Rematerialization

Preston Briggs
Keith D. Cooper
Linda Torczon

Department of Computer Science*
Rice University
Houston, TX 77251-1892

Abstract

This paper examines a problem that arises during global
register allocation — rematerialization. If a value can-
not be kept in a register, the allocator should recognize
when it is cheaper to recompute the value (remateri-
alize it) than to store and reload it. Chaitin’s original
graph-coloring allocator handled simple instances of this
problem correctly. This paper details a general solution
to the problem and presents experimental evidence that
shows its importance.

Our approach is to tag individual values in the pro-
cedure’s SSA graph with information specifying how it
should be spilled. We use a variant of Wegman and
Zadeck’s sparse simple constant algorithm to propagate
tags throughout the graph. The allocator then splits
live ranges into values with different tags. This isolates
those values that can be easily rematerialized from val-
ues that require general spilling. We modify the base
allocator to use this information when estimating spill
costs and introducing spill code.

Our presentation focuses on rematerialization in the
context of Chaitin’s allocator; however, the problem
arises in any global allocator. We believe that our ap-
proach will work in other allocators — while the details of
implementation will vary, the key insights should carry
over directly.

1 Introduction

In the past decade, the literature on register allocation
has focused largely on global allocation — methods that
factor information about the entire procedure into the
decision process. Because the problem of optimal reg-
ister allocation is NP-complete [19], compilers employ
heuristic techniques to approximate its solution. In

*This work has been supported by DARPA through ONR grant
N00014-91-J-1989 and by the IBM Corporation.

general, today’s generation of global allocators produces
“good” approximations; however, careful examination
of the output of these allocators reveals that there is
still room for improvement.

This paper examines a specific problem that arises
in global register allocation — rematerialization. When
a value must be spilled, the allocator should recognize
those cases when it is cheaper to recompute the value
than to store and retrieve it from memory. While our
discussion is set in the context of a Chaitin-style graph-
coloring allocator [6, 5, 3, 1], the same questions seem
to arise in all global allocators.

Consider the code fragments shown in Figure 1 (the
notation [p] means “the contents of the memory location
addressed by p”). Examining the Source column, we
note that p is constant in the first loop, but varying
in the second loop. The register allocator should take
advantage of this situation.

Imagine that high demand for registers in the first
loop forces p to be spilled; the Ideal column shows the
desired result. In the upper loop, p is loaded just be-
fore it is needed (using some sort of “load-immediate”
instruction). For the lower loop, p is loaded just before
the loop, again using a load-immediate.

The Chaitin column illustrates the code that would
be produced by a Chaitin-style allocator. The entire
live range of p has been spilled to memory, with loads
inserted before uses and stores inserted after definitions.

The final column shows code we would expect from
a “splitting” allocator [8, 17, 16, 4]; the actual code
might be worse. In fact, our work on rematerialization
was motivated by problems observed during our own ex-
periments with live range splitting. Unfortunately, ex-
amples of this sort are not discussed in the literature on
splitting allocators and it is unclear how best to extend
these techniques to achieve the Ideal solution.

We begin our discussion with a brief review of
Chaitin-style allocators. Section 3 gives a high-level
view of our approach to rematerialization. Section 4
describes the low-level modifications to the allocator re-
quired to support our approach. Experimental results
are presented in Section 5. Subsequent sections suggest
extensions and make comparisons with other work.

Source Ideal

P <—l Label
p < Label
y—y+[p y—y+[p
p < Label
p—p+l1 p—p+1

Chaitin Splitting
p < Label p < Label
store p store p

Y
reload p reload p
y —y+[p] y—y+[p

reload p

Y
reload p
p—p+l1 p—p+1
store p

Y

Figure 1: Rematerialization versus Spilling

2 Background

The notion of modeling register allocation as a graph
coloring problem descends from very early work on stor-
age allocation [18]. The first actual implementation was
done by Chaitin et al. in the PL.8 compiler [6]. Chow
and Hennessy described a priority-based scheme built
on a coloring paradigm [§8]. Our own work has built
on Chaitin’s approach [3]. To distinguish our allocator
from Chaitin’s, we call it the optimistic allocator.

Throughout this paper, we assume that the allocator
works on either low-level intermediate code or assem-
bly code. Before allocation, the code can reference an
unlimited number of virtual registers. A single virtual
register can have disconnected lifetimes in distinct parts
of the procedure. Rather than map virtual registers di-
rectly onto physical registers, the allocator discovers the
distinct live ranges in a procedure and allocates them
to physical registers.

To model register allocation as a graph coloring prob-
lem, the compiler first constructs an interference graph
G. Nodes in G represent live ranges; edges represent in-
terferences. Thus, there is an edge from node i to node
j if and only if live range [; interferes with live range I;;
that is, they are simultaneously live at some point and
cannot occupy the same register. Live ranges that in-
terfere with [; are its neighbors in the graph; the degree
of [; is the number of neighbors it has in the graph.

