SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 0(0), 1-18 (MONTH 1900)

Value Numbering

PRESTONBRIGGS
Tera Computer Company, 2815 Eastlake Avenue Eastt|&a&A98102

AND

KEITH D. COOPER L. TAYLOR SIMPSON
Rice University, 6100 Main Street, Mail Stop 41, Houston, TX 77005

SUMMARY

Value numbering is a compiler-based program analysis method that allows redundant computations to
be removed. This paper compares hash-based approaches derived from the classic local algoriﬂhwith
partitioning approaches based on the work of Alpern, Wegman, and Zadeck Historically, the hash-based
algorithm has been applied to single basic blocks or extended basic blocks. We have improved the technique
to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine

into congruence classes and removes computations when one congruent value dominates another. We have
extended this technique to remove computations that define a value in the set of available expressions

(AVAIL)3. Also, we are able to apply a version of Morel and Renvoise’s partial redundancy eliminatichto
remove even more redundancies.

The paper presents a series of hash-based algorithms and a series of refinements to the partitioning
technique. Within each series, it can be proved that each method discovers at least as many redundancies as
its predecessors. Unfortunately, no such relationship exists between the hash-based and global techniques. On
some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques,
while on others, partitioning wins. We experimentally compare the improvements made by these techniques
when applied to real programs. These results will be useful for commercial compiler writers who wish to
assess the potential impact of each technique before implementation.

KEY WORDS Code Optimization Value Numbering Redundancy Elimination

INTRODUCTION

Value numbering is a compiler-based program analysis technique with a long history in both
literature and practice. Although the name was originally applied to a method for improving
single basic blocks, it is now used to describe a collection of optimizations that vary in power
and scope. The primary objective of value numbering is to assign an identifying number (a
value numbérno each expression in a particular way. The number must have the property that
two expressions have the same number if the compiler can prove they are equal for all possible
program inputs. The numbers can then be used to find redundant computations and remove
them. There are two other objectives accomplished by certain forms of value numbering:

1. To recognize certain algebraic identities, like i + 0 andj = j x 1, and to use them
to simplify the code and to expand the set of expressions known to be equal.

CCC 0038-0644/00/000001-18 Received Sept 29, 1995
(©1900 by John Wiley & Sons, Ltd. Revised October 21, 1997

2 BRIGGS, COOPER, SIMPSON

2. To evaluate expressions whose operands are constants and to propagate their values
through the code.

This paper describes different techniques for assigning numbers and handling redundancies.
There are several ways to accomplish each of these goals, and the methods can be applied
across different scopes. It includes an experimental evaluation of the relative effectiveness of
these different approaches.

In value numbering, the compiler can only assign two expressions the same value number if
it can prove that they always produce equal values. Two techniques for proving this equivalence
appear in the literature:

e The first approach hashes an operator and the value numbers of its operands to produce a
value number for the resulting expression. Hashing provides an efficient representation
of the expressions known at any point during the analysis. The hash-based techniques
are on-line methods that transform the program immediately. Their efficiency relies on
the constant expected-time behavior of hasHifitis approach can easily be extended
to propagate constants and simplify algebraic identities.

e The second approach divides the expressions in a procedure into equivalence classes
by value, calledcongruence classe$wo values are congruent if they are computed
by the same operator and the corresponding operands are congruent. These methods
are calledpartitioningalgorithms. The partitioning algorithm runs off-line; it must run
to completion before transforming the code. It can be made to run(ifilog, N)
time, whereN and FE are the number of nodes and edges in the routine’s static single
assignmentgsA) grapl. The partitioning algorithm cannot propagate constants or
simplify algebraic identities.

Once value numbers have been assigned, redundancies must be discovered and removed.
Many techniques are possible, ranging frathhocremoval through data-flow techniques.

This paper makes several distinct contributions. These include: (1) an algorithm for hash-
based value numbering over a routine’s dominator tree, (2) an algorithm based on using
a unified hash table for the entire procedure, (3) an extension of Alpern, Wegman, and
Zadeck’s partition-based global value numbering algorithm to perfamn. -based removal
of expressions or partial redundancy elimination, and (4) an experimental comparison of these
techniques in the context of an optimizing compiler.

HASH-BASED VALUE NUMBERING

Cocke and Schwartzdescribe a local technique that uses hashing to discover redundant
computations and fold constants. Each unique expression is identified \@/tits number

Two computations in a basic block have the same value number if they are provably equal. In
the literature, this technique and its derivatives are called “value numbering.”

Figure 1 shows high-level pseudo-code for value numbering single basic blocks. The algo-
rithm uses two arrays to maintain a mapping between variable names and value numbers. The
VN array maps variable names to value numbers, anchaingearray maps value numbers
to variable names. For each instruction in the block, from top to bottom, we find the value
numbers of the operands and hash the operator and the value numbers of the operands to
obtain a unique number. If the value has already been computed in the block, it will already

* Cai and Paig%give an off-line, linear time algorithm that uses multiset discrimination as an alternative to hashing.

VALUE NUMBERING 3

for each assignmentof the form “z < y op z” in block B
expr— (VN[y] op VN|z])
if exprcan be simplified texpr
Replace right-hand side afwith the simplified expression
expr— expr
if expris found in the hash table with value number
VN[z] — v
if VN[nameév]] = v
Replace right-hand side afwith namev]
else
v < next available value number
VN[z] — v
Add exprto the hash table with value numher
namegv| — x

Figure 1. Basic-block value numbering

exist in the hash table. If the original variable still contains the same value, the recomputa-
tion can be replaced with a reference to that variable. To verify thisitongdwe look up

the name corresponding to the value numbelnd verify that its value number is still

(i.e., VNInamév]] = v). Any operator with known-constant arguments is evaluated and the
resulting value used to replace any subsequent references. The algorithm is easily extended to
account for commutativity and simple algebraic identities without affecting its complexity.

