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SUMMARY

Value numbering is a compiler-based program analysis method that allows redundant computations to
be removed. This paper compares hash-based approaches derived from the classic local algorithm1 with
partitioning approaches based on the work of Alpern, Wegman, and Zadeck2. Historically, the hash-based
algorithm has been applied to single basic blocks or extended basic blocks. We have improved the technique
to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine
into congruence classes and removes computations when one congruent value dominates another. We have
extended this technique to remove computations that define a value in the set of available expressions
(AVAIL )3. Also, we are able to apply a version of Morel and Renvoise’s partial redundancy elimination4 to
remove even more redundancies.

The paper presents a series of hash-based algorithms and a series of refinements to the partitioning
technique. Within each series, it can be proved that each method discovers at least as many redundancies as
its predecessors. Unfortunately, no such relationship exists between the hash-based and global techniques. On
some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques,
while on others, partitioning wins. We experimentally compare the improvements made by these techniques
when applied to real programs. These results will be useful for commercial compiler writers who wish to
assess the potential impact of each technique before implementation.
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INTRODUCTION

Value numbering is a compiler-based program analysis technique with a long history in both
literature and practice. Although the name was originally applied to a method for improving
single basic blocks, it is now used to describe a collection of optimizations that vary in power
and scope. The primary objective of value numbering is to assign an identifying number (a
value number) to each expression in a particular way. The number must have the property that
two expressions have the same number if the compiler can prove they are equal for all possible
program inputs. The numbers can then be used to find redundant computations and remove
them. There are two other objectives accomplished by certain forms of value numbering:

1. To recognize certain algebraic identities, likei = i+ 0 andj = j × 1, and to use them
to simplify the code and to expand the set of expressions known to be equal.
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2. To evaluate expressions whose operands are constants and to propagate their values
through the code.

This paper describes different techniques for assigning numbers and handling redundancies.
There are several ways to accomplish each of these goals, and the methods can be applied
across different scopes. It includes an experimental evaluation of the relative effectiveness of
these different approaches.

In value numbering, the compiler can only assign two expressions the same value number if
it can prove that they always produce equal values. Two techniques for proving this equivalence
appear in the literature:

• The first approach hashes an operator and the value numbers of its operands to produce a
value number for the resulting expression. Hashing provides an efficient representation
of the expressions known at any point during the analysis. The hash-based techniques
are on-line methods that transform the program immediately. Their efficiency relies on
the constant expected-time behavior of hashing.∗ This approach can easily be extended
to propagate constants and simplify algebraic identities.
• The second approach divides the expressions in a procedure into equivalence classes

by value, calledcongruence classes. Two values are congruent if they are computed
by the same operator and the corresponding operands are congruent. These methods
are calledpartitioningalgorithms. The partitioning algorithm runs off-line; it must run
to completion before transforming the code. It can be made to run inO(E log2N )
time, whereN andE are the number of nodes and edges in the routine’s static single
assignment (SSA) graph6. The partitioning algorithm cannot propagate constants or
simplify algebraic identities.

Once value numbers have been assigned, redundancies must be discovered and removed.
Many techniques are possible, ranging fromad hocremoval through data-flow techniques.

This paper makes several distinct contributions. These include: (1) an algorithm for hash-
based value numbering over a routine’s dominator tree, (2) an algorithm based on using
a unified hash table for the entire procedure, (3) an extension of Alpern, Wegman, and
Zadeck’s partition-based global value numbering algorithm to performAVAIL -based removal
of expressions or partial redundancy elimination, and (4) an experimental comparison of these
techniques in the context of an optimizing compiler.

HASH-BASED VALUE NUMBERING

Cocke and Schwartz1 describe a local technique that uses hashing to discover redundant
computations and fold constants. Each unique expression is identified by itsvalue number.
Two computations in a basic block have the same value number if they are provably equal. In
the literature, this technique and its derivatives are called “value numbering.”

Figure 1 shows high-level pseudo-code for value numbering single basic blocks. The algo-
rithm uses two arrays to maintain a mapping between variable names and value numbers. The
VN array maps variable names to value numbers, and thenamearray maps value numbers
to variable names. For each instruction in the block, from top to bottom, we find the value
numbers of the operands and hash the operator and the value numbers of the operands to
obtain a unique number. If the value has already been computed in the block, it will already

∗ Cai and Paige5 give an off-line, linear time algorithm that uses multiset discrimination as an alternative to hashing.
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for each assignmenta of the form “x← y op z” in block B
expr← 〈VN[y] op VN[z]〉
if exprcan be simplified toexpr′

Replace right-hand side ofa with the simplified expression
expr← expr′

if expr is found in the hash table with value numberv
VN[x]← v
if VN[name[v]] = v

Replace right-hand side ofa with name[v]
else

v ← next available value number
VN[x]← v
Add expr to the hash table with value numberv
name[v]← x

Figure 1. Basic-block value numbering

exist in the hash table. If the original variable still contains the same value, the recomputa-
tion can be replaced with a reference to that variable. To verify this condition, we look up
the name corresponding to the value number,v, and verify that its value number is stillv
(i.e., VN[name[v]] = v). Any operator with known-constant arguments is evaluated and the
resulting value used to replace any subsequent references. The algorithm is easily extended to
account for commutativity and simple algebraic identities without affecting its complexity.

