parameters, new input programs, new transfor-
mations, and new objective functions. It applies inexpensive cycles to solve a problem in compiler design
that has defied both theory and practice for forty years. It makes the compiler’s objective function ex-
plicit, changeable, and multi-dimensional rather than implicit, fixed, and one-dimensional. The resulting
compilers can optimize for a variety of objectives (including running time, code size, page faults, and energy
consumption) and for combinations of those objectives.

We have done preliminary experiments using a particular search technique to find program-specific com-
pilation sequences [9, 24]. To date, we have experimented with objective functions that optimize for code size
(generating compact executables), that optimize for speed (generating fast code), and that optimize for a
property related to power consumption (generating power-efficient code). In this paper, we describe the com-
putation of the best compilation sequence as a sequential search problem. We then show that biased-random
sampling of the combinatorial space of possible compilation sequences is an effective means of finding good
solutions. The following sections describe our approach, related prior work, and our preliminary experimental
results in more detail.

3 Searching for Compilation Sequences

Currently, most effective compilers include ten to twenty transformations, drawn from the hundreds that have
been proposed in the literature. Picking the best compilation sequence for a specific program and a given
objective function is hard: 1) there is little theoretical understanding of the effect of particular compilation
sequences on the external objective function, and 2) the space of compilation sequences is too large for
approaches relying on exhaustive search. Most compilers offer a small number of compilation sequences (-O1,

3

-O2, -O3, . . .) discovered manually by designers. If none of these sequences is a good fit to the application or
the user’s real performance goals, the user has no recourse.2

Picking compilation sequences is an instance of a family of combinatorial problems called sequential
decision-making problems. These problems have the following properties:

• Solving a problem requires making a sequence of decisions.
• The effect or outcome of each decision is a function of decisions made in the past as well as other
random factors not entirely within the decision-maker’s control.

• A decision made at a given point in time alters the set of choices for the future. At each step, the
future impact of a decision must be considered.

• The objective function depends in a complex way on the interactions between the individual decisions
and their stochastic outcomes.

The problem of finding compilation sequences for specific circumstances is such a problem. The traveling
salesman problem (tsp) and other discrete combinatorial optimization problems are also members of this
problem class. The standard approach to solving these problems uses deterministic or stochastic dynamic
programming. Since traditional dynamic programming implementations need excessive amounts of space,
complete search algorithms (e.g., branch and bound algorithms for tsp) are used. Complete search algorithms
guarantee a globally optimal solution. However, they are only practical for problems where effective pruning
techniques are known. For example, the available theory on tsp permits the design of efficient heuristics
(e.g., the Lin-Kernighan heuristic) that prune unpromising paths early in the search. Unfortunately, too
little is known about picking compilation sequences to enable this kind of early pruning. Without deeper
analytical understanding, the search cannot differentiate between promising and unpromising subsequences.

Biased Random Sampling A key insight behind our approach is the use of randomization in the explo-
ration of good compilation sequences. We design adaptive sampling algorithms that learn to construct good
sequences by randomly sampling and evaluating them; by keeping statistics on how the various sequences
perform with respect to the external objective function; and by using these statistics to guide future sam-
pling. This is the paradigm of biased-random search or biased-random sampling. Initially, the algorithm
performs a random walk in the space of all sequences, because, in the absence of any information, they
all appear equally promising. As more sequences are sampled and evaluated, the search algorithm builds
a probabilistic model relating subsequences to their evaluation, and biases the sampling strategy by these
probabilities. Regions that yield unpromising results are sampled less often than regions that yield more
promising results.

This adaptive, biased, randomized sampling strategy is the best that we can do without heuristics for
pruning, and without (partial) analytical models of the interactions between sequence elements. The method
performs better than pure random walk strategies. In our experiments that generated compilation sequences
with a genetic algorithm (one kind of biased random sampler), we compared the rate of convergence of the
genetic algorithm’s search against that of an unbiased random walk strategy. The genetic algorithm found
the “best” solution with far fewer probes than random sampling [9, § 4.3].