To find an allocation from G, the compiler looks for
a k-coloring of G; that is, an assignment of k colors
to the nodes of G such that neighboring nodes always
have distinct colors. If we choose k to match the number
of machine registers, then we can map a k-coloring for

G into a feasible register assignment for the underlying
code. Because finding a k-coloring of an arbitrary graph
is NP-complete, the compiler uses a heuristic method to
search for a coloring; it is not guaranteed to find a k-
coloring for all k-colorable graphs. If a k-coloring is not
discovered, some live ranges are spilled; i.e., the values
are kept in memory rather than registers.

Spilling one or more live ranges changes both the code
and the interference graph. The compiler proceeds by
iteratively spilling some live ranges and attempting to
color the resulting new graph. This process is guaran-
teed to terminate. In practice, this process converges
quickly [5, 3] (see also Table 2). Figure 2 illustrates the
overall flow of the optimistic allocator.

Renumber finds the live ranges and gives them unique
names. It creates a new live range for each defini-
tion point and unions together the live ranges that
reach each use point.

Build constructs the interference graph using the dual
representations, a triangular bit-matrix and a set
of adjacency vectors, advocated by Chaitin [5].

Coalesce attempts to combine live ranges. Two live
ranges [; and [; are combined, giving [;;, if the ini-
tial definition of [; is a copy from I; and there is
no interference between I; and [;. This has sev-
eral beneficial effects; most importantly, it elimi-
nates the copy and reduces the total degree of the
graph. Since some coalesces can preclude others,
the allocator should work “inside out,” examining
deeply-nested blocks first.

spill code

[]

— renumber build coalesce

spill costs simplify select —

Figure 2: The Optimistic Allocator

Spill Costs estimates the cost associated with spilling
each live range. Spill cost is computed as the cost of
the memory accesses required to spill the live range,
each weighted by 10¢ where d is the instruction’s
loop nesting depth.

Simplify constructs an ordering of the nodes. It re-
moves nodes with current degree less than k from
G, pushes them on a stack, and decrements the de-
gree of their neighbors. If all remaining nodes have
k or more neighbors, it chooses a spill candidate,
removes it from G, and pushes it on the stack.

The metric for picking spill candidates is critical.
Chaitin suggested choosing the node that mini-
mizes spill cost divided by degree [5].

Select assigns colors to the nodes of G in the order
determined by simplify. Select repeatedly pops a
node from the stack and attempts to give it a color
distinct from its colored neighbors. If no color is
available for a node, it is left uncolored. If all nodes
receive colors, allocation is complete.

Spill Code is invoked if select left a node uncolored. It
converts each such node into a collection of tiny live
ranges by inserting a load or store at each use and
definition.

Detailed descriptions of these processes can be found in
Chaitin’s work and our earlier paper [5, 6, 3].

3 Rematerialization

Chaitin et al. discuss several ideas for improving the
quality of spill code [6]. They point out that certain
values can be recomputed in a single instruction and
that the required operands will always be available for
the computation. They call these exceptional values
never-killed and note that such values should be re-
calculated instead of being spilled and reloaded. They
further note that an uncoalesced copy of a never-killed
value can be eliminated by recomputing it directly into
the desired register [6]. Together, these techniques are

termed rematerialization. In practice, opportunities for
rematerialization include:

e immediate loads of integer constants and, on some
machines, floating-point constants,

e computing a constant offset from the frame pointer
or the static data area pointer,

e loads from a known constant location in either the
frame or the static data area, and

e loading non-local frame pointers from a display.

The values must be cheaply computable from operands
that are available throughout the procedure.

It is important to understand the distinction between
live ranges and values. A live range may comprise sev-
eral values connected by common uses. In the Source
column of Figure 1, p denotes a single live range com-
posed from three values: the address Label, the result
of the expression p + 1, and (more subtly) the merge of
those two values at the head of the second loop.

Chaitin’s allocator correctly handles rematerializa-
tion when spilling live ranges with a single value, but
cannot handle more complex cases; e.g., the variable
p in Figure 1. Our task is to extend Chaitin’s work
to take advantage of rematerialization opportunities for
complex, multi-valued live ranges. Our approach is to
tag each value with enough information to allow the
allocator to handle it correctly. To achieve this, we

1. split each live range into its component values,
2. propagate rematerialization tags to each value, and

3. form new live ranges from connected values having
identical tags.

This approach allows correct handling of rematerializa-
tion, but introduces the new problem of minimizing un-
necessary splits. The following sections describe how to
find values, how to propagate tags, how to split the live
ranges, and how to remove unproductive splits.

3.1 Discovering Values

To find values, we construct the procedure’s static single
assignment (SSA) graph, a representation that trans-
forms the code so that each use of a value references
exactly one definition [11]. To achieve this goal, the
construction technique inserts special definitions called
¢-nodes at those points where control-flow paths join
and different values merge. We actually use the pruned
SSA, with dead ¢-nodes eliminated [7].

A natural way to view the SSA graph for a procedure
is as a collection of values, each composed of a single
definition and one or more uses. Each value’s definition
is either a single instruction or a ¢-node that merges two
or more values. By examining the defining instruction
for each value, we can recognize never-killed values and
propagate this information throughout the SSA graph.

