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1 Introduction

When writing or maintaining programs, programmers recognize the implications of conditionals or guards

and use them to improve their code [7]. Consider this example:

do x 6= y !
if x = 0! hblock ai
[] x 6= 0! hblock bi
�

od

hblock ci

In this code fragment (expressed in Dijkstra's notation), we are certain that x = 0 at the entrance of block a

and that x = y at the entrance of block c. We would like for a compiler to recognize the implications of

guards and to take advantage of them to achieve better optimization. We are particularly concerned with

the problems posed by machine-generated code; e.g., the code resulting from inline substitution or extensive

loop transformations [5, 10].

In their paper on global constant propagation,1 Wegman and Zadeck mention that the quality of their

results could be enhanced by taking advantage of constants implied by guards [11, Section 10]. This pa-

per describes an e�cient algorithm for discovering assertions of equality implied by conditional branches

and discusses how to use these assertions to improve the results of Wegman and Zadeck's sparse constant

propagation algorithms [12].

2 Assertions

While many kinds of assertions can be derived from the source code, we will limit our attention to assertions

of equality: either the equality of two variables or the equality of a variable and a constant. Of course, many

guards that arise in practice are more complex than a simple comparison for equality. In this example,

do x = y and p! hblock ai
od

hblock bi

we can assert that x = y and that p = true at the entrance of block a. On the other hand, no simple

assertions are possible at the beginning of block b. Some guards yield no useful assertions. Consider the

following case:

do x = y or (p and q)! hblock ci
od

hblock di

This work has been supported by DARPA through ONR grant N00014-91-J-1989.
1Throughout this paper, \global" is used in the traditional sense of encompassing an entire routine.
This report was originally submitted as an extended abstract to the SIGPLAN 93 Conference on ProgrammingLanguageDesign

and Implementation. It was submitted in November 1992; it was not accepted.
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At the beginning of block c, we are uncertain which operand of the or was true. Similarly, at the entrance

of block d, we are sure that x 6= y (an unhelpful fact); but we cannot tell which of p and q was false.

So far, we have shown only high-level code; however, our optimizer, like many, works with a lower-level

intermediate form. In these low-level forms, it may be di�cult to recognize a guard. For example, the

fragment

do x = 1 and y = z ! hblock ai
od

hblock bi

might be represented in our low-level intermediate code as

LDI 1) r1

label 1 : CMPeq rx; r1 ) r2
CMPeq ry; rz ) r3

AND r2; r3 ) r4

BR label 2, label 3, r4

label 2 : hblock ai
JMP label 1

label 3 : hblock bi

where r1 and rx are simply mnemonic replacements for register numbers. Note that there are no direct com-

parisons between variables and constants; CMPeq operates on registers. Similarly, the compare instructions

are distinct from the branch instruction; therefore, we need to trace back from branches to the instructions

responsible for the condition code. The compares and branches need not be adjacent in the code; indeed,

they can be located in di�erent basic blocks. For example, the comparison of y and z might be loop invariant.

Thus, we must trace through the AND instruction to �nd the comparisons. This would create the assertions

shown below.

LDI 1) r1

label 1 : CMPeq rx; r1 ) r2

CMPeq ry; r3 ) r3

AND r2; r3 ) r4
BR label 2, label 3, r4

label 2 : ASSERT rx; r1 ) r10
ASSERT ry; rz ) r11

ASSERT true; r2 ) r12
ASSERT true; r3 ) r13

ASSERT true; r4 ) r14

hblock ai
JMP label 1

label 3 : ASSERT false; r4 ) r15
hblock bi

The precise form of the assertions may be surprising. Consider the assertion at label 2. It indicates that

rx = r1 in all the blocks dominated by the assertion; that is, all references in block a.2 To make the equality

explicit, we would also replace all dominated references to rx or r1 with r10. The other form of assertion,

shown at label 3, indicates that r4 is false in all dominated blocks. Again, we would replace any dominated

references to r4 with r15. Of course, the assertions could be represented in other forms; we have found this

particular form most convenient for our work.