From a practical perspective, adaptive biased randomized sampling is an anytime algorithm. Because
it retains the best result that it has seen, it can be stopped at any time. This lets us construct stopping
criteria based on practical considerations such as resource limits and rate of change in solution quality. For
example, a wall-time limited search will still return the best solution that it has discovered.

2Compilers used in benchmarking—an activity that directly affects sales of computers—often have myriad flags that let a
benchmarking specialist hand-tune the compiler’s behavior for a specific program. The effective use of these flags, individually
and in combination, requires in-depth knowledge of both the compiler’s inner workings and the application being compiled.
This is precisely the sort of tuning that can and should be automated to make it routinely available to all users!

4

The general schema for adaptive, biased, randomized sampling includes a wide range of specific algo-
rithms from applied mathematics and artificial intelligence. Examples include parallel direct search [10, 29],
iterative repair [20, 26], algorithm selection by statistical sampling of search trajectories [17], and genetic
algorithms [13]. These methods differ in how they use information from past searches to generate new can-
didate solutions, and how they choose starting points. Most of these techniques come with guarantees of
convergence to local optima.

The Case for Biased Random Sampling In designing our prototype adaptive compiler, we chose
to use biased-random sampling as a paradigm rather than pursuing an analytical technique to derive the
appropriate transformation sequence.3 If the compiler could predict, with reasonable accuracy, the impact
of a specific compilation sequence on a specific program in a given execution context, it would open up other
avenues of research for us to pursue.

Two factors make such predictions difficult and inaccurate today.

• The improvement from a given transformation, in isolation, varies widely as a function of detailed
properties of the input program. An optimization targets specific opportunities; it can only improve the
code if those opportunities exist. To estimate its impact with any accuracy, the estimator would need to
discover those sites where the transformation applies and estimate each site’s impact on execution time.
Finding those sites is a large part of the transformation’s work; in most cases, the cost of an accurate
estimator would be roughly the same as the cost of performing the transformation. To complicate
matters further, transformations sometimes produce negative results; for example, Briggs and Cooper
reported improvements ranging from +49% to -12% for their algebraic reassociation technique [5].

• The interactions between transformations and their overlapping effects make isolated predictions inac-
curate. Consider trying to predict the improvement that will accrue from performing transformation
B in the compilation sequence ABC. The predictor could determine the number of occurrences of
code sequences that B can improve and it can estimate how often they execute. However, A might
rewrite the code to eliminate these opportunities, or it might move them to places where they execute
less often. Similarly, B might eliminate opportunities for C or create situations where C’s efforts are
counter-productive. To perform accurate prediction, the predictor must operate on the code that is
input to the transformation—the result of all previous transformations in the sequence. This fact,
alone, makes accurate standalone prediction as expensive as actually compiling the code.

Until we understand much more about the behavior of optimizations in their compile-time context, analytical
prediction of the behavior of sequences will remain impractical.

The principal argument against our sampling-based approach is its expense. Most of that cost accrues
in the evaluation of proposed sequences. We are exploring techniques for approximations and proxies that
estimate the behavior of a given sequence from the available evaluations of other related sequences. However,
we recognize that the behavioral complexity of the optimizer may preclude the development of efficient
approximators. Our approach is fast enough for a research compiler today. In five years, the combination
of faster computers and better understanding of these adaptive compilers will allow routine use of such
techniques in commercial compilers, and let researchers apply them to even harder problems in compilation
such as strategies for data distribution and parallelization.

3The analytical approach has had limited success; for example, Lam et al. recast loop transformations to improve memory
behavior into a framework of unimodular transformations and were able to analytically derive an appropriate sequence [30].
However, their model included a limited set of transformations that attacked a single problem—cache locality—with a single
objective function. No generalization to include arbitrary optimization techniques has been proposed.

5

4 Related Prior Work

Previous attempts at building adaptive compilers [21] have focused on feeding dynamic profile information
from program execution back into the compiler to guide optimization. Other attempts to use search in opti-
mization include Nisbet’s system, which used genetic algorithms in an attempt to parallelize loop nests [22,
11], and Massalin’s Superoptimizer, which used exhaustive search in an attempt to perform optimal instruc-
tion selection [19]. Nisbet’s system was ineffective, probably because search was not a good fit to his problem.
Massalin’s technique produced good results, but was too expensive for routine use. Granlund and Kenner
adapted Massalin’s ideas to produce a design-time tool that generates assembly sequences for use in Gcc’s
code generator [12]. Our preliminary work using a genetic algorithm to find compilation sequences suggests
that search is a good fit to the problem and that adaptive randomized sampling can yield good results in a
reasonable amount of time.