3.2 Propagating Rematerialization Tags

To propagate tags, we use an analog of Wegman and
Zadeck’s sparse simple constant algorithm [21]. We
modify their lattice slightly to represent the necessary
rematerialization information. The new lattice elements
may have one of three types:

T Top means that no information is known. A value
defined by a copy instruction or a ¢-node has an
initial tag of T.

inst If a value is defined by an appropriate instruction
(never-killed), it should be rematerialized. The
value’s tag is simply a pointer to the instruction.

1 Bottom means that the value must be spilled and
restored. Any value defined by an “inappropriate”
instruction is immediately tagged with L.

Additionally, their meet operation M is modified corre-
spondingly. The new definition is:

any [T = any

any [1 = 1

iHSti M jHSt]' = iHSti if jHSti = jHSt]'
jHSti M jHSt]' = 1 if jHSti 75 jHSt]'

Note that inst; = inst; compares the instructions on an
operand-by-operand basis. Since our instructions have
at most 2 operands, this modification does not affect
the asymptotic complexity of propagation.

During propagation, each value will be tagged with a
particular inst or L. Values defined by a copy instruc-
tion will have their tags lowered to inst or 1, depending
on the value that flows into the copy. Tags for values
defined by ¢-nodes will be lowered to inst if and only if
all the values flowing into the node have equivalent inst
tags; otherwise, they are lowered to L.

This process tags each value in the SSA graph with
either an instruction or L. If a value’s tag is L, spilling

that value requires a normal, heavyweight spill. If, how-
ever, its tag is an instruction, it can be rematerialized
by issuing the instruction specified by the tag. The tags
are used in two phases of the allocator: spill costs uses
the tags to compute more accurate spill costs and spill
code uses the tags to emit the desired code.

3.3 Inserting Splits

After propagation, the ¢-nodes must be removed and
values renamed to recreate an executable program.
Consider the example in Figure 3. The Source column
simply repeats the example introduced in Figure 1. The
SSA column shows the effect of inserting a ¢-node for
p and renaming the different values comprising p’s live
range. The Splits column illustrates the copies neces-
sary to distinguish the different values without ¢-nodes.
The final column (Minimal) shows the single copy re-
quired to isolate the never-killed value pg from the other
values comprising p. We avoid the extra copy by not-
ing that p; and p2 have identical tags after propagation
(both are L) and may be treated together as a single
live range pi12. Similarly, two connected values with the
same inst tag would be combined into a single live range.

For the purposes of rematerialization, the copies are
placed perfectly — the never-killed value has been iso-
lated and no further copies have been introduced. The
algorithm for removing ¢-nodes and inserting copies is
described in Section 4.1. In Section 6, we discuss the
possibility of including all the copies suggested in the
Splits column.

3.4 Removing Unproductive Splits

Our approach inserts the minimal number of copies re-
quired to isolate the never-killed values. Nevertheless,
coloring can make some of these copies superfluous. Re-
call the Minimal column in Figure 3. If neither pg nor
p12 are spilled and they both receive the same color,
the copy connecting them is unnecessary. Because it
has a real run-time cost, the copy should be eliminated
whenever possible. Of course, coalesce would remove
all of the copies, losing the desired separation between
values with different tags. So, we use a pair of limited
coalescing mechanisms to remove unproductive copies:

Conservative coalescing is a straightforward modifica-
tion of Chaitin’s coalesce phase. Conceptually, we
add a single constraint to coalesce — only combine
two live ranges if the resulting single live range will
not be spilled.

Biased coloring increases the likelihood that live ranges
connected by a copy get assigned to the same reg-
ister. Conceptually, select tries to assign the same
color to two live ranges connected by a copy.

Taken together, these two mechanisms remove most of
the unproductive copies.

Source SSA

! !

p < Label po < Label

Y —y+[p] Y <y + [po]
p1 < ¢(po,p2)

p—p+1 p2—p1+1

Splits Minimal

po < Label po < Label
Y

Yy <y + [po] Yy <y + [po]
Y

P1 < Po P12 < Po

>

Y
p2—p1+1 p1<—Dp2 pi2 «— pi2 +1

S

Figure 3: Introducing Splits

4 Implementation

Chaitin-style allocators can be extended naturally to
accommodate our approach. The high-level structure
depicted in Figure 2 is unchanged, but a number of low-
level modifications are required. The next sections dis-
cuss the enhancements required in renumber, coalesce,
and select.

4.1 Renumber

Chaitin’s version of renumber (termed “getting the
right number of names”) was based on def-use chain-
ing [6]. Long before our interest in rematerialization,
we adopted an implementation strategy for renumber
based on the pruned SSA graph. Conceptually, the old
implementation has four steps:

1. Determine liveness at each basic block using a
sparse data-flow evaluation graph [7].

2. Insert ¢-nodes based on dominance frontiers [11].
Avoid inserting dead ¢-nodes.

3. Renumber the operands in every instruction to refer
to values instead of the original virtual registers. At
the same time, accumulate availability information
for each block. The intersection of live and avail
is needed at each block to allow construction of a
precise interference graph [6].

4. Form live ranges by unioning together all the val-
ues reaching each ¢-node using a fast disjoint-set
union. The disjoint-set structure is maintained
while building the interference graph and coalesc-
ing (where coalesces are further union operations).

