
Aggressive Live Range Splitting†

Preston Briggs
Keith D. Cooper
Linda Torczon
Rice University

Houston, TX 77251-1892

1. The Problem
Over the past three years, we have built a series of register allocators based on the graph coloring paradigm.
Over the same period, colleagues have inv olved us in two different studies involving source-to-source trans-
formations. These studies have made us much more familiar with the shortcomings of the register alloca-
tors in several commercial compilers [CaCK 90, CoHT 90]. Some of these use the coloring paradigm, others do
not.
In general, allocators based on coloring do a good job of keeping values in registers and keeping spill costs
low. Nonetheless, we have observed a number of problems with the allocations produced by our allocator
[BCKT 89], by our implementation of Chaitin’s method [CACC 81, Chai 82], and by the implementation of
Chow’s method in the MIPS FORTRAN compiler [ChHe 90]. We believe that these misallocations are not
caused by specific details of the implementations, but rather by the loss of information during the mapping
from allocation into coloring.
These problems usually manifest themselves as a bad spill choice – the allocator picks the wrong live range
or ranges to spill at some particular point in the code. These misallocations are becoming increasingly
important. For example, on the Intel 860 microprocessor, a sixty-four bit floating point multiply takes two
cycles. Loading a sixty-four bit number from cache takes two cycles. If the load causes a cache miss, the
cost rises to twenty or more cycles. For the advanced microprocessors that are moving into the market
today, memory traffic is more expensive than computation.
We are building a compiler that restructures loop nests to improve both cache and register locality. These
transformations can drastically increase the ratio of useful computation to memory traffic, producing
improvements of two to three hundred percent in running time [CaCK 90]. The compiler tries to minimize
the number of loads and stores in the inner loops and to tune the register pressure to match the target
machine’s resources. If, after these transformations, the allocator unnecessarily inserts new loads and
stores into that inner loop, in the form of spill code, it has negated the effects of the optimization. Further,
because spilling moves unanticipated values into the cache, the spill code causes cache pollution and
destroys the carefully planned locality.
The aim of this work is to address the sources of these misallocations. We believe that these problems arise
due to information loss in the transformation of the problem from a register allocation problem to a graph
coloring problem. Simply put, allocation is like coloring, but not identical to coloring. The mapping from
allocation to coloring used in previous work discards information that would allow the allocator to avoid
these observed problems.

2. Background

The notion of modeling register allocation as a graph coloring problem goes back to the early sixties.1 The
first actual implementation was done by Chaitin et al. in the PL.8 compiler [CACC 81]. Our own work has

† This work has been supported by the National Science Foundation, through grants CCR 86-19893 and CCR 87-06229.
1 In the early sixties Ershov and his colleagues on the ALPHA project solved storage allocation problems by building an interfer-

ence graph and using a packing algorithm on it [Ersh 62, Ersh 66]. Ershov credits the insight to Lavrov; his 1961 paper appears to be the
first reference that makes the link between allocation problems and graph coloring [Lavr 61]. By the late sixties, Cocke was clearly
talking about register allocation as a coloring problem; both Kennedy and Schwartz credit him with this insight [Kenn 71, Schw 73].

1



built on Chaitin’s scheme [BCKT 89].
To model register allocation as a graph coloring problem, the compiler first constructs a register interfer-
ence graph G. The nodes in G represent live ranges and the edges represent interferences. Thus, there is
an edge in G from node i to node j if and only if live range li interferes with live range l j ; that is, they are
simultaneously live at some point and cannot occupy the same register.2

To find an allocation from G, the compiler looks for a k-coloring of G, that is, an assignment of colors to
the nodes of G such that adjacent nodes always have distinct colors. If we choose k to match the number of
machine registers, then we can map a coloring into a feasible register assignment. Because graph coloring
is NP-complete, the compiler uses a heuristic method to search for a coloring. It is not guaranteed to find a
k-coloring for all k-colorable graphs. If it cannot find a k-coloring, it chooses some values to throw out of
registers, an action called spilling in the jargon of allocation.
Spilling one or more live ranges creates a new and different interference graph. The compiler proceeds by
iteratively spilling some live ranges and attempting to color the resulting new graph. This process must
produce an allocation; on each iteration of the process, it spills some live ranges and reduces the size of the
interference graph. In practice, our allocator rarely requires more than two trips through this loop.
Figure 1 shows how our allocator works. It proceeds in six phases.
(1) Renumber systematically renames live ranges. It assigns a new virtual register number to each defi-

nition point. Then, it unions together the live ranges that reach each use point.3

(2) Build graph constructs the interference graph. Our implementation closely follows the published
descriptions of the PL.8 allocator.