5 Preliminary Experimental Results

We have built a preliminary system that uses biased random sampling to search for a compilation sequence
that minimizes an external objective function. We have tested the system with two different sampling
methods: genetic algorithms and hill climbing with randomized restarts. We have implemented three distinct
objective functions:

1. Code size: This work was motivated by the need for compact code in embedded systems. Rather
than compressing the code resulting from a standard compilation, we used a genetic algorithm to find
compilation sequences that produced smaller code [9]. Search-based compilation resulted in code that
was, on average, 13% smaller than the code produced by the compiler’s original optimization sequence.
Because we broke ties in favor of speed, the resulting code code was typically faster than the code
produced by the original sequence.

In contrast, adding direct compression (based on suffix trees and procedure abstraction) to the original
compiler produced about a 5% reduction in code size [8]. Thus, search-based compilation shrank the
code about 2.5 times more than the direct technique. Furthermore, procedure abstraction must slow
down the code. In contrast,the compilation sequences found by the adaptive compiler almost always
led to faster code.

2. Running time: As part of the same experiment [24], we reversed the order in which the objective
function considered space and speed. When optimizing for speed, with space as its tie breaker, the
prototype system produced code that was up to 20% faster and slightly smaller than that produced
by the original compiler. Again, the combination of adaptive behavior and consistent tie-breaking led
to sequences that improved both criteria.

3. Inter-operation name transitions: We have used the prototype system to investigate the impact that
compilation can have on power consumption by the microprocessor. With an objective function that
minimizes the number of inter-operation bit-transitions in the name fields of instructions4, the pro-
totype produced reductions of 20% from unoptimized code and 6 to 7% from the compiler’s default
compilation sequence—without adding new transformations to the compiler. To continue this work, we
will add transformations to the compiler that enhance this effect; the adaptive compiler will discover
when to apply them. This should increase the overall improvements in the objective function [7].

In each case, the adaptive compiler found a compilation sequence that produced better solutions than the
original, fixed-sequence compiler. These sequences never included more passes than the original, fixed-
sequence compiler. Most of the time, they contained fewer passes. The tie-breaking regimen in the first two

4Reducing the number of bits in the instruction stream that change from operation to operation leads to lower power consump-
tion by the processor.

6

Figure 3: Structure of fmin

7

experiments actually created a two-dimensional objective function, with a clear priority that preferred one
dimension over the other. We observed clear improvement in both dimensions.

Analysis of the Solution Space These preliminary experiments have shown the promise of adaptive
compilation—finding program specific compilation sequences can produce code that more closely fits some
stated objective. To understand whether or not our approach of biased random sampling is effective, we
conducted another round of experiments. This work focused on a single benchmark program, fmin, that is
small enough (< 200 lines of Fortran) to permit near-complete mapping of the solution space, but complex
enough to exhibit interesting behavior. Figure 3 shows the control-flow graph of its primary procedure. We
optimized it against a simple objective function—the number of operations executed in a run of the program.
Our goal was to address three questions:

1. What is the solution density of the space? That is, how many sequences of the Mn combinatorially
possible ones (assuming M available transforms and sequences of length n) yield the lowest operation
count? Are there many equally good solutions?

2. Are there local minima? How many of them are there, and how often will a random sampling strategy
get stuck on them?

3. What is the distribution of solutions? Are they clustered tightly in space, or are they distributed
all over? That is, what is the probability that a random sampling strategy will stumble into a good
solution quickly?

Answers to these questions should dictate our approach to finding good program-specific compilation se-
quences. If good sequences are widely distributed and local minima are rare, then a good local search
technique should, with high probability, find an optimal sequence. On the other hand, if good sequences are
rare and the local minima are common, then local search will require restarts and the ability to move uphill
from a local minimum. Finally, if the solution clusters are dispersed widely in the space, search techniques
that explore multiple starting points in parallel and that mutate sequence guesses drastically in each iteration
(such as genetic algorithms) become important.