In our implementation, steps 3 and 4 are performed dur-
ing a single walk over the dominator tree. Using these
techniques, renumber completely avoids the use of bit-
vectored flow analysis. Despite the apparent complexity
of the algorithms involved, it is very fast in practice and
requires only a modest amount of space.

Because renumber already uses the SSA graph, only
modest changes are required to support rematerializa-
tion. The modified renumber has six steps:

1. Determine liveness at each basic block using a
sparse data-flow evaluation graph.

2. Insert ¢-nodes based on dominance frontiers, still
avoiding insertion of dead ¢-nodes.

3. Renumber the operands in each instruction to refer
to values. At the same time, initialize the remate-
rialization tags for all values.

4. Propagate tags using the sparse simple constant al-
gorithm as modified in Section 3.2.

5. Examine each copy instruction. If the source and
destination values have identical inst tags, we can
union them and remove the copy.

6. Examine the operands of each ¢-node. If an
operand value has the same tag as the result value,
union the values; otherwise, insert a split (a distin-
guished copy instruction) connecting the values in
the corresponding predecessor block.

Steps 5 and 6 are performed in a single walk over the
dominator tree.

4.2 Conservative Coalescing

To prevent coalescing from removing the splits that have
been carefully introduced in renumber, we must limit its
power. Specifically, it should never coalesce a split in-
struction if the resulting live range may be spilled. In
normal coalescing, two live ranges [; and [; are com-
bined if /; is defined by a copy from [/; and they do not
otherwise interfere. In conservative coalescing, we add
an additional constraint: combine two live ranges con-
nected by a split if and only if /;; has < k neighbors of
“significant degree,” where significant degree means a
degree > k.

To understand why this restriction is safe (indeed, it
is conservative), recall Chaitin’s coloring heuristic [5].
Before any spilling, nodes of degree < k are removed
from the graph. When a node is removed, the degrees of
its neighbors are reduced, perhaps allowing them to be
removed. This process repeats until the graph is empty
or all remaining nodes have degree > k. Therefore, for
a node to be spilled, it must have at least k neighbors
with degree > k in the initial graph.

In practice, we perform two rounds of coalescing. Ini-
tially, all possible copies are coalesced (but not split
instructions). The graph is rebuilt and coalescing is re-
peated until no more copies can be removed. Then,
we begin conservatively coalescing split instructions.
Again, we repeatedly build the interference graph and
attempt further conservative coalescing until no more
splits can be removed.

In theory, we should not intermix conservative coa-
lescing with unrestricted coalescing, since the result of
an unrestricted coalesce may be spilled. For example, [;
and [; might be conservatively coalesced, only to have
a later coalesce of l;; with [;, provoke the spilling of I;;x
(since the significant degree of /;;; may be quite high).
In practice, this may not prove to be a problem, per-
mitting a simplification of the entire process.

Conservative coalescing directly improves the alloca-
tion. Each coalesce removes an instruction from the
resulting code — a split instruction that was introduced
by the allocator. In regions where there is little com-
petition for registers (a region of low register pressure),
conservative coalescing undoes all splitting. It cannot,
however, undo all of the non-productive splits by itself.

4.3 Biased Coloring

The second mechanism for removing useless splits in-
volves changing the order in which colors are considered
for assignment. Before coloring, the allocator finds part-
ners — values connected by splits. When select assigns
a color to [;, it first tries colors already assigned to one
of [;’s partners. With a careful implementation, this is
no more expensive than picking the first available color;
it really amounts to biasing the spectrum of colors by
previous assignments to [;’s partners.

The biasing mechanism can combine live ranges that
conservative coalescing cannot. For example, I; might
have 2k neighbors of significant degree; but these neigh-
bors might not interfere with each other and thus might
all be colored identically. Conservative coalescing can-
not combine /; with any of its partners; the resulting live
range would have too many neighbors of significant de-
gree. Biasing may be able to combine /; and its partners
because it is applied after the allocator has shown that
both live ranges will receive colors. At that late point in
allocation, combining them is a matter of choosing the
right colors. By virtue of its late application, the biasing
mechanism uses a detailed level of knowledge about the
problem that is not available any earlier in the process
— for example, when coalescing is performed.

To increase the likelihood that biasing will match
partners, we can add limited lookahead. When pick-
ing a color for [;, if it has an uncolored partner [;, the
allocator can look for a color that is still available for /;.
On average, [; has a small number of partners; thus, we
can add limited lookahead to biased coloring without
increasing the asymptotic complexity of select.