(3) Coalesce attempts to shrink the number of live ranges. It subsumes unneeded copies, eliminating
the copy instruction itself and combining the live ranges. If coalescing changes the graph, we
repeat build graph and coalesce. Coalescing proceeds from live ranges in inner loops to those in
outer loops.

(4) Simplify graph constructs an ordering over the nodes of G. It removes from G nodes with current
degree less than k, pushes them on a stack, and adjusts the degree of their neighbors. If no such

Renumber Build
Graph Coalesce Simplify

Graph Color

Insert
Spills

Figure 1 — the base allocator

2 This is a simplified definition. For the ultimate definition of interference, see the 1981 PL.8 paper [CACC 81].
3 In the papers on the PL.8 compiler, this type of analysis is referred to as getting ‘‘the right number of names’’. The HP Spec-

trum compiler papers refer to this type of analysis as ‘‘web analysis’’. Our implementation models this as an example of the classic
union-find problem.

2



node remains, it chooses a ‘‘spill candidate’’, removes it from G, and pushes it on the stack.4

(5) Color assigns colors to the nodes of the graph in the order determined by simplify graph. It repeats
the simple loop: (a) pop a node from the stack; (b) insert it in G; (c) give it a color distinct from its
neighbors. If no color is available in step (c), it leaves the node uncolored.

(6) Insert spills is invoked if color has left any node uncolored. If all nodes received colors, the alloca-
tor has succeeded. If needed, insert spills converts the single live range being spilled into a collec-
tion of tiny liv e ranges, one around each use or definition of the value.

More detailed descriptions of these processes can be found in Chaitin’s work and our own SIGPLAN 89
paper [CACC 81, Chai 82, BCKT 89].

3. Live Range Splitting
In Chaitin’s scheme, a live range that cannot be colored gets spilled everywhere. Chow proposed a simple
alternative. He observed that splitting a live range into several pieces and considering these new liv e ranges
separately can produce an interference graph that colors with less spilling [ChHe 90]. Thus, when his alloca-
tor cannot assign a color to some live range li , it splits li into smaller live ranges, one for each basic block
in which li appears. This technique is called live range splitting.
To decrease the amount of fragmentation introduced by splitting, Chow also included a method for combin-
ing some of these small live ranges. After splitting a live range, the allocator examines the resulting set of
smaller live ranges. If it finds two adjacent live ranges that would have degree < k when combined, it
pastes them together.
Live range splitting has several merits. The splitting process often creates live ranges of lower degree; the
limitation on combining keeps degrees low. If an entire live range is spilled, as in Chaitin’s work, its value
will reside in a register only for trivial periods around each definition or use. Splitting allows the live range
to stay in a register over longer intervals – often an entire block or, if combinations are possible, over sev-
eral blocks. With luck, the new liv e range can be large enough to extend over all of an important construct,
like an inner loop.
As proposed by Chow, howev er, this idea has several shortcomings. Because it only splits a live range after
the allocator has failed to assign the live range a color, it ends up using Chow’s priority-based coloring
heuristic to select the live ranges that get split. Because it splits at each basic block boundary and then
combines some of these small live ranges, it doesn’t always select good split points. Our technique,
described in the next section, attacks both of these problems with a simple but powerful set of heuristics.

4. Aggressive Live Range Splitting
In an allocator that tries to use live range splitting, the implementor faces two fundamental problems:
(1) picking live ranges to split, and
(2) picking places to split them.

It is clear that the allocator could spend exponential time picking the optimal set of live ranges to split and
the optimal points at which to split them. Our quest has been for reasonably efficient techniques that pro-
vide good answers to these two questions. We hav e developed, implemented, and tested heuristic tech-
niques to address each of these problems. This section describes our approach. The first subsection dis-
cusses our aggressive approach to splitting. The second subsection describes the two mechanisms that we
use to moderate the effects of aggressive splitting. The third subsection deals with spilling and the compu-
tation of spill costs. The fourth subsection relates some of our experience with the implementation. The
final subsection gives some data on the behavior of the new allocator.