While we recognize that the answers to these questions may be program specific, we began this work
by focusing on a single program, fmin.5 We used two randomized sampling strategies: hill climbing with
random restarts and genetic algorithms.

The hill climber begins with a random sequence and mutates it, a single position at a time. If the change
yields an improvement in the objective function, it is accepted. When the hill climber finds a sequence that
it cannot improve, indicating a minimum (local or global), it records the sequence and its fitness value, and
starts over by generating a new random sequence.

The genetic algorithm maintains a population of sequences. It tests each sequence by compiling the
code and measuring the objective function. It creates the next generation of sequences using fitness-biased
selection and crossover.6

The tables at the top of Figure 4 show two particularly good runs of the hill climber. The first column
shows the ordinal number of the trial at which the sequence was derived. The second column shows the
actual sequence; each letter denotes a specific optimization pass in the compiler. The third column shows
the number of cycles required to run the resulting code on a simulated, single-issue Risc machine. In these
two runs, the hill climber quickly got within 15% of the optimal solution (822 cycles). The first run required

5Larger experiments are running as this paper is being written and reviewed. At the symposium, we will have additional data.
6We have experimented with a number of strategies for crossover, for mutation, and for fitness scaling. Changing these
parameters of the genetic algorithm do change its behavior, but do not affect the comparison with hill climbing.

8

Trial Sequence Cycles Trial Sequence Cycles

0 nbavacaabrgozvv 1672 0 togmolrdncqdatc 2583
15 nbavacaabrgczvv 1360 15 togmolpdncqdatc 1118
30 nbovacaabrgczvv 1204 30 togmolpancqdatc 1113
45 nbovacaabrgczpv 1196 45 togmolpancqdasc 964
60 nbovacaabrvczpv 1192 60 togmolpancqdbsc 951
150 nbovacaabdvczpv 1103 75 togmolpsncqdbsc 876
165 nbovacaabdvczps 954 90 togmolpsncqdnsc 860
180 npovacaabdvczps 940 150 togpplpsncqdnsc 842
195 npovlcaabdvczps 939 285 togpblpsncqdnsc 840
210 npovncaabdvczps 937 359 togpblpsncpdnsc 839
255 npovncaabdvpzps 936 374 pogpblpsncpdnsc 838
270 npopncaabdvpzps 933 449 pogpblpspcpdnsc 837
285 npopncaabdnpzps 931 2142 poppblpspcpdnsc 834
315 npopzcaabdnpzps 913 2232 poppbltspcpdnsc 833
345 npopzcaapdnpzps 910
360 npopzcaspdnpzps 841
375 npopzcaspdnpzgs 838
390 ppopzcaspdnpzgs 834
435 ppopzcaspdnpzbs 833
525 ppopzpaspdnpzbs 831
750 ppoplpaspdnpzbs 830

Sequences from two hill climber runs

a Assertion insertion o Logical peephole optimization
b scc-based value numbering p Loop peeling
c Global constant propagation r Reassociation
d Dead code elimination s Copy coalescing
g Partition-based value numbering t Strength reduction
l Partial redundancy elimination v Local value numbering
m Global renaming z Lazy code motion
n Useless control-flow elimination

Interpreting the sequences

Figure 4: Hill climber runs

9

#

S
o
l
u
t
i
o
n
s

0 200 400 600 800 1000 1200 1400 1600 1800
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cycle Count

Figure 5: Distribution of solutions for fmin

180 trials to get below 948 cycles, while the second required 75 trials. (Each trial mutates one position and
evaluates it.) However, further improvement takes much longer.

Neither run converges to the minimum cycle count. These sequences, along with other runs that are
not shown, demonstrate that the solution space contains a significant number of local minima, and that
those minima are dispersed through the solution space. This suggests that parallel exploration of multiple
sequences and mechanisms for generating new sequences that are more powerful than single-position mutation
will be necessary to obtain faster convergence.