5 Experimental Results

To support our research, we have written an optimiz-
ing compiler for FORTRAN. The compiler is part of the
ParaScope programming environment and includes sup-
port for interprocedural analysis and a variety of tradi-
tional optimizations [9]. We currently generate code for
the IBM RT/PC and have experimental code generators
for the Sparc, 1860, and RS/6000. To experiment with
register allocation, we have built a series of allocators
that are independent of any particular architecture [2].
Our experimental allocators work with routines ex-
pressed in ILOC, a low-level intermediate language de-
signed to allow extensive optimization. An ILOC rou-
tine that assumes an infinite register set is rewritten in
terms of a particular target register set, with spill code
added as necessary. The target register set is specified
in a small table and may be varied to allow convenient
experimentation with a wide variety of register sets.
After allocation, each ILOC routine is translated into
a complete C routine. Each C routine is compiled and
the resulting object files are linked into a complete pro-
gram. There are several advantages to this approach:

e By inserting appropriate instrumentation during
the translation to C, we are able to collect accu-
rate, dynamic measurements.

e Compilation to C allows us to test a single routine
in the context of a complete program running with
real data.

e We are able to perform our tests in a machine-
independent fashion, potentially using a variety of
register sets.

LLE3: nop

LLA4: 1di ri4d 8
add r9 rlb ril
mvf f15 f0
bc L0023

L0023: 1ddrr f14 ri4 r9
dabs f14 f14
dadd f15 f15 f14
addi ri14 ri14 8
sub r7 rl0 rld
br ge r7 N6 N7

LLE3:

LLA4: ri14 = (int) (8); i++;
r9 = r1b + rii;
f15 = £0; c++;

goto L0023;
L0023: f14 = x((double *) (ri14d + r9)); l++;
f14 = fabs(f14);
f15 = f15 + f14;
r14 = r14 + (8); at+;

r7 = r10 - ri4;
if (x7 >= 0) goto N6; else goto N7;

Figure 4: ILOC and C

Simply timing actual machine code is inherently
machine-dependent and tends to obscure the effects of
allocation. During the translation into C, we can add
instrumentation to count the number of times any spe-
cific ILOC instruction is executed. For comparing regis-
ter allocators, we are interested in the number of loads,
stores, copies, load-immediates, and add-immediates.

Figure 4 shows a small sample of ILOC code and the
corresponding C translation. Usually there is a one-
to-one mapping between the ILOC statements and the
C translations, though some additional C is required for
the function header and declarations of the “register”
variables; e.g., r14 and £15. Also note the very simple
instrumentation appearing immediately after several of
the statements. Of course, this code is very simple, but
the majority of ILOC is no more complex.

5.1 The Target Machine

For the tests reported here, our target machine is
defined to have sixteen integer registers and sixteen
floating-point registers. Each floating-point register
can hold a double-precision value, so no distinction is
made between single-precision and double-precision val-
ues once they are held in registers. Up to four integer
registers may be used to pass arguments (recall that ar-
guments are passed by reference in FORTRAN; there-
fore, the argument registers hold pointers to the ac-
tual values); any remaining arguments are passed in
the stack frame. Function results are returned in an
integer or floating-point register, as appropriate. Ten
of each register class are designated as callee-saves; the
remaining six (including the argument registers) are not
preserved by the callee.

When reporting costs, we assume that each load and
store requires two cycles; all other instructions are as-
sumed to require one cycle. Of course, these are only
simple approximations of the costs on any real machine.

5.2 Spill Costs

Since our instrumentation reports dynamic counts of all
loads, stores, etc., we need a mechanism for isolating the
instructions due to allocation. A difficulty is that some
spills are profitable. In other cases, the allocator re-
moves instructions; e.g., copy instructions. Therefore,
we tested each routine on a hypothetical “huge” ma-
chine with 128 registers, assuming this would give a
nearly perfect allocation. The difference between the
“huge” results and the results for one of the allocators
targeted to our “standard” machine should equal the
number of cycles added by the allocator to cope with
insufficient registers.

5.3 The Test Suite

Our test suite is a collection of seventy routines con-
tained in eleven programs. Eleven routines are from
Forsythe, Malcolm, and Moler’s book on numerical
methods [13]. They are grouped into seven programs
with simple drivers. The remaining fifty-nine routines
are from the SPEC benchmark suite [20]. Four of the
SPEC programs were used: doduc (41 routines), £fpppp
(12 routines), matrix300 (5 routines), and tomcatv
(1 routine). The two other FORTRAN programs in the
suite (spice and nasa7) require language extensions not
yet supplied by our front-end.

Table 1 summarizes the effect of our new approach
to rematerialization. It compares two versions of the
optimistic allocator that differ only in their handling
of never-killed values. The column labeled Optimistic
gives data for a version that uses Chaitin’s limited ap-
proach to rematerialization. The column labeled Rema-
terialization gives data for a version incorporating our
new method. The table shows only routines where a
difference was observed.

The first two columns give the program and subrou-
tine name. The third and fourth column give the ob-
served spill costs for the two allocators being compared.