As variables get assigned new values, the compiler must carefully keep track of the location
of each expression in the hash table. Consider the code fragment on the left side of Figure 2.
At statement (1), the expressionX + Y is found in the hash table, but it is available inB and
not inA, sinceA has been redefined. We can handle this by making each entry in thename
array contain a list of variable names and carefully keeping the lists up to date. At statement
(2), the situation is worse;X + Y is in the hash table, but it is not available anywhere.

A← X + Y A0← X + Y
B ← X + Y B0← X + Y
A← 1 A1← 1

(1) C ← X + Y C0← X + Y
B ← 2 B1← 2
C ← 3 C1← 3

(2) D← X + Y D0← X + Y

Original SSA Form

Figure 2. Value numbering example



4 BRIGGS, COOPER, SIMPSON

As described, the technique operates over single basic blocks. With some minor modifica-
tions, we can apply it to an expanded scope, called anextended basic block7. An extended
basic block is a sequence of blocksB1,B2, . . . ,Bn whereBi is the only predecessor ofBi+1,
for 1 ≤ i < n, andB1 does not have a unique predecessor. To apply value numbering to a
single extended basic block, we can simply apply the single block algorithm to each block in
the sequence, in order, and use the results fromBi−1 to initialize the tables forBi. This works
because eachBi has a single predecessor, 1< i ≤ n.

If a block has multiple successors, then it may be a member of more than one extended
basic block. For example, consider the if-then-else construct shown in Figure 3. BlockB1
is contained in two extended basic blocks:{B1, B2} and{B1, B3}. These blocks are related
by a common prefix. In fact, if the intersection of two extended basic blocks is non-empty,
it must be a common prefix of both. Thus, a collection of extended basic blocks related by
intersection forms a tree, and the trees form a forest representing the control-flow graph. The
start block and each block with multiple predecessors correspond to the root of a tree, and
each block with a single predecessor,p, is a child ofp. We can use this tree structure to avoid
processing any basic block more than once.

The tree representation of extended basic blocks leads to a straight forward and efficient
technique for value numbering. It suggests that each tree should be processed in a preorder
walk using a scoped hash table similar to one that would be used for processing declarations
in a language with nested lexical scopes7, 8. At any point during the processing, the scoped
table contains a sequence of nested scopes, one for each block that is an ancestor of the current
block.

• As new blocks are processed, new scopes are created in the table. Any entries added
to the current scope will supersede entries with the same name in any enclosing scope.
Searches are performed starting with the innermost scope and proceeding outward until
a matching entry is found.
• As the algorithm returns upward from a block, it must undo the effects of processing

that block. Using a scoped table, this corresponds to deleting the block’s scope from the
table. It must also restore the entries in thenameandVNarrays. In practice, this adds a
fair amount of overhead and complication to the algorithm, but it does not change the
asymptotic complexity.

The scoped table matches the tree structure of sets of related blocks. It lets the algorithm avoid
reprocessing blocks that appear in multiple extended basic blocks. The next section shows
how to use the properties of static single assignment form to eliminate thenamearray and to
avoid the complication of restoring theVNarray.

Static single assignment form

Many of the difficulties encountered during value numbering of extended basic blocks can
be overcome by constructing the static single assignment (SSA) form of the routine6. The basic
idea used in constructingSSA form is to give unique names to the targets of all assignments
in the routine, and then to overwrite uses of the assignments with the new names. Special
assignments, calledφ-functions, are inserted to select the appropriate definition where more
that one definition site (each with a uniqueSSAname) reaches a point in the routine. Oneφ-
function is inserted at each join point for each name in the original routine. In practice, to save
space and time,φ-functions are placed at only certain join points and for only certain names.
Specifically, aφ-function is placed at thebirthpoint9 of each value – the earliest location
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if ( . . . )B1

x1← 5B2 x2← 3B3

x3← φ(x1, x2)
y← x3

B4

Before After

Figure 3. Conversion to SSA form

where the joined value exists. Eachφ-function defines a new name for the original item as a
function of all of theSSAnames which are current at the end of the join point’s predecessors.
Any uses of the original name after theφ-function are replaced by theφ-function’s result. The
φ-function selects the value of the input that corresponds to the block from which control is
transferred and assigns this value to the result.

The critical property ofSSA for this work is the naming discipline that it imposes on the
code. EachSSAname is assigned a value by exactly one operation in a routine; therefore, no
name is ever reassigned, and no expression ever becomes inaccessible. The advantage of this
approach becomes apparent if the code in Figure 2 is converted toSSA form. At statement
(1), the expressionX + Y can be replaced byA0 because the second assignment toA was
given the nameA1. Similarly, the expression at statement (2) can be replaced byA0. Also,
the transition from single to extended basic blocks is simpler because we can, in fact, use a
scoped hash table where only the new entries must be removed. We can also eliminate the
namearray, and we no longer need to restore theVNarray.