The hill climber found solutions that were within a small percentage of the best solution. However, its
progress slowed markedly as the objective function values approached the minimum. A genetic algorithm,
with variable length sequences and a strategy that eliminates duplicates by mutating them until they are
unique, outperforms the hill climber. The best sequences found by the genetic algorithm are:

Sequence Cycles

odspspplsn 822
poplppcppvbdpsn 825

Note that it will take several single-position mutations to transform the sequences found by the hill climber
into the second sequence found by the genetic algorithm. Furthermore, the sequence found by the hill climber
is a local minimum. This suggests that the hill climber must cross many deep valleys before it finds the
deepest valley in the space. To find the true minimizer in this complex space will require a search algorithm
capable of leaping over those valleys.

To better visualize the solution space, we chose five of the mostly commonly occurring transformations in
the sequences for fmin found by the genetic algorithm. Using a sequence of length 10, we ran each of the 510

sequences through the optimizer to determine how many of those sequences yield the smallest cycle count.
The histogram in Figure 5, based on 1% of the overall sequences, shows the distribution of cycle counts for
sequences drawn from the 510 possible sequences. They show that the good solutions (< 830 cycles) are
extremely rare, about 1 in 30,000. Our experience with the hill climber suggests a preponderance of local
minima, testifying to the complexity of the solution space. These results also suggests the possibility that
there may not be an algorithmic solution to finding the best sequence.

10

6 The Promise of Search-based Compilation

Our long-term goal for this work is to address the economic problem that confronts compiler-writers: how to
handle the rapid proliferation of processors, applications, objective functions, and environmental constraints
without abandoning high-quality optimization. It is not economically feasible to produce distinct compilers
for all of these circumstances using current practices. Without a new way to organize, build, and tune
optimizing compilers, we will be forced to accept poor quality code that fails to meet the users’ real needs.

Adaptive compilers based on search open up new vistas for research and for practical application. They
create a market economy for transformations, allowing competitive evaluation of different techniques on a
level playing field. They create an environment where the compiler writer can include niche transformations—
those with high payoff but narrow applicability. They let us apply the power of search to new issues in
compilation. For example, to discover an appropriate compilation sequence for a Java jit, the compiler
writer might limit the sequence to three transformations and optimize for run-time speed plus compile time.

Our strategy—building adaptive compilers and the tools to automate the process of configuring them—
ties the strength of our compilers to the speed of our machines. This is a resource that compilers have
not exploited well in the past. Adaptive compilers will broaden the range of input programs that routinely
attain good performance. They will be responsive to new performance goals, expressed in the form of new
external objective functions. They will easily accommodate new results from the research of others, since
new transformations can simply be added to the pool.

7 Remaining Challenges

Building a robust adaptive optimizing compiler will be a major challenge. It will require strategies to
minimize explicit, user-selected objective functions over a complex and poorly characterized space—viz.,
the combinatorial set of distinct compilation sequences. It will require new techniques for implementing
optimizations in a modular fashion, managing their reconfiguration, and measuring the results of each com-
pilation. It will require careful consideration of stopping criteria, of strategies for producing and storing
results incrementally, and of how to apply the knowledge gained by exploring the space of compilation se-
quences. It will require a major implementation effort, without which we cannot evaluate the effectiveness
of our ideas.

7.1 Engineering for Reconfiguration

The diagram in Figure 1 makes it appear that classic compilers are modular and that their components can
be reordered. In practice, inspecting the internals of a compiler usually reveals critical ordering constraints
imposed by the implementation. These constraints may be explicit, such as when one pass allocates a
structure and fills it with information, and a later pass uses that information and frees the structure.
Constraints may also be implicit, with one pass relying on others. This approach, which can simplify the
implementation of some passes by keeping them narrowly focused, was popularized by Ibm’s pl.8 compiler [1].
Even in compilers designed with modularity as a goal, subtle order-dependences arise from these implicit
constraints.7

These inter-pass constraints, both explicit and implicit, are a major impediment to the construction of
adaptive compilers. The heart of our system is a pool of transformations that can be run in, essentially,
arbitrary order. We envision two distinct but complementary efforts to solving the problem of engineering
reconfigurable compilers: one aimed at a set of design principles for writing new transformations, and another

7Our early experiments with genetic algorithms to find compilation sequences in the Mscp framework exposed several order-
dependences that had gone undetected in many years of use.