2Recall that block m dominates block n if and only if every path leading to n passes throughm.
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3 Finding Assertions

Our basic approach will be to trace back along use-def chains from conditional branches, through boolean

operations, to comparisons. When an equality comparison is discovered, an assertion is inserted at the

beginning of the appropriate successor block. After the assertions have been added, we walk forward over

the dominator tree, renumbering registers as directed by the assertions.

3.1 Using Static Single Assignment

There are several di�culties that make the task of �nding assertions more di�cult. These problems are

avoided through the use of a speci�c variant of the static single assignment form (SSA) [6]. In the next two

sections, we give small examples illustrating the problems and show how to avoid them using SSA.

3.1.1 Naming Di�culties

Consider the following code fragment.

CMPeq rx; ry ) rp

ADDI 1; rx ) rx

BR label 1, label 2, rp

label 1 : hblock ai
JMP label 2

label 2 : hblock bi

If we naively insert assertions based on the comparison,3 we get the following result:

CMPeq rx; ry ) rp

ADDI 1; rx ) rx
BR label 1, label 2, rp

label 1 : ASSERT rx; ry ) rxy
hblock ai
JMP label 2

label 2 : hblock bi

Note that the assertion at label 1 is incorrect; by this point, rx is no longer equal to ry. The problem is that

the compare refers to a di�erent value than the value that reaches block a. To avoid this problem, we �rst

convert the code into static single assignment form. After conversion to SSA, we get:

CMPeq rx; ry ) rp

ADDI 1; rx ) rx0

BR label 1, label 2, rp

label 1 : hblock ai
JMP label 2

label 2 : hblock bi

This time, an assertion based on the comparison is correct.

CMPeq rx; ry ) rp
ADDI 1; rx ) rx0

BR label 1, label 2, rp

label 1 : ASSERT rx; ry ) rxy

hblock ai
JMP label 2

label 2 : hblock bi

3For clarity, we omit assertions involving rp and similar simple predicates in the rest of our examples.
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Of course, block a will have no references to rx after conversion to SSA form (they will have been modi�ed

to refer to rx0); but there may be references to ry. Thus, the assertion at label 1 can still be useful in the

event that rx is determined to be constant.

3.1.2 Copy Instructions

A similar problem arises due to copies. Consider this example, representing a pair of nested if statements.

BR label 1, label 4, rp

label 1 : MV rx ) rz0

CMPeq rx; ry ) rq

BR label 2, label 3, rq

label 2 : ASSERT rx; ry ) rxy
hblock ai
JMP label 3

label 3 : hblock bi
JMP label 4

label 4 : PHI rz; rz0 ) rz00

hblock ci

In this case, the code is already in SSA form and the assertion implied by the compare has been inserted at

label 2. The di�culty arises during constant propagation. Suppose the compiler discovers that ry is constant.

Because the copy from rx into rz0 occurs before the assertion, the MV will not be rewritten. Thus, constant

propagation has no way of recognizing that rz0 contains the same constant as ry.

To overcome this problem, we use a variant of the SSA form suggested by Zadeck [14]. This variation

eliminates all copy instructions by folding them into existing �-nodes during the renaming phase of SSA

construction [6, Section 5.2]. In the case shown above, we would get the following code, where all mentions

of rz0 have been replaced by rx to reect the e�ect of the (deleted) copy instruction at label 1.