Cycles of Spill Code Percentage Contribution
program routine Optimistic | Rematerialization || load | store | copy Idi | addi || total
rkfd5 fehl 68 50 26 7 -7 27
seval spline 117 102 10 2 2 -1 13
solve decomp 305 286 4 3 -1 6
svd svd 1,977 1,966 1 0 -0 1
zeroin zeroin 236 234 2 —1 1
doduc bilan 1,046 966 5 3 8
bilsla 16 15 6 6
colbur 19 24 —11 —11 -5 —26
ddeflu 335 375 -5 -7 1 1 —12
debico 459 418 6 0 1 2 9
deseco 4,957 4,636 7 2 -2 0 7
drepvi 218 175 4 14 0 2 20
drigl 32 31 3 3
heat 34 31 6 1 9
ihbtr 400 395 1 0 -0 1
inideb 50 48 4 4
inisla 31 28 6 3 10
inithx 579 437 17 10 -2 25
integr 502 372 18 12 -3 26
lectur 221 166 2 23 25
orgpar 39 35 5 -3 8 10
paroi 1,433 1,383 8 0 -1 —4 4
pastem 289 220 20 10 13 | —19 24
prophy 1,531 1,525 0 0 0
repvid 599 404 9 13 11 33
fpppp d2esp 35 34 6 -3 3
main 210 199 0 5 5
twldrv 11,311,624 11,198,058 2 0 -1 1
matrix300 sgemm 9,905 8,398 12 6 -3 15
tomcatv tomcatv || 367,995,733 355,039,258 4 0 -0 4

Table 1: Effects of Rematerialization

These costs are calculated from dynamic counts of in-
structions as described earlier. The last column (total)
gives the percentage improvement in spill costs due to
improved rematerialization — large positive numbers in-
dicate significant improvements. The middle columns
show the contribution of each instruction type to the
total.

All percentages have been rounded to the nearest in-
teger. Insignificant improvements are reported as 0 and
insignificant losses are reported as —0. In cases where
the result is zero, we simply show a blank. Since results
are rounded, a total entry may not equal the sum of the
contributing entries.

Consider the first row in Table 1. This row presents
results for the routine fehl from the program rkf45s.
The optimistic allocator generated an allocation requir-
ing 68 cycles of spill code; the enhanced allocator re-
quired only 50 cycles. 26% of the savings came from
having to execute fewer loads and 7% arose from fewer
copies. There was a 7% degradation due to more load-
immediates. The total improvement was 27%.

From the entire suite of 70 routines, we observed im-
provements in 28 cases and degradations in only 2 cases.
One loss was very small (2 loads, 2 stores, and an extra
copy); the other was somewhat larger. Improvements
ranged from tiny to reasonably large, with many greater
than 20%. Of course, adjusting the relative costs of each
instruction, especially loads and stores, will change the
amount of improvement.

As expected, we see a pattern of fewer load instruc-
tions and more load-immediates. Typically, the number
of stores and the number of copies are also reduced. The
reduced number of copy instructions suggests that our
heuristics for removing unhelpful splits are adequate in
practice. Note that this reduction is obtained in spite
of the extra copies introduced by renumber.

5.4 Allocation Costs

The improved support for rematerialization comes at a
cost in allocation time. An extra pass over the code is
required to initialize rematerialization tags before prop-

repvid tomcatv twldrv
Phase || Old | New || Old | New Old | New
cfa .00 .00 .00 .00 .01 .01
renum .03 .05 .06 .10 .57 91
build 17 17 .39 43 || 10.27 8.81
costs .01 .01 .02 .02 .16 .14
color .02 .02 .04 .04 1.16 1.21
spill .01 .01 .02 .02 17 .16
renum .02 .03 .02 .04 .10 17
build .06 .05 .09 12 .63 .83
costs .01 .01 .01 .01 .07 .06
color .01 .02 .02 .03 .14 21
spill .01 .00 .01 .01 .03 .04
renum .01 .03 .02 .04 .10 17
build .03 .06 .05 .09 .60 .82
costs .01 .01 .01 .01 .07 .06
color .01 .01 .02 .02 .13 21
spill .01 .01
renum .02 .03
build .05 .09
costs .01 .01
color .01 .02
total .40 .49 .89 | 1.13 || 14.19 | 13.80

Table 2: Allocation Times in Seconds

agation and further time is required to propagate the
tags throughout the routine. Finally, at least one extra
pass is required to accomplish conservative coalescing.
On the other hand, the build—coalesce process may be
slightly faster since we are able to eliminate some copies
during renumber (recall step 5 in Section 4.1).

Table 2 shows comparative timings for the two alloca-
tors on three routines from the SPEC suite. Times are
given in seconds and were measured with a 100 hertz
clock on an unloaded IBM RS/6000 Model 540. Each
run was repeated 10 times and the results averaged.
The first column shows the phase of allocation, where
cfa stands for control-flow analysis and includes the
time required to compute forward and reverse domina-
tors and dominance frontiers, build includes the entire
build—coalesce loop, and color includes both simplify
and select. Note that tomcatv required an additional
round of spilling. For each routine, the Old column gives
times required by the optimistic allocator with Chaitin’s
scheme and the New column gives times required by the
same allocator with improved rematerialization.

We selected three routines to illustrate performance
over a range of sizes. The first routine is repvid, from
the program doduc, with 144 non-comment lines of
FORTRAN. It compiles to a .text size of 1284 bytes
using IBM’s x1f compiler with full optimization. The
second routine is tomcatv, with 133 lines and a .text
size of 3064 bytes. The largest routine is twldrv from
the program fpppp, with 881 lines and a .text size of
15,616 bytes. All three routines appear in Table 1.