11

aimed at understanding the constraints that exist and ensuring that proposed compilation sequences do not
violate those constraints.

7.2 Deriving Practical Compilers

The adaptive compilers that result from this work will allow researchers and compiler writers to explore the
space of compilation sequences and the impact of those sequences on code quality. To make these ideas useful
in practice, we must design mechanisms that use the results of full-blown, adaptive compilations in limited-
time compiles. To build efficient production compilers from this configurable base will require additional
research and implementation. We intend to explore several alternative strategies.

• Training the compiler on a representative set of programs to find the k best sequences, and having the
production compiler try all k sequences on an input program to find the best result. For small k, say
3 to 5, this should produce some of the benefit while limiting the increase in compile time.

• Adopting an incremental strategy for sampling, where the compiler retains partial results across com-
piles. This trades a minor cost increase on each compile for a long-term improvement in code quality.
This scenario may require a periodic, randomized disturbance of its model to help it avoid local minima
based on historical evolution.

• Invoking the full algorithm, with a strict wall-time limit, so that the compiler returns the best code it
can find in an hour, or five hours. This provides a direct way of limiting resource use; it might work
well coupled with an incremental sampling strategy (above).

• Limiting the focus of the adaptive compiler to the performance critical routines in an application. This
would require a mechanism for identifying those routines—both user directives and run-time profiling
merit investigation.

By varying the size of the training set, the maximum length of the compilation sequence, and the amount of
time allowed for the search, the compiler writer should be able to achieve a variety of effects. For particularly
important codes, the user may want a version that limits its training set to that program.

As we gain experience with adaptive, sampling-based compilation, we hope to learn enough about the
behavior of the optimizations and their interactions to allow the compiler to perform all or part of the search
analytically. Strategies that might fit this model include building a database of program characteristics
versus compilation sequences; restricting the set of optimizations to a smaller set that has predictable effects
and interactions; and using wholesale approximations of the effects. We hope to learn enough to let the
compiler prune the search space aggressively and early, eliminating unproductive search paths. This may
lead to techniques that make complete search, with pruning, tractable.

Acknowledgements

Many people have contributed to our understanding of these issues, to our initial experiments in this arena,
and to our ability to describe our vision for adaptive compilation. The members of the scalar compiler group
at Rice, past and present, have built tools that let us explore these ideas. Phil Schielke, Tim Harvey, Steve
Reeves, and L. Alamagor have all contributed with insight, hard work, and long discussion. Stephanie Forrest
at the University of New Mexico suggested a number of improvements to our initial genetic algorithm. Our
initial work on adaptive compilation to reduce code size was supported by Darpa through Usafrl contract
F30602-97-2-298. Our work on reducing power consumption is supported, in part, by the State of Texas
through its Advanced Technology Project. The remainder of this work has been supported by the Los
Alamos Computer Science Institute.

12

References

[1] Marc A. Auslander and Martin E. Hopkins. An overview of the PL.8 compiler. SIGPLAN Notices,
17(6):22–31, June 1982. Proceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction.

[2] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson, D. Sayre,
P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt. The FORTRAN automatic coding
system. In Proceedings of the Western Joint Computer Conference, pages 188–198, February 1957.

[3] John Backus. The history of Fortran I, II, and III. In Wexelblat, editor, History of Programming
Languages, pages 25–45. Academic Press, 1981.

[4] Jonathan G. Bradley and Gene A. Frantz. DSP microprocessor power management: A novel approach.
Texas Instruments Technical White Paper, 1998.

[5] Preston Briggs and Keith D. Cooper. Effective partial redundancy elimination. SIGPLAN Notices,
29(6):159–170, June 1994. Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation.

[6] Keith D. Cooper. Why is redundancy elimination hard? Excerpt from talk at Rice Computer Science
Affiliates Meeting. Available at http://www.cs.rice.edu/˜keith/1960s, October 2000.