BR label 1, label 4, rp

label 1 : CMPeq rx; ry ) rq

BR label 2, label 3, rq

label 2 : ASSERT rx; ry ) rxy

hblock ai
JMP label 3

label 3 : hblock bi
JMP label 4

label 4 : PHI rz; rx ) rz00

hblock ci

In the original paper, renaming is done in a routine called SEARCH [6, Figure 12]. Figure 1 gives a version

of SEARCH modi�ed to fold the e�ect of copy instructions into �-nodes. The signi�cant changes are in the

handling of copy instructions. Rather than creating a new register number for the destination, we push

the source register number, e�ectively replacing the destination in all dominated instructions. Since the

intermediate values used in our low-level code are held in registers, the routine really does a renumbering

of the registers. Rather than keeping stacks of counts, we stack actual register numbers. We number the

registers from zero; therefore, the global variable regs is initially zeroed and is ultimately equal to the number

of values (or de�nition points) in the routine. At the same time, we record the use-def chains to support

tracing.
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proc search(block)
for each instruction inst in block do

| renumber uses (except for �-nodes)
if inst.opcode = PHI !

skip

[] inst.opcode 6= PHI !
i 0
do i < inst.refs!

inst.ref [i] top(stack[inst.ref [i]])
i i+ 1

od

�

| push new register number for each de�nition
if inst.opcode =MV !

push(stack[inst.def ]; inst.ref [0])
[] inst.opcode 6= MV !

push(stack[inst.def ]; regs)
regs  regs + 1

�

od

| renumber inputs in successor block's �-nodes
for each successor succ of block in the control-ow graph do

j  which pred(succ, block)
for each �-node phi in succ do

phi.ref [j] top(stack[phi.ref [j]])
od

od

| walk over dominated blocks
for each child of block in the dominator tree do

search(child)
od

| restore stacks, delete copies, set de�ned registers, build UD chains
for each instruction inst in block (in reverse order) do

new  pop(stack[inst.def ])
if inst.opcode =MV !

delete inst
[] inst.opcode 6= MV !

inst.def  new

def [new ] inst

�

od

end

Figure 1 The Modi�ed SEARCH Procedure
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proc trace true(reg, block)
inst  def [reg]
if inst.opcode = NOT !

trace false(inst.ref [0];block)

[] inst.opcode = AND !
trace true(inst.ref [0]; block)
trace true(inst.ref [1]; block)

[] inst.opcode = NOR !
trace false(inst.ref [0];block)
trace false(inst.ref [1];block)

[] inst.opcode = CMPeq !
assert equal(inst.ref [0]; inst.ref [1]; block)

[] inst.opcode 62 fNOT, AND, NOR, CMPeqg !
skip

�

assert true(reg, block)
end

proc trace false(reg, block)
inst  def [reg]
if inst.opcode = NOT !

trace true(inst.ref [0];block)

[] inst.opcode = OR !
trace false(inst.ref [0]; block)
trace false(inst.ref [1]; block)

[] inst.opcode = NAND !
trace true(inst.ref [0];block)
trace true(inst.ref [1];block)

[] inst.opcode = CMPne !
assert equal(inst.ref [0]; inst.ref [1]; block)

[] inst.opcode 62 fNOT, OR, NAND, CMPneg !
skip

�

assert false(reg, block)
end

Figure 2 Tracing Conditionals

3.2 Tracing through Boolean Operations

As mentioned in the discussion of an earlier example, it is possible to trace back through boolean operations

to discover additional assertions; however, some care is required. Consider the instruction AND r1; r2 ) r3.

If r3 is true, then clearly both r1 and r2 must be true. On the other hand, if r3 is false, either or both of

the inputs may be false. Similar considerations apply to OR, NAND, and NOR.

Figure 2 illustrates a pair of mutually recursive routines that can be used to trace back from a conditional

branch to discover assertions. For each conditional branch, we would call both trace true and trace false,

each with the appropriate successor block; that is, we would pass the successor block along the true branch

to trace true and the other successor block to trace false. The trace routines follow the use-def chains back

as far as possible, placing assertions at the entrance of the successor block at every step.