Dominator-based value numbering technique

To extend the scope of optimization any further requires a mechanism for handling points in
the control-flow graph where paths converge. The method for extended basic blocks already
covers the maximal length regions without such merges. To handle merge points, we will
rely on a well-understood idea from classic optimization and analysis—dominance. In a flow
graph, if nodeX appears on every path from the start node to nodeY , thenX dominatesY
(X�Y )10. If X�Y andX 6= Y , thenX strictly dominatesY (X � Y ). The immediate
dominatorof Y (idom(Y )) is the closest strict dominator ofY 11. In the routine’sdominator
tree, the parent of each node is its immediate dominator. Notice that all nodes that dominate
a nodeX are ancestors ofX in the dominator tree.

Aside from the naming discipline imposed, another key feature ofSSAform is the informa-
tion it provides about the way values flow into each basic block. A value can enter a blockB
in one of two ways: either it is defined by aφ-function at the start ofB or it flows through
B’s parent in the dominator tree (i.e.,B’s immediate dominator). These observations lead us
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procedure DVNT(BlockB)
Mark the beginning of a new scope
for eachφ-functionp of the form “n← φ(. . .)” in B

if p is meaningless or redundant
Put the value number forp into VN[n]
Removep

else
VN[n]← n
Add p to the hash table

for each assignmenta of the form “x← y op z” in B
Overwritey with VN[y] andz with VN[z]
expr← 〈y op z〉
if exprcan be simplified toexpr′

Replacea with “x← expr′”
expr← expr′

if expr is found in the hash table with value numberv
VN[x]← v
Removea

else
VN[x]← x
Add expr to the hash table with value numberx

for each successors of B
Adjust theφ-function inputs ins

for each childc of B in the dominator tree
DVNT(c)

Clean up the hash table after leaving this scope

Figure 4. Dominator-based value numbering technique

to an algorithm that extends value numbering to larger regions by using the dominator tree.
The algorithm processes each block by initializing the hash table with the information

resulting from value numbering its parent in the dominator tree. Toaccomplish this, we again
use a scoped hash table. The value numbering proceeds by recursively walking the dominator
tree. Figure 4 shows high-level pseudo-code for the algorithm.

To simplify the implementation of the algorithm, theSSAname of the first occurrence of an
expression (in this path in the dominator tree) becomes the expression’s value number. This
eliminates the need for thenamearray because each value number is itself anSSAname. For
clarity, we will surround anSSAname that represents a value number with angle brackets (e.g.,
〈x0〉). When a redundant computation of an expression is found, the compiler removes the
operation and replaces all uses of the definedSSAname with the expression’s value number.
The compiler canuse this replacement scheme over a limited region of the code.

1. The value number can replace a redundant computation in any block dominated by the
first occurrence.

2. The value number can replace a redundant evaluation that is a parameter to aφ-node
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corresponding to control flow from a block dominated by the first occurrence. To find
theseφ-node parameters, we compute thedominance frontierof the block containing
the first occurrence of the expression. Thedominance frontierof nodeX is the set of
nodesY such thatX dominates a predecessor ofY , butX does not strictly dominateY
(i.e.,DF(X) = {Y | ∃P ∈ Pred(Y ), X�P andX 6� Y }).∗

In both cases, we know that control must flow through the block where the first evaluation
occurred (defining theSSAname’s value).

Theφ-functions require special treatment. Before the compiler can analyze theφ-functions
in a block, it must previously have assigned value numbers to all of the inputs. This is not
possible in all cases; specifically, anyφ-function input whose value flows along a back edge
(with respect to the dominator tree) cannot have a value number. If any of the parameters
of a φ-function have not been assigned a value number, then the compiler cannot analyze
theφ-function, and it must assign a unique, new value number to the result. The following
two conditions guarantee that allφ-function parameters in a block have been assigned value
numbers:

1. When procedureDVNT (see Figure 4) is called recursively for the children of blockb in
the dominator tree, the children must be processed in reverse postorder. This ensures that
all of a block’s predecessors are processed before the block itself, unless the predecessor
is connected by a back edge relative to theDFStree.

2. The block must have no incoming back edges.

If the above conditions are met, we can analyze theφ-functions in a block and decide if
they can be eliminated. Aφ-function can be eliminated if it is meaningless or redundant.
A φ-function is meaninglessif all its inputs have the same value number. A meaningless
φ-function can be removed if the references to its result are replaced with the value number
of its input parameters. Aφ-function isredundantif it computes the same value as anotherφ-
function in the same block. The compiler can identify redundantφ-functions using a hashing
scheme analogous to the one used for expressions. Without additional information about
the conditions controlling the execution of different blocks, the compiler cannot compare
φ-functions in different blocks.