As variables get assigned new values, the compiler must carefully keep track of the location
of each expression in the hash table. Consider the code fragment on the left side of Figure 2.
At statement (1), the expressioh+ Y is found in the hash table, but it is availableBrand
not in A, sinceA has been redefined. We can handle this by making each entry irathe
array contain a list of variable names and carefully keeping the lists up to date. At statement
(2), the situation is worsey + Y is in the hash table, but it is not available anywhere.

A—X+Y Ag— X +Y
B—X+Y Byp—X+Y
A+—1 A1

Q) C—X+Y Co—X+Y
B« 2 By +— 2
C«~3 Ci1 <3

(2) D—X+Y Do—X+Y
Original SSA Form

Figure 2. Value numbering example

4 BRIGGS, COOPER, SIMPSON

As described, the technique operates over single basic blocks. With some minor modifica-
tions, we can apply it to an expanded scope, calle@xdanded basic blotkAn extended
basic block is a sequence of blodks, B», . . ., B, whereB; is the only predecessor &f; . 1,
for 1 < i < n, and B; does not have a unique predecessor. To apply value numbering to a
single extended basic block, we can simply apply the single block algorithm to each block in
the sequence, in order, and use the results fBpm to initialize the tables foB;. This works
because eacB; has a single predecessor<li < n.

If a block has multiple stcessors, then it may be a member of more than one extended
basic block. For example, consider the if-then-else construct shown in Figure 3. Bjock
is contained in two extended basic block®:, B>} and{Bi, Bs}. These blocks are related
by a common prefix. In fact, if the intersection of two extended basic blocks is non-empty,
it must be a common prefix of both. Thus, a collection of extended basic blocks related by
intersection forms a tree, and the trees form a forest representing the control-flow graph. The
start block and each block with ttiple prececessors correspond to the root of a tree, and
each block with a single predecessggris a child ofp. We can use this tree structure to avoid
processing any basic block more than once.

The tree representation of extended basic blocks leads to a straight forward and efficient
technique for value numbering. It suggests that each tree should be processed in a preorder
walk using a scoped hash table similar to one that would be used for processing declarations
in a language with nested lexical scop&sAt any point during the processing, the scoped
table contains a sequence of nested scopes, one for each block that is an ancestor of the current
block.

e As new blocks are processed, new scopes are created in the table. Any entries added
to the current scope will supersede entries with the same name in any enclosing scope.
Searches are performed starting with the innermost scope and proceeding outward until
a matching entry is found.

e As the algorithm returns upward from a block, it must undo the effects of processing
that block. Using a scoped table, this corresponds to deleting the block’s scope from the
table. It must also restore the entries in tizeneandVN arrays. In practice, this adds a
fair amount of overhead and complication to the algorithm, but it does not change the
asymptotic complexity.

The scoped table matches the tree structure of sets of related blocks. It lets the algorithm avoid
reprocessing blocks that appear in multiple extended basic blocks. The next section shows
how to use the properties of static single assignment form to eliminatathearray and to

avoid the complication of restoring théN array.

Static single assignment form

Many of the difficulties encountered during value numbering of extended basic blocks can
be overcome by constructing the static single assignnsen} form of the routiné. The basic
idea used in constructingsAform is to give uniqgue names to the targets of all assignments
in the routine, and then to overwrite uses of the assignments with the new names. Special
assignments, calleg-functions, are inserted to select the appropriate definition where more
that one definition sitesach with a uniguesaname) reaches a point in the routine. @Qne
function is inserted at each join point for each name in the original routine. In practice, to save
space and timej-functions are placed at only certain join points and for only certain names.
Specifically, ag-function is placed at théirthpoinf of each value — the earliest location

VALUE NUMBERING 5

Bylif (...) Bylif (...)
By x5 B3 x 3 By|x1 <5 Ba|Xp «+— 3
Ba Y < X By X3 yfﬂ(xl3 2)
Before After

Figure 3. Conversionto SSA form

where the joined value exists. Eagkfunction defines a new name for the original item as a
function of all of thessanames which are current at the end of the join point’s predecessors.
Any uses of the ariginal name after thunction are replaced by thefunction’s result. The
¢-function selects the value of the input that corresponds to the block from which control is
transferred and assigns this value to the result.

The critical property ofssA for this work is the naming discipline that it imposes on the
code. Eaclssaname is assigned a value by exactly one operation in a routine; therefore, no
name is ever reassigned, and no expression ever becomes inaccessible. The advantage of this
approach becomes apparent if the code in Figure 2 is convertgsiatiorm. At statement
(1), the expressioX + Y can be replaced byly because the second assignmentitwvas
given the named;. Similarly, the expression at statement (2) can be replacedgbylso,
the transition from single to extended basic blocks is simpdeabse we can, in fact, use a
scoped hash table where only the new entries must be removed. We can also eliminate the
namearray, and we no longer need to restoreViNearray.

Dominator-based value numbering technique

To extend the scope of optimization any further requires a mechanism for handling pointsin
the control-flow graph where paths converge. The method for extended basic blocks already
covers the maximal length regions without such merges. To handle merge points, we will
rely on a well-understood idea from classic optimization and analydsinanceln a flow
graph, if nodeX appears on every path from the start node to nodéhen X dominates”
(X>Y)0. If X>Y andX # Y, thenX strictly dominates” (X > Y). Theimmediate
dominatorof Y (idom(Y")) is the closest strict dominator &% In the routine’sdominator
tree the parent of each node is its immediate dominator. Notice that all nodes that dominate
anodeX are ancestors oX in the dominator tree.