We have not shown the routines assert equal, assert true, or assert false. They simply insert the appro-

priate assertion at the entrance of a basic block. As each assertion is created, it de�nes a unique register

number { the value of the global variable, regs. The variable regs is then incremented so that it contin-

ues to equal the number of de�nition points. To ensure that there is always a valid basic block to receive

each assertion, we must sometimes split edges in the control-ow graph; that is, we insert an empty basic

block along any edge whose source has more than one successor and whose destination has more than one

predecessor. To simplify our optimizer passes, we routinely split all such edges during construction of the

control-ow graph.

Note that no attempt is made to trace through �-nodes. We have obtained a signi�cant simpli�cation

of our algorithm through one of the basic properties of SSA: each use is reached by a single de�nition. The

price of achieving this property is the introduction of �-nodes. If we attempt to trace through �-nodes,

we must compare boolean formulas, potentially taking exponential time [1]. Note also that termination of

our algorithm is assured since all cycles in the use-def chains must include a �-node. DAGs can cause some

extra assertions to be created; however, these do not a�ect correctness. They may be avoided without loss

of asymptotic e�ciency by marking instructions as they are visited.
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3.3 Renumbering Registers

After inserting assertions, we must perform a second renumbering pass. Like search, renumber takes the

form of a preorder walk over the dominator tree. It is outlined in Figure 3. Notice the similarities with

search. In this case, only registers mentioned in assertions are renumbered. Simultaneously, def-use chains

are accumulated for constant propagation.

The assertions are handled using a form of disjoint-set union. E�ectively, the operands of an assertion

are unioned to give a third set { the result of the assertion. This union holds in all the blocks dominated by

the assertion, but must be undone after traversal of the current subtree is complete. Because of the need for

backtracking and the short expected path length, we perform no path compression during �nd.4

4 Using Assertions

Wegman and Zadeck describe four algorithms for performing global constant propagation; we are concerned

here with their sparse algorithms [12]. The two sparse algorithms, sparse constant and sparse conditional

constant, both operate over the SSA graph, propagating lattice values forward along def-use chains. At each

instruction (including �-nodes), the inputs are evaluated and a new lattice value is computed and forwarded

to each of its uses.

Wegman and Zadeck use the lattice meet operation to evaluate �-nodes during constant propagation.

The meet of two operands, x^ y, is their greatest lower bound in the lattice. For constant propagation, the

meet operation is de�ned as:

any ^ > = any
any ^ ? = ?
ci ^ cj = ci if ci = cj
ci ^ cj = ? if ci 6= cj

To evaluate assertions during propagation, we use the lattice join operation. The join of two operands x_ y

is their least upper bound. For constant propagation, the join operation is de�ned as:

any _ > = >
any _ ? = any
ci _ cj = ci if ci = cj
ci _ cj = > if ci 6= cj

The �nal case, ci _ cj where ci 6= cj , is interesting. Inconsistent inputs indicate that control will never

reach this point; therefore, the answer is unimportant { a don't care. Furthermore, in the case of the sparse

conditional constant algorithm, unreachable assertions will never be evaluated.

The join operation gives exactly the desired behavior: after both operands are available (i.e., after they

have been lowered from >), if either is constant, then the result is constant.

5 Removing Assertions

After constant propagation, we must remove the �-nodes and assertions to recover executable code. To

remove a �-node, we insert a copy in each predecessor block. The copy moves the value from the input

register to the result register. Of course, we avoid inserting redundant copies (i.e., a copy from rx to rx).

Removing assertions is simple. Since both both operands must have the same value, we can replace a

reference to the result of an assertion with the name of either operand. Once again, we use a preorder walk

over the dominator tree to accomplish the required transformations.