After value numbering theφ-functions and instructions in a block, the algorithm visits each
successor block and updates anyφ-function inputs that come from the current block. This
involves determining whichφ-function parameter corresponds to input from the current block
and overwriting the parameter with its value number. Notice the resemblance between this step
and the corresponding step in theSSA construction algorithm. This step must be performed
before value numbering any of the block’s children in the dominator tree, if the compiler is
going to analyzeφ-functions.

To illustrate how the algorithm works, we will apply it to the code fragment in Figure 5.
The first block processed will beB1. Since none of the expressions have been seen, the names
u0, v0, andw0 will be assigned theirSSAname as their value number.

The next block processed will beB2. Since the expressionc0 + d0 was defined in blockB1
(which dominatesB2), we can delete the two assignments in this block by assigning the value
number for bothx0 andy0 to be〈v0〉. Before we finish processing blockB2, we must fill in
theφ-function parameters in its successor block,B4. The first argument ofφ-functions inB4
corresponds to input from blockB2, so we replaceu0, x0, andy0 with 〈u0〉, 〈v0〉, and〈v0〉,
respectively.
∗ TheSSA-construction algorithm uses dominance frontiers to placeφ-nodes6.
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u0← a0 + b0

v0← c0 + d0

w0← e0 + f0
B1

x0← c0 + d0
y0← c0 + d0
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u1← a0 + b0
x1← e0 + f0

y1← e0 + f0

B3

u2← φ(u0, u1)
x2← φ(x0, x1)
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z0← u0 + x2

u0← a0 + b0((
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B4

Before After

Figure 5. Dominator-tree value-numbering example

Block B3 will be visited next. Since every right-hand-side expression has been seen, we
assign the value numbers foru1, x1, y1 to be〈u0〉, 〈w0〉, and〈w0〉, respectively, and remove
the assignments. To finish processingB3, we fill in the second parameter of theφ-functions
in B4 with 〈u0〉, 〈w0〉, and〈w0〉, respectively.

The final block processed will beB4. The first step is to examine theφ-functions. Notice
that we are able to examine theφ-functions only because we processedB1’s children in the
dominator tree (B2, B3, andB4) in reverse postorder and because there are no back edges
flowing intoB4. Theφ-function definingu2 is meaningless because all its parameters are
equal (They have the same value number –〈u0〉). Therefore, we eliminate theφ-function by
assigningu2 the value number〈u0〉. It is interesting to note that thisφ-function was made
meaningless by eliminating the only assignment tou in a block withB4 in its dominance
frontier. In other words, when we eliminate the assignment tou in blockB3, we eliminate the
reason that theφ-function foruwas inserted during the construction ofSSAform. The second
φ-function combines the valuesv0 andw0. Since this is the first appearance of aφ-function
with these parameters,x2 is assigned itsSSAname as its value number. Theφ-function defining
y2 is redundant because it is equal tox2. Therefore, we eliminate thisφ-function by assigning
y2 the value number〈x2〉. When processing the assignments in the block, we replace each
operand by its value number. This results in the expression〈u0〉 + 〈x2〉 in the assignment to
z0. The assignment tou3 is eliminated by givingu3 the value number〈u0〉.

Notice that if we applied single-basic-block value numbering to this example, the only
redundancies we could remove are the assignments toy0 andy1. If we applied extended-
basic-block value numbering, we could also remove the assignments tox0, u1, andx1. Only
dominator-based value numbering can remove the assignments tou2, y2, andu3.
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Incorporating value numbering into SSA construction

We have described dominator-based value numbering as it would be applied to routines
already inSSA form. However, it is possible to incorporate value numbering into theSSA
construction process. The advantage of combining the steps is to improve the performance
of the optimizer by reducing the amount of work performed and by reducing the size of the
routine’sSSArepresentation. The algorithm for dominator-based value numbering duringSSA
construction is presented in Figure 6. There is a great deal of similarity between the value
numbering process and the renaming process duringSSAconstruction6. The renaming process
can be modified as follows to accomplish renaming and value numbering simultaneously:

• For each name in the original program, a stack is maintained which contains subscripts
used to replace uses of that name. To accomplish value numbering, these stacks will
contain value numbers. Notice that each element in theVNarray in Figure 4 represents
a value number, but theVNarray in Figure 6 representsstacksof value numbers.
• Before inventing a new name for eachφ-function or assignment, we first check if it can

be eliminated. If so, we push the value number of theφ-function or assignment onto the
stack for the defined name.

Unified hash table

A further improvement to hash-based value numbering is possible. We walk the dominator
tree using a unified table (i.e., a single hash table for the entire routine). Figure 7 illustrates
how this technique differs from dominator-based value numbering. Since blocksB2 andB3
are siblings in the dominator tree, the entry fora + b would be removed from the scoped
hash table after processing blockB2 and before processing blockB3. Therefore, the two
occurrences of the expression will be assigned different value numbers. On the other hand, no
hash-table entries are removed when using a unified table. This allows both occurrences of
a+ b to be assigned the same value number –〈x0〉.