Aside from the haming discipline imposed, another key featussaform is the informa-
tion it provides about the way values flow into each basic block. A value can enter alock
in one of two ways: either it is defined bygafunction at the start o3 or it flows through
B’s parent in the dominator treé€., B’s immediate dominator). These observations lead us

6 BRIGGS, COOPER, SIMPSON

procedure DVNT(Block B)
Mark the beginning of a new scope
for eachg-functionp of the form “n — ¢(...)"in B
if p is meaningless or redundant
Put the value number fgrinto VN[n]
Removep
else
VN[n| < n
Add p to the hash table
for each assignmentof the form “z «<— y opz2”in B
Overwritey with VN[y] andz with VN[z]
expr«— (y op z)
if exprcan be simplified texpr
Replacen with “z «— expr”
expr«— expr
if expris found in the hash table with value number
VN[z]| — v
Removen
else
VN[z]| — z
Add exprto the hash table with value number
for each successerof B
Adjust theg-function inputs ins
for each child: of B in the dominator tree
DVNT(c)
Clean up the hash table after leaving this scope

Figure 4. Dominator-based value numbering technique

to an algorithm that extends value numbering to larger regions by using the dominator tree.

The algorithm processes each block bitiatizing the hash table with the information
resulting from value numbering its parent in the dominator tre@acbomplish this, we again
use a scoped hash table. The value numbering proceeds by recursively walking the dominator
tree. Figure 4 shows high-level pseudo-code for the algorithm.

To simplify the implementation of the algorithm, tseAname of the first occurrence of an
expression (in this path in the dominator tree) becomes the expression’s value number. This
eliminates the need for theamearray because each value number is itse$amnname. For
clarity, we will surround arssaname that represents a value number with angle bradgkets (

(x0)). When a redundant computation of an expression is found, the compiler removes the
operation and replaces all uses of the defisgedname with the expression’s value number.
The compiler canuse this replacement scheme over a limited region of the code.

1. The value number can replace a redundant computation in any block dominated by the
first occurrence.
2. The value number can replace a redundant evaluation that is a parametentma

VALUE NUMBERING 7

corresponding to control flow from a block dominated by the first occurrence. To find
thesep-node parameters, we compute theminance frontieof the block containing

the first occurrence of the expression. Td@ninance frontieof node X is the set of
nodesY” such thatX dominates a predecessorofbut X does not strictly dominate
(i.e.,DF(X) = {Y | 3P € PredY), X>>P and X % Y}).*

In both cases, we know that control must flow through the block where the first evaluation
occurred (defining thesaname’s value).

The ¢-functions require special treatment. Before the compiler can analyzeftivections
in a block, it must previously have assigned value numbers to all of the inputs. This is not
possible in all cases; specifically, agyfunction input whose value flows along a back edge
(with respect to the dominator tree) cannot have a value number. If any of the parameters
of a ¢-function have not been assigned a value number, then the compiler cannot analyze
the ¢-function, and it must assign a unigue, new value number to the result. The following
two conditions guarantee that alfunction parameters in a block have been assigned value
numbers:

1. When procedurBVNT (see Figure 4) is called recursively for the children of bléck
the dominator tree, the children must be processed in reverse postorder. This ensures that
all of a block’s predecessors are processed before the block itself, unless the predecessor
is connected by a back edge relative totirstree.

2. The block must have no incoming back edges.

If the above conditions are met, we can analyze ¢Henctions in a block and decide if

they can be eliminated. &-function can be eliminated if it is meaningless or redundant.

A ¢-function is meaninglessf all its inputs have the same value number. A meaningless
¢-function can be removed if the references to its result are replaced with the value number
of its input parameters. &-function isredundanif it computes the same value as another
function in the same block. The compiler can identify redundafuinctions using a hashing
scheme analogous to the one used for expressions. Without additional information about
the conditions controlling the execution of different blocks, the compiler cannot compare
¢-functions in different blocks.

After value numbering the-functions and instructions in a block, the algorithm visits each
successor block and updates afjunction inputs that come from the current block. This
involves determining which-function parameter corresponds to input from the current block
and overwriting the parameter with its value number. Notice the resemblance between this step
and the corresponding step in thga construction algorithm. This step must be performed
before value numbering any of the block’s children in the dominator tree, if the compiler is
going to analyze-functions.

To illustrate how the algorithm works, we will apply it to the code fragment in Figure 5.
The first block processed will bB;. Since none of the expressions have been seen, the names
up, v, andwg Will be assigned theigsAname as their value number.

The next block processed will i&,. Since the expressiafy + do was defined in blockB;

(which dominated3,), we can delete the two assignments in this block by assigning the value
number for bothrg andyg to be(vg). Before we finish processing blod, we must fill in

the ¢-function parameters in its successor bloBk, The first argument ap-functions inBy
corresponds to input from block,, so we replace, xo, andyg with (ug), (vo), and(wvo),
respectively.

* The ssa-construction algorithm uses dominance frontiers to plﬁunmde@.

By

BRIGGS, COOPER, SIMPSON

ug < ag + bg
v < co + dp
wo — eo + fo

T

ug < ag + bg
v «— co + do
wo — eo + fo

T

u1 < ag + bg U
2| ©o — co+do | B3| w1+ eo+ fo By| vg=esgEdo | Bz|w
Yo < co + do y1 <—eo+ fo vgE—egF do uj

\/

up — ¢(up, u1) ug==e{1g, uo)

x2 — P(xo, 1) x2 — ¢(vo, wo)

Ba| yo — ¢(yo, y1) Ba| x5=etrg wo)

20— U2+ Y2 20 < Ug + 2

ug < ap + bo g5 E o
Before After

Figure 5. Dominator-tree value-numbering example

Block B3 will be visited next. Since every right-hand-side expression has been seen, we
assign the value numbers fox, 1, y1 to be(ug), (wo), and(wp), respectively, and remove
the assignments. To finish processifig we fill in the second parameter of tiefunctions
in Bs with (ug), (wo), and(wo), respectively.