An obvious conclusion to draw from the data in Ta-
ble 2 is that support for rematerialization can require
a small amount of additional compile-time. Occasion-
ally, the new allocator may even be faster, though our
experience suggests that twldrv is an exceptional case.

The results in Table 2 also illuminate a number of
interesting details about the behavior of both allocators.

e The inital pass of the build—coalesce loop dominates
the overall cost of allocation (as noted by Chaitin).
In comparison, additional iterations of the color—
spill process are quite inexpensive.

e In each case, the cost of renumber is higher for the
New allocator, reflecting the cost of propagating
rematerialization tags.

e In all but one case, the cost of the build—coalesce
loop is higher for the New allocator, due to the
additional passes of conservative coalescing.

e The very low costs of control-flow analysis illus-
trates the speed and practicality of the algorithm
for calculating dominance frontiers [11].

e The higher cost of coloring in the first pass arises
from the cost of choosing nodes to spill. While the
cost of coloring is linear in the size of the graph,
spill selection is O(s-n), where s is the number of
spill choices and n is the number of nodes. With a
large number of spills, this term dominates the cost
of coloring.

We are pleased with the overall speed of both alloca-
tors. Our results appear to be slightly faster than the
times reported by IBM’s x1f compiler for register al-
location and comparable to the times reported for op-
timization. In an extensive comparison with priority-
based coloring, our allocators appeared much slower on
very small routines, but much faster on very large rou-
tines [2]. Of course, these speeds are not competitive
with the fast, local techniques used in non-optimizing
compilers [14, 15]; however, we believe that global opti-
mizations require global register allocation.

6 Extensions

Of course, rematerialization is not the only reason for
splitting live ranges; others have observed that splitting
alive range can improve the allocation [12, 8]. A natural
extension to the scheme described in Section 3 is to
split at all ¢-nodes. This lets the allocator pick and
choose among all the values in the SSA graph. The
machinery used to support rematerialization can easily
handle additional splitting.

While inserting copies at all ¢-nodes introduces addi-
tional splitting, it misses a particularly important case.
Consider the value pg in Figure 3. Because it is unmod-
ified in the first loop, no ¢-node is created at the loop

header. Assume that additional code exists between the
definition of pg and the first loop. If this causes pg to
be spilled, we would like the allocator to consider the
loop body separately from the code that precedes it,
even though they are part of the same value in the SSA
graph. If possible, the allocator should rematerialize pg
in the loop header, where it will be defined exactly once.
This suggests adding extra splits at the top of the loop.

We have experimented with a number of alternative
splitting schemes. These include:

1. splitting all live ranges around all loops,
2. splitting all live ranges around outer loops,

3. splitting live ranges around the outermost loop
where they are neither used nor defined,

4. splitting along the forward dominance frontiers (at
all ¢-nodes), and

5. splitting based on both forward and reverse domi-
nance frontiers.

Conceptually, it seems easy to incorporate these ideas
into our allocator; however, experience has shown that
significant engineering is required.

The complete results of our experiments with loop-
based splitting are presented in Briggs’ thesis [2]. Each
scheme had several major successes; each had several
equally dramatic failures. While the improvements are
large enough to warrant further study, the failures are
significant enough to discourage adoption in a produc-
tion compiler. Of course, we are holding the allocator to
a high standard — the results of splitting are compared
to the results presented in Section 5. Thus, we immedi-
ately notice both improvements and degradations. We
intend to continue our search for a consistently prof-
itable approach.

7 Related Work

Our work extends the work described by Chaitin et
al. and recalls an approach suggested by Cytron and
Ferrante. Chaitin et al. introduce the term remateri-
alization and discuss the problem briefly [6]. Because
their allocator cannot split live ranges, they handle only
the simple case where all definitions contributing to a
live range are identical. Our work is a direct extension
and is able to handle each component of a complete
live range separately and correctly. Cytron and Fer-
rante suggest splitting based on (the equivalent of) the
SSA [10]. Their goal is minimal coloring in polynomial-
time — achieved at the cost introducing extra copies.
There is no direct discussion of rematerialization; in-
deed, the discussion of spilling is very sketchy. In con-
trast, we are concerned primarily with quality of spill
code.

It is also interesting to compare our approach to other
published alternatives, particularly the splitting alloca-
tor of Chow and Hennessy and the hierarchical coloring
allocator of Callahan and Koblenz [8, 4]. The published
work does not indicate how they handle rematerializa-
tion. It is possible that they make no special provisions,
trusting their splitting algorithm to do an adequate job.
While we can imagine constructing implementations of
their techniques to allow more direct comparisons, it
is unlikely that the results would accurately reflect the
potential of their schemes. In any case, it may be pos-
sible to modify their allocators to take advantage of our
approach.

8 Summary

The primary contribution of this paper is a natural ex-
tension of Chaitin’s ideas on rematerialization. In par-
ticular, we show how to handle complex live ranges that
may be completely or partially rematerialized. We de-
scribe a technique for tagging the component values of
a live range with correct rematerialization information.
We introduce heuristics, especially conservative coalesc-
ing and biased coloring, that are required for good re-
sults. Finally, we present experimental results that show
the effectiveness and practicality of our extensions.