Using a unified hash-table has one important algorithmic consequence. Replacements cannot
be performed on-line because the table no longer reflects availability. In previous algorithms,
the existence of an expression in the hash table meant that the expression was computed earlier
in the program. No such relationship between expressions exists under this approach. Thus,
we cannot immediately remove expressions found in the table. In the example, it would be
unsafe to remove the computation ofa+ b from blockB3. Computations that are simplified,
such as the meaninglessφ-function in blockB4, may be directly removed. Thus, we must use
a second pass over the code to eliminate redundancies. Fortunately, using the unified hash
table results in the consistent naming scheme over the entire routine which is required by
AVAIL -based removal and partial redundancy elimination (described later).

Strictly speaking, the unified hash table algorithm is not a global technique because it
only works on acyclic subgraphs. In particular, it cannot analyzeφ-functions in blocks with
incoming back edges, and therefore it must assign a unique value number to anyφ-function
in such a block.

VALUE PARTITIONING

Alpern, Wegman, and Zadeck2 presented a technique that uses a variation of Aho, Hopcroft,
and Ullman’s12 formulation of Hopcroft’sDFA-minimization algorithm to partition values into
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procedure renameandvaluenumber(BlockB)
Mark the beginning of a new scope
for eachφ-functionp for namen in B

if p is meaningless or redundant with value numberv
PUSH(p,VN[n])
Removep

else
Invent a new value numberv for n
PUSH(v,VN[n])
Add p to the hash table

for each assignmenta of the form “x← y op z” in B
Overwritey with TOP(VN[y]) andz with TOP(VN[z])
expr← 〈y op z〉
if exprcan be simplified toexpr′

Replacea with “x← expr′”
expr← expr′

if expr is found in the hash table with value numberv
PUSH(v,VN[x])
Removea

else
Invent a new value numberv for x
PUSH(v,VN[x])
Add exprto the hash table with value numberv

for each successors of B
Adjust theφ-function inputs ins

for each childc of B in the dominator tree
renameandvaluenumber(c)

Clean up the hash table after leaving this scope
for eachφ-function or assignmenta in the originalB

for each namen defined bya
POP(VN[n])

Figure 6. Value numbering during SSA construction
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Figure 7. Unified hash table

congruence classes. It operates on theSSA form of the routine6. Two values arecongruentif
they are computed by the same opcode, and their corresponding operands are congruent. For
all legal expressions, two congruent values must be equal. Since the definition of congruence
is recursive, there will be routines where the solution is not unique. A trivial solution would
be to set eachSSAname in the routine to be congruent only to itself; however, the solution we
seek is themaximum fixed point– the solution that contains the most congruent values.

The algorithm we use differs slightly from Alpern, Wegman, and Zadeck’s. They describe
an algorithm that operates on a structured programming language, where theSSA form is
modified withφif -functions that representif-then-else structures andφenterandφexit-
functions that represent loop structures. These extensions toSSA form allow φif -functions
to be compared toφif -functions in different blocks. The same is true forφenterandφexit-
functions. In order to be more general, our implementation of value partitioning operates on
pureSSAform, which means thatφ-functions in different blocks cannot be congruent.

Figure 8 shows the partitioning algorithm. Initially, the partition contains a congruence class
for the values defined by each operator in the program. The partition is iteratively refined by
examining the uses of all members of a class and determining which classes must be further
subdivided. After the partition stabilizes, the registers andφ-functions in the routine are
renumbered based on the congruence classes so that all congruent definitions have the same
name. In other words, for eachSSAname,n, we replace each occurrence ofn in the program
with the name chosen to represent the congruence class containingn. Because the effects of
partitioning and renumbering are similar to those of value numbering using the unified hash
table described in the previous section, we think of this technique as a form of global (or
intraprocedural) value numbering.∗ Value partitioning and the unified hash table algorithm do
not necessarily discover the same equivalences, but they both provide a consistent naming of
the expressions throughout the entire routine.

Partitioning and renaming alone will not improve the running time of the routine; we must

∗ Rosen, Wegman, and Zadeck13describe a technique calledglobal value numbering. It is an interesting and powerful approach
to redundancy elimination, but it should not be confused with value partitioning.
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Place all values computed by the same opcode in the same
congruence classes

worklist← the classes in the initial partition
while worklist 6= ∅

Select and delete an arbitrary classc from worklist
for each position p of a use ofx ∈ c

touched← ∅
for eachx ∈ c

Add all uses ofx in positionp to touched
for each classs such that∅ ⊂ (s ∩ touched) ⊂ s

Create a new classn← s ∩ touched
s← s− n
if s ∈ worklist

Add n to worklist
else

Add smaller ofn ands to worklist

Figure 8. Partitioning algorithm

also find and remove the redundant computations. We explore three possible approaches:
dominator-based removal,AVAIL -based removal, and partial redundancy elimination.