The final block processed will bB4. The first step is to examine thefunctions. Notice
that we are able to examine thiefunctions only because we procesdegs children in the
dominator tree B2, Bz, and By) in reverse postorder and because there are no back edges
flowing into B4. The ¢-function defininguy is meaningless because all its parameters are
equal (They have the same value numbéugy). Therefore, we eliminate thg-function by
assigningu, the value numbetup). It is interesting to note that this-function was made
meaningless by eliminating the only assignment.tm a block with B, in its dominance
frontier. In other words, when we eliminate the assignmentitoblock B3, we eliminate the
reason that the-function foru was inserted during the constructionasfaform. The second
¢-function combines the valueg andwyg. Since this is the first appearance ap-dunction
with these parameters; is assigned itssaname as its value number. Thdunction defining
2 is redundant because it is equaklto Therefore, we eliminate this-function by assigning
y2 the value numbefz,). When processing the assignments in the block, we replace each
operand by its value number. This results in the expressign+ (z2) in the assignment to
zp. The assignment tos is eliminated by giving:s the value numbefug).

Notice that if we applied single-basic-block value numbering to this example, the only
redundancies we could remove are the assignmengs &mdy;. If we applied extended-
basic-block value numbering, we could also remove the assignmengsi@, andz1. Only
dominator-based value numbering can remove the assignmentsytg andus.

VALUE NUMBERING 9

Incorporating value numbering into SSA construction

We have described dominator-based value numbering as it would be applied to routines
already inssA form. However, it is possible to incorporate value numbering intoshe
construction process. The advantage of combining the steps is to improve the performance
of the optimizer by reducing the amount of work performed and by reducing the size of the
routine’sssArepresentation. The algorithm for dominator-based value numbering dising
construction is presented in Figure 6. There is a great deal of similarity between the value
numbering process and the renaming process dssagonstructior?. The renaming process
can be modified as follows to accomplish renaming and value numbering simultaneously:

e For each name in the original program, a stack is maintained which contains subscripts
used to replace uses of that name. To accomplish value numbering, these stacks will
contain value numbers. Notice that each element inarray in Figure 4 represents
a value number, but théN array in Figure 6 represenssacksof value numbers.

e Before inventing a new name for eagkfunction or assignment, we first check if it can
be eliminated. If so, we push the value number ofgHenction or assignment onto the
stack for the defined name.

Unified hash table

A further improvement to hash-based value numbering is possible. We walk the dominator
tree using a unified table.€., a single hash table for the entire routine). Figure 7 illustrates
how this technique differs from dominator-based value numbering. Since bigyckad B3
are siblings in the dominator tree, the entry fos b would be removed from the scoped
hash table after processing bloék and before processing blodBs. Therefore, the two
occurrences of the expression will be assigned different value numbers. On the other hand, no
hash-table entries are removed when using a unified table. This allows both occurrences of
a + b to be assigned the same value numbétgy.

Using a unified hash-table has one important algorithmic consequence. Replacements cannot
be performed on-line because the table no longer reflects aligjldb previous algorithms,
the existence of an expression in the hash table meant that the expression was computed earlier
in the program. No such relationship between expressions exists under this approach. Thus,
we cannot immediately remove expressions found in the table. In the example, it would be
unsafe to remove the computationcoof b from block Bz. Computations that are simplified,
such as the meaningleggunction in blockB4, may be directly removed. Thus, we must use
a second pass over the code to eliminate redundancies. Fortunately, using the unified hash
table results in the consistent naming scheme over the entire routine which is required by
AVAIL -based removal and partial redundancy elimination (described later).

Strictly speaking, the unified hash table algorithm is not a global technique because it
only works on acyclic subgraphs. In particular, it cannot analyfenctions in blocks with
incoming back edges, and therefore it must assign a unique value number gef@amgtion
in such a block.

VALUE PARTITIONING

Alpern, Wegman, and Zadetkresented a technique that uses a variation of Aho, Hopcroft,
and Uliman’s$? formulation of Hopcroft'soFA-minimization algorithm to partition values into

10 BRIGGS, COOPER, SIMPSON

procedure renameandvaluenumbe¢Block B)
Mark the beginning of a new scope
for eachg-functionp for namen in B
if p is meaningless or redundant with value number
PUSHp, VN[n])
Removep
else
Invent a new value numberfor n
PUSHwv,VNn])
Add p to the hash table
for each assignmeantof the form “x «— y opz”in B
Overwritey with TORVN[y]) andz with TORVN[z])
expr«— (y op z)
if exprcan be simplified t@xpr
Replace: with “z — expr”
expr — expr
if expris found in the hash table with value number
PUSHwv, VNz])
Removen
else
Invent a new value numberfor x
PUSHwv, VNz])
Add exprto the hash table with value number
for each successerof B
Adjust theg-function inputs ins
for each child: of B in the dominator tree
renameandyvalue numbefc)
Clean up the hash table after leaving this scope
for eachg-function or assignment in the original B
for each name: defined bya
PORVN[n))

Figure 6. Value numbering during SSA construction

VALUE NUMBERING 11

By By
Bal xg+—a+b x1—a+b |Bs B zg—a+b zo—a+b |B3
By|t2 — ¢(z0, 1) By
y—ax2+1 y«—xzo+1
Before After

Figure 7. Unified hash table

congruence classes. It operates ongheform of the routiné. Two values areongruentf

they are computed by the same opcode, and their corresponding operands are congruent. For
all legal expressions, two congruent values must be equal. Since the definition of congruence
is recursive, there will be routines where the solution is not unique. A trivial solution would

be to set eacBsAname in the routine to be congruent only to itself; however, the solution we
seek is thenaximum fixed point the solution that contains the most congruent values.

The algorithm we use differs slightly from Alpern, Wegman, and Zadeck’s. They describe
an algorithm that operates on a structured programming language, whessAfigrm is
modified withg;s -functions that represeifithen-else structures an@enterandoexit-
functions that represent loop structures. These extensiogasAdorm allow ¢;s-functions
to be compared ta@;;-functions in different blocks. The same is true t@nterand pexit-
functions. In order to be more general, our implementation of value partitioning operates on
puressAaform, which means thag-functions in different blocks cannot be congruent.