4However, see Westbrook and Tarjan for discussion of asymptotically e�cient approaches to the problem [13].
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func �nd(x)
do root[x] 6= NULL!

x root[x]
od

return x

end

proc renumber(block)
for each instruction inst in block do

| �nd uses and add to DU chains (except for �-nodes)
if inst.opcode = PHI !

skip

[] inst.opcode 6= PHI !
i 0
do i < inst.refs!

new  �nd(inst.ref [i])
inst.ref [i] new

uses[new] uses[new ] [ finstg
i i+ 1

od

�

| perform unions for assertions
if inst.opcode = ASSERT !

root[inst.ref [0]] inst.def

root[inst.ref [1]] inst.def

[] inst.opcode 6= ASSERT !
skip

�

od

| �nd inputs in successor block's �-nodes and add to DU chains
for each successor succ of block in the control-ow graph do

j  which pred(succ, block)
for each �-node phi in succ do

new  �nd(phi.ref [j])
phi.ref [j] new

uses[new] uses[new ] [ fphig
od

od

| walk over dominated blocks
for each child of block in the dominator tree do

renumber(child)
od

| undo unions
for each assertion assert in block do

root[assert.ref [0]] NULL

root[assert.ref [1]] NULL

od

end

Figure 3 Renumbering After Adding Assertions
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Note that this process can introduce many copies, since each �-node is replaced by one or more copies.

Furthermore, the minimal SSA produced by the e�cient dominance frontier algorithm includes many dead

�-nodes { nodes whose results are never used [6]. To eliminate unneeded copies, we can either add a �nal

phase to eliminate dead code or we can work with the pruned SSA form throughout [3]. This latter approach

avoids introducing dead �-nodes and thus avoids the problem.

In our implementation, we use the pruned SSA form. Advantages include quicker placement of �-nodes

(many less are required), lower memory requirements, and faster propagation of constants. The main disad-

vantage is the need for a phase to perform liveness analysis (dead code elimination is performed in a separate

pass of our optimizer).

6 Summary

We have motivated and described each of the necessary phases; however, the overall picture may not be

clear. Our implementation is organized in six phases.

1. Compute live registers to support construction of the pruned SSA form.

2. Build pruned SSA, folding copies into �-nodes. At the same time, create use-def chains.

3. Find assertions using use-def chains.

4. Renumber to account for assertions. Simultaneously, create def-use chains.

5. Perform sparse conditional constant propagation using def-use chains.

6. Remove �-nodes and assertions.

Thus, with a small amount of extra work, essentially an extra pass over the code in each of steps 3 and 4, we

are able to �nd assertions that can be used to improve the results of Wegman and Zadeck's sparse constant

propagation algorithms.

6.1 Limitations

Our approach does not �nd every possible assertion. For example, we miss some possibilities because we do

not trace back through �-nodes. Additionally, it is possible to construct certain complex examples requiring

that the e�ect of assertions be merged for best results; however, these examples cannot be constructed

without goto statements. More signi�cantly, we limit ourselves to assertions concerning equality, ignoring

the possibilities o�ered by inequalities. This seems consistent with the \philosophy" of constant propagation;

working with inequalities would seem to fall within the scope of range propagation (see Section 6.3).

6.2 Experimental Results

We have implemented several variations of our technique in the context of Wegman and Zadeck's sparse

conditional constant propagator. Unfortunately, our entire optimizer is undergoing a major overhaul (hence

our reconsideration of constant propagation) and we are currently unable to collect adequate experimental

results. In the near future, we expect to be able to measure performance on a variety of Fortran routines.

We envision a comparison with Wegman and Zadeck's original approach. We would collect data comparing

the costs of analysis and the e�ectiveness of the added assertions in real code. Interesting cost data would

include the time required for our extra phases and the additional space required for assertions. We expect

both costs to be small.
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6.3 Related Work

Important work in this area has typically explored forms of range propagation [8, 9]. These works try to

solve much harder problems and are signi�cantly more complex. Our approach is a simple solution to a

limited problem.

We continue to explore further uses for assertions. A natural possibility is to use them during value

numbering [4, 2]; we some preliminary results in this area. A further possibility is �nding an extension of

value numbering, using assertions of inequalities, to accomplish a form of range propagation.
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