Dominator-based removal

Alpern, Wegman, and Zadeck2 suggest removing any computation that is dominated by
a definition from the same congruence class. In Figure 9, the computation ofz is a redun-
dancy that this method can eliminate. Since the computation ofz in blockB1 dominates the
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Figure 9. Program improved by dominator-based removal
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Figure 10. Program improved by AVAIL-based removal

computation in blockB4, the second computation can be removed.
To perform dominator-based removal, the compiler considers each congruence class and

looks for pairs of members where one dominates the other. If we bucket sort the members
of the class based on the preorder index in the dominator tree of the block where they are
computed, then we can efficiently compare adjacent elements in the list and decide if one
dominates the other. This decision is based on an ancestor test in the dominator tree. The
entire process can be done in time proportional to the size of the congruence class.

AVAIL-based removal

The classic approach to redundancy elimination is to remove computations that are in the set
of available expressions (AVAIL )3 at the point where they appear in the routine. This approach
uses data-flow analysis to determine the set of expressions available along all paths from the
start of the routine. Notice that the calculation ofz in Figure 9 will be removed because it is
in theAVAIL set. In fact, any computation that would be removed by dominator-based removal
would also be removed byAVAIL -based removal. This is because any block that dominates
another is on all paths from the start of the routine to the dominated block. However, there
are improvements that can be made by theAVAIL -based technique that are not possible using
dominators. In Figure 10,z is calculated in bothB2 andB3, so it is in theAVAIL set atB4.
Thus, the calculation ofy inB4 can be removed. However, since neitherB2 norB3 dominate
B4, dominator-based removal could not removez fromB4.

Properties of the value numbering and renaming algorithm let us simplify the formulation
of AVAIL . The traditional data-flow equations deal with lexicalnameswhile our equations deal
with values. This is an important distinction. We need not consider the killed set for a block
because no values are redefined inSSAform, and partitioning preserves this property. Consider
the code fragment on the left side of Figure 11. If this code is produced by value numbering and
renaming, the two assignments toZ must be equal. Under the traditional data-flow framework,
the assignment toX would kill theZ expression. However, if the assignment toX caused the
two assignments toZ to have different values, then they would not be congruent to each other,
and they would be assigned different names. Since the partitioning algorithm has determined
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Z ← X + Y

X ← . . .

Z ← X + Y

AVIN i =


∅, if i is the entry block⋂
j∈pred(i)

AVOUTj, otherwise

AVOUTi = AVIN i ∪ definedi

Example Data-Flow Equations

Figure 11. AVAIL-based removal

that the two assignments toZ are congruent, the second one is redundant and can be removed.
The only way the intervening assignment will be given the nameX is if the value computed is
congruent to the definition ofX that reaches the first assignment toZ. The data-flow equations
we use are shown in Figure 11.

Partial redundancy elimination

Partial redundancy elimination (PRE) is an optimization introduced by Morel and Renvoise4.
Partially redundant computations are redundant along some, but not all, execution paths.PRE
operates by discovering partially redundant computations, inserting code to make many of
them fully redundant,∗ and then removing all redundant computations.

In Figures 9 and 10, the computations ofz are redundant along all paths to blockB4, so
they will be removed byPRE. On the other hand, the computation ofz in blockB4 in Figure 12
∗ PRE only inserts a copy of an evaluation if it can prove that the insertion, followed by removal of the newly redundant code,

makes no path longer. In practice, this prevents it from removing some partially redundant expressions inside if-then-else
constructs.
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A← X − Y
B ← Y −X
C ← A−B
D← B − A

X0← 1
Y0← 1
while (. . . ) {

X2← φ(X0, X3)
Y2← φ(Y0, Y3)
X3← X2 + 1
Y3← Y2 + 1

}

Improved by Hash-Based Techniques Improved by Partitioning Techniques

Figure 13. Comparing the techniques

cannot be removed usingAVAIL -based removal, because it is not available along the path
through blockB2. The value ofz is computed twice along the path throughB3 but only once
along the path throughB2. Therefore, it is considered partially redundant.PREcan move the
computation ofz from blockB4 to blockB2. It inserts a copy of the computation inB2,
making the computation inB4 redundant. Next, it removes the computation fromB4. This
will shorten the path throughB3 and leave the length of the path throughB2 unchanged.PRE
has the added advantage that it moves invariant code out of loops.

COMPARING THE TECHNIQUES

While the effects of hash-based value numbering using the unified table and value partitioning
are similar, the two techniques can discover different sets of equivalences. Assume thatX
andY are known to be equal in the code fragment in the left column of Figure 13. Then the
partitioning algorithm will findA congruent toB andC congruent toD. However, a careful
examination of the code reveals that ifX is congruent toY , thenA, B, C, andD are all
zero. The partitioning technique will not discover thatA andB are equal toC andD, and
it also will not discover that any of the expressions are equal to zero. On the other hand, the
hash-based approach will conclude that ifX = Y thenA,B, C, andD are all zero.

The critical difference between the hashing and partitioning algorithms identified by this
example is their notion of equivalence. The hash-based approach proves equivalences based
on values, while the partitioning technique considers only congruent computations to be
equivalent.∗ The code in this example hides the redundancy behind an algebraic identity. Only
the techniques based on value equivalence will discover the common subexpression here. The
hash-based approach combines congruence finding and constant propagation to produce an
optimization that is more powerful than the sum of its parts. Click described precisely when
combining optimizations is profitable14.