Figure 8 shows the partitioning algorithm. Initially, the partition contains a congruence class
for the values defined by each operator in the program. THhé#iparis iteratively refined by
examining the uses of all members of a class and determining which classes must be further
subdivided. After the partition stabilizes, the registers arfdnctions in the routine are
renumbered based on the congruence classes so that all congruent definitions have the same
name. In other words, for eadfsaname,n, we replace each occurrenceroin the program
with the name chosen to represent the congruence class contairiegause the effects of
partitioning and renumbering are similar to those of value numbering using the unified hash
table described in the previous section, we think of this technique as a form of global (or
intraprocedural) value numberirig/alue partitioning and the unified hash table algorithm do
not necessarily discover the same equivalences, but they both provide a consistent naming of
the expressions throughout the entire routine.

Partitioning and renaming alone will not improve the running time of the routine; we must

* Rosen, Wegman, and Zadédidescribe a technique callgdbbal value numberingt is an interesting and powerful approach
to redundancy elimination, but it should not be confused with valugtjoaing.

12 BRIGGS, COOPER, SIMPSON

Place all values computed by the same opcode in the same
congruence classes
worklist— the classes in the initial partition
while worklist # ()
Select and delete an arbitrary clafsom worklist
for each potion p of a use ofr € ¢
touched— ()
for eachz € ¢
Add all uses oft in positionp to touched
for each class such that) C (s Ntouched C s
Create a new class < s Ntouched
S<—S§—n
if s € worklist
Add n to worklist
else
Add smaller ofn ands to worklist

Figure 8. Partitioning algorithm

also find and remove the redundant computations. We explore three possible approaches:
dominator-based removalAIL -based removal, and partial redundancy elimination.

Dominator-based removal

Alpern, Wegman, and Zadetlsuggest removing any computation that is dominated by
a definition from the same congruence class. In Figure 9, the computatiois @&f redun-
dancy that this method can eliminate. Since the computatiarimblock B; dominates the

Blzi}—(x—lsy Blzf—x'—l—y

| By
b

Before After

By

Figure 9. Program improved by dominator-based removal

VALUE NUMBERING 13

Blz—a+y| Bjz—z+y] B

Before After

Figure 10. Program improved by AVAIL-based removal

computation in blockB,, the second computation can be removed.

To perform dominator-based removal, the compiler considers each congruence class and
looks for pairs of members where one dominates the other. If we bucket sort the members
of the class based on the preorder index in the dominator tree of the block where they are
computed, then we can efficiently compare adjacent elements in the list and decide if one
dominates the other. This decision is based on an ancestor test in the dominator tree. The
entire process can be done in time proportional to the size of the congruence class.

AVAIL-based removal

The classic approach to redundancy elimination is to remove computations that are in the set
of available expressions\aiL)® at the point where they appear in the routine. This approach
uses data-flow analysis to determine the set of expressions available along all paths from the
start of the routine. Notice that the calculationzah Figure 9 will be removed because it is
intheAVAIL set. In fact, any computation that would be removed by dominator-based removal
would also be removed bavAIL -based removal. This is because any block that dominates
another is on all paths from the start of the routine to the dominated block. However, there
are improvements that can be made byAlaL -based technique that are not possible using
dominators. In Figure 10; is calculated in bottB, and Bz, so it is in theAvAIL set atBs.

Thus, the calculation af in B4 can be removed. However, since neittirnor B3 dominate
By, dominator-based removal could not remevieom Bj.

Properties of the value numbering and renaming algorithm let us simplify the formulation
of AVAIL . The traditional data-flow equations deal with lexioamesvhile our equations deal
with values This is an important distinction. We need not consider the killed set for a block
because no values are redefined$aform, and partitioning preserves this property. Consider
the code fragment on the left side of Figure 11. If this code is produced by value numbering and
renaming, the two assignmentsfanust be equal. Under the traditional data-flow framework,
the assignment t& would kill the Z expression. However, if the assignmeniacaused the
two assignments tg to have different values, then they would not be congruent to each other,
and they would be assigned different names. Since the partitioning algorithm has determined

14 BRIGGS, COOPER, SIMPSON

0, if 7 is the entry block
Z < X+4Y AVIN; = ,
X ﬂ AVOUT,, otherwise
jepred:
7 — X+4Y sepreds
AVOUT; = AVIN; U defined
Example Data-Flow Equations

Figure 11. AVAIL-based removal

that the two assignments fbare congruent, the second one is redundant and can be removed.
The only way the intervening assignment will be given the name if the value computed is
congruentto the definition of that reaches the first assignmenfidl he data-flow equations

we use are shown in Figure 11.

Partial redundancy elimination

Partial redundancy eliminatioRRE) is an optimization introduced by Morel and Renvdise
Partially redundant computations are redundant along some, but not all, executiorpaths.
operates by discovering partially redundant computations, inserting code to make many of
them fully redundant,and then removing all redundant computations.

In Figures 9 and 10, the computationszoére redundant along all paths to bloBY, so
they will be removed byRE On the other hand, the computatioreah block B, in Figure 12

* PRE only inserts a copy of an evaluation if it can prove that the insertion, followed by removal of the newly redundant code,
makes no path longer. In practice, this prevents it from removing some partially redundant expressions inside if-then-else
constructs.

Bz‘ ‘ B3‘Z<—$+y‘ B>

Bz 7y]

Before After

Figure 12. Program improved by partial redundancy elimination

VALUE NUMBERING 15

Xo+—1

Yo—1
A—X-Y while (...) {
B—Y—-X X5 — ¢(Xo, X3)
C—A-B Yz — ¢(Yo, Y3)
D—B-A Xz Xp+1

Y3eYo+1
}
Improved by Hash-Based Techniqueg Improved by Partitioning Techniques

Figure 13. Comparing the techniques

cannot be removed usingyAIL -based removal, because it is not available along the path
through blockB,. The value ofz is computed twice along the path througk but only once
along the path througB,. Therefore, it is considered partially redundaa®Ecan move the
computation ofz from block B, to block By. It inserts a copy of the computation b,
making the computation i, redundant. Next, it removes the computation frén This

will shorten the path througBs and leave the length of the path throughunchangedPRE

has the added advantage that it moves invariant code out of loops.