9 Acknowledgements

Greg Chaitin, Ben Chase, John Cocke, Marty Hopkins,
Bob Hood, Ken Kennedy, Chuck Lins, Peter Markstein,
Tom Murtagh, Randy Scarborough, Rick Simpson, Tom
Spillman, and Matthew Zaleski have all contributed to
this work through encouragement and enlightened dis-
cussion. Our colleagues on the ParaScope project at
Rice have provided us with an excellent testbed for our
ideas. To all these people go our heartfelt thanks.

References

[1] David Bernstein, Dina Q. Goldin, Martin C.
Golumbic, Hugo Krawczyk, Yishay Mansour, Itai
Nahshon, and Ron Y. Pinter. Spill code mini-
mization techniques for optimizing compilers. SIG-
PLAN Notices, 24(7):258-263, July 1989. Proceed-
ings of the ACM SIGPLAN ’89 Conference on Pro-
gramming Language Design and Implementation.

[2] Preston Briggs. Register Allocation via Graph Col-
oring. PhD thesis, Rice University, April 1992.

[3] Preston Briggs, Keith D. Cooper, Ken Kennedy,
and Linda Torczon. Coloring heuristics for regis-
ter allocation. SIGPLAN Notices, 24(7):275-284,
July 1989. Proceedings of the ACM SIGPLAN ’89
Conference on Programming Language Design and
Implementation.

[4]

[12]

David Callahan and Brian Koblenz. Register allo-
cation via hierarchical graph coloring. SIGPLAN
Notices, 26(6):192-203, June 1991. Proceedings of
the ACM SIGPLAN ’91 Conference on Program-
ming Language Design and Implementation.

Gregory J. Chaitin. Register allocation and spilling
via graph coloring. SIGPLAN Notices, 17(6):98—
105, June 1982. Proceedings of the ACM SIGPLAN
’82 Symposium on Compiler Construction.

Gregory J. Chaitin, Marc A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via color-
ing. Computer Languages, 6:47-57, January 1981.

Jong-Deok Choi, Ron Cytron, and Jeanne Fer-
rante. Automatic construction of sparse data flow
evaluation graphs. In Conference Record of the
Eighteenth Annual ACM Symposium on Principles
of Programming Languages, pages 55—66, January
1991.

Fred C. Chow and John L. Hennessy. The
priority-based coloring approach to register allo-
cation. ACM Transactions on Programming Lan-
guages and Systems, 12(4):501-536, October 1990.

Keith D. Cooper, Ken Kennedy, and Linda Torc-
zon. The impact of interprocedural analysis and
optimization on the IR™ programming environ-
ment. ACM Transactions on Programming Lan-
guages and Systems, 8(4):491-523, October 1986.

Ron Cytron and Jeanne Ferrante. What’s in a
name? The value of renaming for parallelism detec-
tion and storage allocation. In Proceedings of the
1987 International Conference on Parallel Process-
ing, pages 19-27, August 1987.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Ef-
ficiently computing static single assignment form
and the control dependence graph. ACM Trans-
actions on Programming Languages and Systems,
13(4):451-490, October 1991.

Janet Fabri. Automatic storage optimization. SIG-
PLAN Notices, 14(8):83-91, August 1979. Pro-
ceedings of the ACM SIGPLAN 79 Symposium on
Compiler Construction.

George E. Forsythe, Michael A. Malcolm, and
Cleve B. Moler. Computer Methods for Mathemati-
cal Computations. Prentice-Hall, Englewood Cliffs,
New Jersey, 1977.

Christopher W. Fraser and David R. Hanson. A
retargetable compiler for ANSI C. SIGPLAN No-
tices, 26(10):29-43, October 1991.

[15]

[18]

Christopher W. Fraser and David R. Hanson. Sim-
ple register spilling in a retargetable compiler. Soft-
ware — Practice and Ezperience, 22(1):85-99, Jan-
uary 1992.

Rajiv Gupta, Mary Lou Soffa, and Tim Steele.
Register allocation via clique separators. SIG-
PLAN Notices, 24(7):264-274, July 1989. Proceed-
ings of the ACM SIGPLAN ’89 Conference on Pro-
gramming Language Design and Implementation.

James R. Larus and Paul N. Hilfinger. Register
allocation in the SPUR Lisp compiler. SIGPLAN
Notices, 21(7):255-263, July 1986. Proceedings of
the ACM SIGPLAN ’86 Symposium on Compiler
Construction.

S. S. Lavrov. Store economy in closed opera-
tor schemes. Zhurnal Vychislitel’'noi Matematiki
i Matematicheskoi Fiziki, 1(4):687-701, 1961. En-
glish translation in U.S.S.R. Computational Math-
ematics and Mathematical Physics 3, 1962.

Ravi Sethi. Complete register allocation problems.
SIAM Journal on Computing, 4(3):226-248, 1975.

SPEC release 1.2, September 1990. Standards Per-
formance Evaluation Corporation.

Mark N. Wegman and F. Kenneth Zadeck. Con-
stant propagation with conditional branches. ACM
Transactions on Programming Languages and Sys-
tems, 13(2):181-210, April 1991.