Now consider the code fragment in the right column of Figure 13. If we apply any of the
hash-based approaches to this example, none of them will be able to prove thatX2 is equal
to Y2. This is because at the time a value number must be assigned toX2 andY2, none of
∗ Two expressions can only be congruent if they have the same operator. Thus, the partitioning technique cannot discover that

1+1 and2*1 compute the same value.
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these techniques have visitedX3 or Y3. Therefore, they must assign different value numbers
toX2 andY2. However, the partitioning technique will prove thatX2 is congruent toY2 (and
thusX3 is congruent toY3). The key feature of the partitioning algorithm which makes this
possible is its initial optimistic assumption that all values defined by the same operator are
congruent. It then proceeds to disprove the instances where the assumption is false. In contrast,
the hash-based approaches begin with the pessimistic assumption that no values are equal and
proceed to prove as many equalities as possible.

We should point out that eliminating more redundancies does not necessarily result in
reduced execution time. This effect is a result of the way different optimizations interact.
The primary interactions are with register allocation and with optimizations that combine
instructions, such as constant folding or peephole optimization. Each replacement affects
register allocation because it has the potential of shortening the live ranges of its operands
and lengthening the live range of its result. Because the precise impact of a replacement on
the lifetimes of values depends completely on context, the impact on demand for registers is
difficult to assess. In a three-address intermediate code, each replacement has two opportunities
to shorten a live range and one opportunity to extend a live range. We believe that the impact
of replacements on the demand for registers is negligible; however, this issue deserves more
study.

The interaction between value numbering and other optimizations can also affect the execu-
tion time of the optimized program. The example in Figure 14 illustrates how removing more
redundancies may not result in improved execution time. The code in blockB1 loads the value
of the second element of a common block called “foo”, and the code in blockB2 loads the first
element of the same common block. Compared to value numbering over single basic blocks,
value numbering over extended basic blocks will remove more redundancies. In particular,
the computation of registerr5 is not needed because the same value is in registerr1. However,
the definition ofr1 is no longer used in blockB1 due to the constant folding in the definition
of r3. The definition ofr1 is now partially dead because it is used along the path through
blockB2 but not along the path throughB3. If the path through blockB3 is taken at run time,
the computation ofr1 will be unused. On the other hand, value numbering over single basic
blocks did not remove the definition ofr5, and the definition ofr1 can be removed by dead
code elimination. The result is that both paths through theCFGare as short as possible. Other
optimizations that fold or combine optimizations, such as constant propagation or peephole
optimization, can produce analogous results. In our test suite, thesaturr routine exhibits
this behavior.

EXPERIMENTAL RESULTS

Even though we can prove that each of the three partitioning techniques andeach form
of hash-based value numbering is never worse than its predecessor in terms of eliminating
redundancies, an equally important question is how much this theoretical distinction matters
in practice. To assess the real impact of these techniques, we have implemented all of the
optimizations in our experimental Fortran compiler. The compiler is centered around our
intermediate language, calledILOC (pronounced “eye-lock”).ILOC is a pseudo-assembly lan-
guage for aRISC machine with an arbitrary number of symbolic registers.LOAD andSTORE
operations are provided to access memory, and all computations operate on symbolic registers.
The front end translates Fortran intoILOC. The optimizer is organized as a collection of Unix
filters that consume and produceILOC. This design allows us to easily apply optimizations
in almost any order. The back end produces code instrumented to count the number ofILOC



VALUE NUMBERING 17

H
H
H
HHj

�
�
�
���

H
H
H
HHj

�
�

�
���

r1← “foo”
r2← 4

r3← r1 + r2
r4← LOAD r3

B1

r5← “foo”
r6← 0

r7← r5 + r6
r8← LOAD r7

B2 B3

B4

Original Program

H
H
H
HHj

�
�
�
���

H
H
H
HHj

�
�

�
���

r1← “foo”
r2← 4

r3← “foo+4”
r4← LOAD r3

B1

r6← 0

r8← LOAD r1

B2 B3

B4

H
H
H
HHj

�
�
�
���

H
H
H
HHj

�
�
�
���

r1← “foo”
r2← 4

r3← “foo+4”
r4← LOAD r3

B1

r5← “foo”
r6← 0

r8← LOAD r5

B2 B3

B4

Extended Basic Blocks Single Basic Blocks
More Redundancies Removed Fewer Reduncancies Removed

H
H
H
HHj

�
�
�
���

H
H
H
HHj

�
�

�
���

r1← “foo”

r3← “foo+4”
r4← LOAD r3

B1

r8← LOAD r1

B2 B3

B4

H
H
H
HHj

�
�
�
���

H
H
H
HHj

�
�
�
���

r3← “foo+4”
r4← LOAD r3

B1

r5← “foo”

r8← LOAD r5

B2 B3

B4

Final Code Final Code

Figure 14. Interaction with other optimizations



18 BRIGGS, COOPER, SIMPSON

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem repvid fpppp

Single

Extended

Dominator

AVAIL

PRE

0

0.2

0.4

0.6

0.8

1

1.2

paroi bilan debico inithx integr sgemv cardeb sgemm inideb supp

Single

Extended

Dominator

AVAIL

PRE

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu fmtset subb ihbtr drepvi x21y21 saturr fmtgen efill