COMPARING THE TECHNIQUES

While the effects of hash-based value numbering using the unified table and value partitioning
are similar, the two techniques can discover different sets of equivalences. Assume that
andY are known to be equal in the code fragment in the left column of Figure 13. Then the
partitioning algorithm will findA congruent ta3 andC' congruent taD. However, a careful
examination of the code reveals thatXf is congruent taY’, then A, B, C, and D are all

zero. The partitioning technique will not discover thhiand B are equal ta” and D, and

it also will not discover that any of the expressions are equal to zero. On the other hand, the
hash-based approach will conclude thaXi= Y thenA, B, C, andD are all zero.

The critical difference between the hashing and partitioning algorithms identified by this
example is their notion of equivalence. The hash-based approach proves equivalences based
on values, while the partitioning technique considers only congruent computations to be
equivalent: The code in this example hides the redundancy behind an algebraic identity. Only
the techniques based on value equivalence will discover the common subexpression here. The
hash-based approach combines congruence finding and constant propagation to produce an
optimization that is more powerful than the sum of its parts. Click described precisely when
combining optimizations is profitabte

Now consider the code fragment in the right column of Figure 13. If we apply any of the
hash-based approaches to this example, none of them will be able to prové tisaéqual
to Y>. This is because at the time a value number must be assigng€gd and Y>, none of

* Two expressions can only be congruent if they have the same operator. Thus titienpey technique canot discover that
1+1 and2*1 compute the same value.

16 BRIGGS, COOPER, SIMPSON

these techniques have visité@ or Y3. Therefore, they must assign different value numbers

to X, andY>. However, the partitioning technique will prove th& is congruent td> (and

thus X3 is congruent tdr3). The key feature of the partitioning algorithm which makes this
possible is its initial optimistic assumption that all values defined by the same operator are
congruent. It then proceeds to disprove the instances where the assumptionis false. In contrast,
the hash-based approaches begin with the pessimistic assumption that no values are equal and
proceed to prove as many edjtias as possible.

We should point out that eliminating more redundancies does not necessarily result in
reduced execution time. This effect is a result of the way different optimizations interact.
The primary interactions are with register allocation and with optimizations that combine
instructions, such as constant folding or peephole optimization. Each replacement affects
register allocation because it has the potential of shortening the live ranges of its operands
and lengthening the live range of its result. Because the precise impact of a replacement on
the lifetimes of values depends completely on context, the impact on demand for registers is
difficultto assess. In athree-address intermediate code, each replacement has twoitipportun
to shorten a live range and one opportunity to extend a live range. We believe that the impact
of replacements on the demand for registers is negligible; however, this issue deserves more
study.

The interaction between value numbering and other optimizations can also affect the execu-
tion time of the optimized program. The example in Figure 14 illustrates how removing more
redundancies may not resultin improved execution time. The code in Bipldads the value
of the second element of a common block called “foo”, and the code in i¥etdads the first
element of the same common block. Compared to value numbering over single basic blocks,
value numbering over extended basic blocks will remove more redundancies. In particular,
the computation of registet is not needed because the same value is in regigteiowever,
the definition ofry is no longer used in block; due to the constant folding in the definition
of r3. The definition ofr; is now partially dead because it is used along the path through
block B, but not along the path througbs. If the path through blociBs is taken at run time,
the computation of; will be unused. On the other hand, value numbering over single basic
blocks did not remaove the definition o, and the definition of; can be removed by dead
code elimination. The result is that both paths throughtth®are as short as possible. Other
optimizations that fold or combine optimizations, such as constant propagation or peephole
optimization, can produce analogous results. In our test suitesatiner routine exhibits
this behavior.

EXPERIMENTAL RESULTS

Even though we can prove that each of the threditaring techniques anéach form
of hash-based value numbering is never worse than its predecessor in terms of eliminating
redundancies, an equally important question is how much this theoretical distinction matters
in practice. To assess the real impact of these techniques, we have implemented all of the
optimizations in our experimental Fortran compiler. The compiler is centered around our
intermediate language, call@dc (pronounced “eye-lock™)LOC is a pseudo-assembly lan-
guage for arisc machine with an arbitrary number of symbolic registersaD and STORE
operations are provided to access memory, and all computations operate on symbolic registers.
The front end translates Fortran intocC. The optimizer is organized as a collection of Unix
filters that consume and produeec. This design allows us to easily apply optimizations
in almost any order. The back end produces code instrumented to count the number of

B>

VALUE NUMBERING

1

’r‘l «— Hfooﬂ
B To < 4

r3 = 1r1+712
74 <— LOAD 713

T

rg «— “foo”
reg «<— 0
r7 15+ 76
rg <— LOAD 17

Bs

\/

By

Original Program

[y

””l H “fooﬂ
B r2 “H 4 ”
r3 « “foo+4

74 <— LOAD 13

o

re «<— 0

rg <— LOAD 71

B3

\/

By

Extended Basic Blocks
More Redundancies Removed

By

Tl — ufoon

rz < “foo+4”
74 <— LOAD 13

T

rg <— LOAD 71

B3

\/

By

Final Code

’r‘l H “fooﬂ
rp— 4

B,y foorar

14 < LOAD 13

o

””5 H “fooﬂ
re «— 0

B> B3

rg < LOAD 715

\/

By

Single Basic Blocks
Fewer Reduncancies Removed

B, 5 — “foo+a’

14 < LOAD 13

T

rg «— “foo”

Bs

rg < LOAD 75

\/

By

Final Code

Figure 14. Interaction with other optimizations

17

18 BRIGGS, COOPER, SIMPSON

3 Single

B Extended
O Dominator
O AVAIL

B PRE

tomcatv twidrv gamgen iniset deseco debflu prophy pastem repvid fpppp

[Single

B Extended
O Dominator
O AVAIL

H PRE

paroi bilan debico inithx integr sgemv cardeb sgemm inideb supp

3 Single

B Extended
O Dominator
O AVAIL

B PRE

saxpy ddeflu fmtset subb ihbtr drepvi x21y21 saturr fmtgen efill

3 Single

B Extended
O Dominator
O AVAIL

B PRE

si heat dcoera Iclear orgpar yeh colbur coeray drigl lissag

3 Single

B Extended
O Dominator
O AVAIL

B PRE

aclear sortie sigma hmoy dyeh vgjyeh arret inter intowp ilsw

Figure 15. Comparison of hash-based techniques — SPEC benchmark

VALUE NUMBERING 19

1.2

0.8 1
0.6 1
0.4 1
0.2 1

E Single

B Extended
O Dominator
OAVAIL
BEPRE

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Figure 16. Comparison of hash-based techniques — FMM benchmark

instructions executed.