[7] Keith D. Cooper and Tim Harvey. A study of estimated name transitions in Fortran codes. Technical
report in preparation, available on the web at http://softlib.rice.edu/MSCP/Publications.html, April 2001.

[8] Keith D. Cooper and Nathaniel McIntosh. Enhanced code compression for embedded RISC processors.
In Proceedings of the ACM SIGPLAN 99 Conference on Language Design and Implementation, May
1999.

[9] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced code space
using genetic algorithms. In Proceedings of the 1999 Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES), May 1999.

[10] John E. Dennis and Virginia Torczon. Direct search methods on parallel machines. SIAM Journal on
Optimization, 1(4):448–474, November 1991.

[11] Nicolas G. Fournier. Enhancement of an evolutionary optimising compiler. Master’s thesis, Department
of Computer Science, University of Manchester, September 1999.

[12] Torbjörn Granlund and Richard Kenner. Eliminating branches using a superoptimizer and the gnu

C compiler. SIGPLAN Notices, 27(7):341–352, July 1992. Proceedings of the ACM SIGPLAN ’92
Conference on Programming Language Design and Implementation.

[13] J.H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, 1975.

[14] Mark Scott Johnson and Terrence C. Miller. Effectiveness of a machine-level global optimizer. SIGPLAN
Notices, 21(7):99–108, July 1986. Proceedings of the ACM SIGPLAN ’86 Symposium on Compiler
Construction.

[15] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and W. Ye. Influence of compiler optimizations on system
power. In Proceedings of the International Symposium on Computer Architecture, June 2000.

13

[16] Monica Lam and the Suif group. Documentation with the Suif-2 compiler release. Available from the
Suif web site, http://suif.cs.stanford.edu .

[17] L. Lionel and M. Lematre. Branch and bound algorithm selection by performance prediction. In
AAAI-1998, 1998.

[18] E.S. Lowry and C.W. Medlock. Object code optimization. Communications of the ACM, pages 13–22,
January 1969.

[19] Henry Massalin. Superoptimizer – A look at the smallest program. In Proceedings of the Second
International Conference on Architectural Support for Programming Languages and Operating Systems,
pages 122–126, Palo Alto, CA., 1987.

[20] S. Minton, M.D. Johnston, A.B. Phillips, and P. Laird. Minimizing conflicts: A heuristic method for
constraint-satisfaction and scheduling problems. Artificial Intelligence, 58:161–205, 1992.

[21] Thomas Night. http://www.ai.mit.edu/projects/transit/tn101/tn101.html. Web site for the
Transit Project.

[22] Andy Nisbet. GAPS: Iterative feedback directed parallelisation using genetic algorithms. In Proceedings
of the Workshop on Profile and Feedback Directed Compilation, Paris, FR, June 1998. Workshop held
in conjunction with PACT ’98.

[23] Randolph G. Scarborough and Harwood G. Kolsky. Improved optimization of fortran object programs.
IBM Journal of Research and Development, 24(6):660–676, November 1980.

[24] Philip J. Schielke. Stochastic Instruction Scheduling. PhD thesis, Rice University, Department of
Computer Science, May 2000.

[25] Silicon Graphics, Inc. Documentation with the Sgi Pro64 compiler release. Sgi released the compiler
in open-source form during the summer of 2000. Code is available from the company., 2000.

[26] J. Thornton and A. Sattar. Using arc weights to improve iterative repair. In AAAI-1998, 1998.

[27] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques for low energy: An overview. In Proceedings
of the 1994 IEEE Symposium on Low Power Electronics, 1994.

[28] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A first step towards software
power minimization. IEEE Transactions on VLSI Systems, 2(4), 1994.

[29] Virginia Torczon. Direct search methods for unconstrained optimization on either parallel or sequen-
tial machines. Technical Report 92-09, Rice University, Department of Computational and Applied
Mathematics, 1992.

[30] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. SIGPLAN Notices, 26(6):30–
44, June 1991. Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language Design
and Implementation.

[31] William Wulf, Richard K. Johnson, Charles B. Weinstock, Steven O. Hobbs, and Charles M. Geschke.
The Design of an Optimizing Compiler. Programming Language Series. American Elsevier Publishing
Company, 1975.

14