Single

Extended

Dominator

AVAIL

PRE

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Single

Extended

Dominator

AVAIL

PRE

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyeh arret inter intowp ilsw

Single

Extended

Dominator

AVAIL

PRE

Figure 15. Comparison of hash-based techniques – SPEC benchmark
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Figure 16. Comparison of hash-based techniques – FMM benchmark

instructions executed.
Comparisons were made using routines from a suite of benchmarks consisting of routines

drawn from theSPECbenchmark suite15 and from Forsythe, Malcolm, and Moler’s book on
numerical methods16. We refer to the latter as theFMM benchmark. Each routine was optimized
in several different ways by varying the type of redundancy elimination (value numbering
followed by code removal or motion).∗ To achieve accurate comparisons, we varied only the
type of redundancy elimination performed. The complete results are shown in Figures 15
through 20. Each bar represents dynamic counts ofILOC operations, normalized against
the the leftmost bar. Routines are optimized using the sequence of global reassociation17,
redundancy elimination, global constant propagation18, global peephole optimization, dead
code elimination6, operator strength reduction19, 20, redundancy elimination, global constant
propagation, global peephole optimization, dead code elimination, copy coalescing, and a pass
to eliminate empty basic blocks. All forms of value numbering were performed on theSSA
form of the routine. The hash-based approaches use the unified table method. Its global name
space is needed for eitherAVAIL -based removal orPRE. All tests were run on a two-processor
Sparc10 model 512 running at 50 MHz with 1 MB cache and 115 MB of memory.

Figures 15 and 16 compare the hash-based techniques. In general, each refinement to the
technique results in an improvement in the results. We see significant improvements when
moving from single basic blocks to extended basic blocks and again to dominator-based
removal. One surprising aspect of this study is that the differences between dominator-based
removal andAVAIL -based removal are small in practice.† The differences betweenAVAIL -
based removal andPRE are significant. The ability ofPRE to move invariant code out of
loops contributes greatly to this improvement. However, there are some examples where our
value-based formulation ofAVAIL -based removal is better thanPRE, which operates on lexical
names. Figures 17 and 18 compare the partitioning techniques. The results are similar to the
∗ The sizes of the test cases formatrix300 andtomcatv have been reduced to ease testing.
† This suggests that either (1) the situation depicted in Figure 10 occurs infrequently in the tested codes, or (2) some combination

of the other optimizations catch this situation. It appears that the first explanation is the correct one.
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Figure 17. Comparison of partitioning techniques – SPEC benchmark
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Figure 18. Comparison of partitioning techniques – FMM benchmark

results from the hash-based comparison.
Figures 19 and 20 compare the unified hash-table version of dominator-tree value numbering

with value partitioning undereach of the code removal and motion strategies. Hash-based value
numbering almost always eliminates significantly more redundancies than value partitioning.
This is due to the fact that hash-based value numbering can fold constants and simplify
algebraic identities. These are more frequent in practice than the global redundancies identified
by value partitioning.

Table I compares the time required by hash-based value numbering and value partitioning for
some of the larger routines in the test suite. The number of blocks,SSAnames, and operations
are given to indicate the size of the routine being optimized. In all cases, hash-based value
numbering runs faster than value partitioning.

routine blocks SSA names operations hash-based partitioning

tomcatv 131 3366 3222 0.05 0.07
ddeflu 109 9034 6687 0.11 0.81
debflu 116 7183 4320 0.08 0.93
deseco 251 16521 12932 0.30 1.85
twldrv 261 26948 14298 0.40 6.09
fpppp 2 26590 25934 0.63 1.16

Table I. Compile times of value numbering techniques
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Figure 19. Comparison of hash-based vs. partitioning techniques – SPEC benchmark



VALUE NUMBERING 23

0

0.2

0.4

0.6

0.8

1

1.2

sv
d

fm
in

ze
ro

in

sp
lin

e

d
e
co

m
p fe

h
l

rk
fs

u
ra

n
d

so
lv

e

se
va

l

rk
f4

5

Dominator Partitioning

Dominator Hash-based

AVAIL Partitioning

AVAIL Hash-based

PRE Partitioning

PRE Hash-based

Figure 20. Comparison of hash-based vs. partitioning techniques – FMM benchmark

SUMMARY

In this paper, we study a variety of redundancy elimination techniques. We have introduced
a technique for applying hash-based value numbering over a routine’s dominator tree. This
technique is superior in practice with the value partitioning techniques, while being faster and
simpler. Additionally, we have improved the effectiveness of value partitioning by removing
computations based on available values rather than dominance information and by applying
partial redundancy elimination.

We presented experimental data comparing the effectiveness of each type of value numbering
in the context of our optimizingcompiler. The data indicates that our extensions to the existing
algorithms can produce significant improvements in execution time.
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