Comparisons were made using routines from a suite of benchmarks consisting of routines
drawn from thespEcbenchmark suité and from Forsythe, Malcolm, and Moler’s book on
numerical method& We refer to the latter as tif@m benchmark. Each routine was optimized
in several different ways by varying the type of redundancy elimination (value numbering
followed by code removal or motiorf)To achieve accurate comparisons, we varied only the
type of redundancy elimination performed. The complete results are shown in Figures 15
through 20. Each bar represents dynamic counts. @f operations, normalized against
the the leftmost bar. Routines are optimized using the sequence of global reassYgiation
redundancy elimination, global constant propagatioglobal peephole optimization, dead
code eliminatiof, operator strength reductit#r®, redundancy elimination, global constant
propagation, global peephole optimization, dead code elimination, copy coalescing, and a pass
to eliminate empty basic blocks. All forms of value numbering were performed oashe
form of the routine. The hash-based approaches use the unified table method. Its global name
space is needed for eitheraiL -based removal a?RE All tests were run on a two-processor
Sparc10 model 512 running at 50 MHz with 1 MB cache and 115 MB of memory.

Figures 15 and 16 compare the hash-based techniques. In general, each refinement to the
technique results in an improvement in the results. We see significant improvements when
moving from single basic blocks to extended basic blocks and again to dominator-based
removal. One surprising aspect of this study is that the differences between dominator-based
removal andavAiL -based removal are small in practic@he differences betweemvAlL -
based removal angRE are significant. The ability oPRE to move invariant code out of
loops contributes greatly to this improvement. However, there are some examples where our
value-based formulation @VAIL -based removal is better tharg, which operates on lexical
names. Figures 17 and 18 compare the partitioning techniques. The results are similar to the

* The sizes of the test cases foatrix300 andtomcatv have been reduced to ease testing.
T This suggests that either (1) the situation depicted in Figure 10 occurs infrequently in the tested codes, or (2) some combination
of the other optimizations catch this situation. It appears that the first explanation is the correct one.

20

BRIGGS, COOPER, SIMPSON

1.2

0.8
0.6
0.4
0.2

tomcatv

twlidrv

gamgen iniset deseco debflu prophy pastem repvid

fpppp

B Dominator
B AVAIL
OPRE

1.2

0.8
0.6
0.4
0.2

paroi

-

bilan

debico inithx integr sgemv cardeb sgemm inideb

supp

B Dominator
B AVAIL
OPRE

1.2

0.8
0.6
0.4
0.2

saxpy

ddeflu

fmtset subb ihbtr drepvi saturr fmtgen

efill

B Dominator
B AVAIL
OPRE

1.2

0.8
0.6
0.4
0.2

E

si

heat

i

dcoera Iclear orgpar yeh colbur coeray drigl

lissag

B Dominator
B AVAIL
OPRE

1.2

0.8
0.6
0.4
0.2

|

]

aclear

sortie

sigma hmoy dyeh vgjyeh arret inter intowp

ilsw

B Dominator
B AVAIL
OPRE

Figure 17. Comparison of partitioning techniques — SPEC benchmark

VALUE NUMBERING 21

1.2

0.8 1
0.6 1
0.4 1
0.2 1

E Dominator
HAVAIL
OPRE

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkfd5

Figure 18. Comparison of partitioning techniques — FMM benchmark

results from the hash-based comparison.
Figures 19 and 20 compare the unified hash-table version of dominator-tree value numbering

with value partitioning undezach of the code removal and motion strategies. Hash-based value

numbering almost always eliminates significantly more redundancies than value partitioning.
This is due to the fact that hash-based value numbering can fold constants and simplify
algebraic identities. These are more frequent in practice than the global redundancies identified
by value partitioning.

Table | compares the time required by hash-based value numbering and value partitioning for

some of the larger routines in the test suite. The number of blgslksiames, and operations

are given to indicate the size of the routine being optimized. In all cases, hash-based value
numbering runs faster than value partitioning.

| routine]| blocks| SSA names operations| hash-based partitioning |
tomcatv 131 3366 3222 0.05 0.07
ddeflu 109 9034 6687 0.11 0.81
debflu 116 7183 4320 0.08 0.93
deseco 251 16521 12932 0.30 1.85
twidrv 261 26948 14298 0.40 6.09
fpppp 2 26590 25934 0.63 1.16

Table I. Compile times of value numbering techniques

22

BRIGGS, COOPER, SIMPSON

tomcatv

twlidrv

gamgen

iniset

deseco

debflu

prophy

pastem

repvid

fPpPpp

E Dominator Partitioning
B Dominator Hash-based
O AVAIL Partitioning

O AVAIL Hash-based

B PRE Partitioning

O PRE Hash-based

1.2

0.8 A
0.6
0.4
0.2 A

paroi

bilan

debico

inithx

integr

sgemv

cardeb

sgemm

inideb

supp

B Dominator Partitioning
B Dominator Hash-based
O AVAIL Partitioning

O AVAIL Hash-based

B PRE Partitioning

O PRE Hash-based

saxpy

ddeflu

fmtset

subb

ihbtr

] |
|
|
|
]

drepvi

x21y21

saturr

fmtgen

efill

E Dominator Partitioning
B Dominator Hash-based
O AVAIL Partitioning

O AVAIL Hash-based

H PRE Partitioning

O PRE Hash-based

si

heat

dcoera

Iclear

orgpar

colbur

coeray

drigl

lissag

B Dominator Partitioning
Bl Dominator Hash-based
O AVAIL Partitioning

O AVAIL Hash-based

B PRE Partitioning

O PRE Hash-based

aclear

sortie

sigma

hmoy

dyeh

vgjyeh

arret

inter

intowp

B Dominator Partitioning
Bl Dominator Hash-based
O AVAIL Partitioning

O AVAIL Hash-based

B PRE Partitioning

O PRE Hash-based

Figure 19. Comparison of hash-based vs. partitioning techniques — SPEC benchmark

VALUE NUMBERING 23

1.2

0.8 1
0.6 1
0.4 1
0.2 1

H Dominator Partitioning
B Dominator Hash-based
B | | | OAVAIL Partitioning

| | | | OAVAIL Hash-based

B — — — B PRE Partitioning

=k =k =k = =k =k =k O PRE Hash-based
T c c (0] = N o] (0] < n
: £ 5 £ E o < = 2 g i
— E [oX o Q = = = 8 q(h) <
N 7z 3 S -

Figure 20. Comparison of hash-based vs. partitioning techniques — FMM benchmark

SUMMARY

In this paper, we study a variety of redundancy elimination techniques. We have introduced
a technique for applying hash-based value numbering over a routine’s dominator tree. This
technique is superior in practice with the value partitioning techniques, while being faster and
simpler. Additionally, we have improved the effectiveness of value partitioning by removing
computations based on available values rather than dominance information and by applying
partial redundancy elimination.

We presented experimental data comparing the effectiveness of each type of value numbering
in the context of our optimizing compiler. The data indicates that our extensions to the existing
algorithms can produce significant improvements in execution time.

ACKNOWLEDGEMENTS

Our interest in this problem began with suggestions from both Jonathan Brei#m aind

Bob Morgan ofbec. Independently, they suggested that we investigate value numbering over
dominator regions. Bruce Knobe of Intermetrics also urged us to look at extending value
numbering to ever larger regions. The referees made a number of detailed comments and
suggestions that improved both the exposition and content of the paper.

Our colleagues in the Massively Scalar Compiler Project at Rice have played a large role
in this work. In particular, we owe a debt of gratitude to Cliff Click, Tim Harvey, Linlong
Jiang, John Lu, Nat Mcintosh, Philip Schielke, Rob Shillner, Lisa Thomas, Linda Torczon,
and Edmar Wienskoski. Without their tireless implementation efforts, we could not have
completed this study.

REFERENCES

1. John Cocke and Jacob T. Schwartz, ‘Programming languages and their compilers: Preliminarfeuites’,
nical report Courant Institute of Mathematical Sciences, New York Univerdi®y0.

24

10.
11.
12.

13.

14.
16.

17.

18.
19.

20.

BRIGGS, COOPER, SIMPSON

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck, ‘Detecting equality of variables in programs’,
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Lan§aages
Diego, California, January 1988, pp. 1-11.

John Cocke, ‘Global common subexpression eliminat®i@GPLAN Notice$(7), 20—-24 (1970Proceedings

of a Symposium on Compiler Optimization

Etienne Morel and Claude Renvoise, ‘Global optimization by suppression of partial redund@miesiu-
nications of the ACM22(2), 96—-103 (1979).

Jiazhen Cai and Robert Paige, “Look Ma, no hashing, and no arrays neitGeriference Record of the
Eighteenth Annual ACM Symposium on Principles of Programming Langu@gesdo, Florida, January
1991, pp. 143-154.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck, ‘Efficiently com-
puting static single assignmentform and the control dependence gf&iti’ Transactions on Programming
Languages and Systeni$(4), 451-490 (1991).

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullma@ompilers: Principles, Techniques, and Tqdlsldison-
Wesley, 1986.

Charles N. Fischer and Jr. Richard J. LeBla@cafting a Compiler with C The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1991.

John H. Reif, ‘Symbolic programming analysis in almost linear tilBehference Record of the FiftmAual

ACM Symposium on Principles of Programming Languagesson, Arizona, January 1978, pp. 76-83.
Thomas Lengauer and Robert Endre Tarjan, ‘A fast algorithm for finding dominators in a flowgx@ph’,
Transactions on Programming Languages and Systé¢hy 121-141 (1979).

Matthew S. Hechf-low Analysis of Computer ProgramBrogramming Languages Series, Elsevier North-
Holland, Inc., 52 Vanderbilt Avenue, New York, NY 10017, 1977.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullmarhe Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, Massachusetts, 1974.

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck, ‘Global value numbers and redundant computa-
tions’, Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages
San Diego, California, January 1988, pp. 12-27.

Cliff Click, ‘Combining analyses, combining optimizationB.D. ThesisRice University, 1995.

SPEC release 1.2, September 1990. Standards Performance Evaluation Corporation.

George E. Forsythe, Michael A. Malcolm, and Cleve B. MdEnnputer Methods for Mathematical Com-
putations Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

Preston Briggs and Keith D. Cooper, ‘Effective partial redundancy elimina®GPLAN Notices29(6),
159-170 (1994)Proceedings of the ACM SIGPLAN '94 Conference on Programming Language Design and
Implementation

Mark N. Wegman and F. Kenneth Zadeck, ‘Constant propagation with conditional bradsBsTransac-

tions on Programming Languages and SysteiB&), 181-210 (1991).

Frances E. Allen, John Cocke, and Ken Kennedy, ‘Reduction of operator strength’, in Steven S. Muchnick
and Neil D. Jones (edsProgram Flow Analysis: Theory and Applicatiogiarentice-Hall, 1981.

Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick, ‘Operator strength redudiémtinical Report
CRPC-TR95635-&enter for Research on Parallel Computation, Rice University, October 1995.