4 The metric for picking spill candidates is important. For the purposes of this paper, assume that the allocator uses a single
metric, Chaitin’s metric of spill cost divided by current degree [Chai 82]. The spill cost is computed as the number of loads and stores
that would be required to spill the live range, with each operation weighted by 8d where d is the instruction’s loop nesting depth.

3



4.1. Splitting
In our search for a splitting technique that produced good results with a reasonable running time, we were
forced to reconsider the fundamental ideas of the coloring paradigm for register allocation. The key insight
behind our work is that the interference graph captures none of the structure of the control flow graph. In
translating the allocation problem into a coloring problem, the compiler loses almost all information about
the topography of the code. There is no representation for locality. Estimates of execution frequency get
factored into estimated spill costs, but because the information is computed over the whole procedure, it
gives equal weight to both near and distant references. Thus, a live range that is heavily used in some criti-
cal inner loop may get spilled in deference to a value that is live across the loop and used in one or more
distant but deeply nested loops.
To recapture geographic locality, we advocate (1) finding those points in the code where we would like
splitting to occur, and (2) splitting every live range at those points. Thus, we avoid the problem of picking a
live range by splitting all the live ranges that cross a split point. To locate split points, we use a simple and
efficient examination of the control-flow graph.
Selection of good split points is critical. Relying on our fundamental insight, we return to the geography of
the procedure. Conceptually, we would like to spill before and after each loop. In practice, we find the
strongly connected regions in the control flow graph. For those regions where register pressure is high, we
insert split points along all entering and exiting edges.5

Accomplishing the splits is simple. The allocator breaks each live range at the split point and inserts a copy
from the incoming live range to the outgoing live range. Then it runs renumber, which naturally renames
the two new liv e ranges.
This strategy has two major effects.
(1) First, it shifts the basis of the spill competition from global allocation towards local allocation. In

an innermost loop, the competition is effectively local. Moving out through the loop nest, the com-
petition shifts from local allocation toward more global allocation.

(2) Second, because most spill code is generated at the split points, it gives us a great deal of control
over spill code placement. Many liv e ranges will spill only over inactive regions. These spills
require only a single load or load/store pair at the endpoints. The strategy encourages this spilling
of inactive regions – once the first inactive region is spilled, adjacent inactive regions have spill
costs of zero.

4.2. Coalescing
Our technique breaks every live range at every split point. A more selective strategy might be able to gen-
erate the same allocation while generating fewer splits. Rather than spend time being selective, we choose
to split aggressively and let the allocator recombine some of the extraneous splits. Of course, the design
must maintain a delicate balance to avoid negating the benefits achieved through splitting. We use two
techniques to maintain this balance: limited coalescing and color biasing. Taken together, these two meth-
ods approach the effectiveness of the complete coalescing performed in a Chaitin-style allocator without
undoing the benefits of splitting.

4.2.1. Limited Coalescing
Essentially, coalescing is the inverse of splitting. Coalescing merges disjoint live ranges (when that opera-
tion is legal). Splitting takes a single live range and creates disjoint live ranges. Given an interference
graph G, if we applied aggressive splitting followed by the normal coalescing, we would expect to get back

5 Originally, we considered splitting around each strongly connected region. Matt Zaleski of IBM pointed out that splitting in
areas of low pressure is both unnecessary (it does not improve the allocation) and counterproductive (it increases the size of the
graph). We call this improvement Zaleski’s finesse.

4



the same interference graph (within an isomorphism over register names). Therefore, we apply a limited
form of coalescing.
In normal coalescing, two liv e ranges are combined if the initial definition of the second is a copy from the
first and they do not otherwise interfere. In limited coalescing, we add an additional constraint: only coa-
lesce two liv e ranges if the resulting live range has ‘‘low degree’’. Intuitively, we want to coalesce two liv e
ranges when the resulting live range is no harder to color than the original live ranges.
Initially, we considered the following notion: two liv e ranges are coalesced only when the resulting live
range would have degree less than k. While this approach cannot introduce new spills, it is probably too
conservative. It will not coalesce any liv e ranges that are not trivially colored – that is, live ranges with ini-
tial degree > k. In practice, many such live ranges receive colors.

This observation led us to refine our restriction.6 Tw o live ranges li and l j are combined only when
lo
ij ≤ max(loi , loj , k − 1). This formulation allows the allocator to coalesce live ranges that are not trivially

colored . The increased power to coalesce does have a downside. For example, if li would spill and l j
would not, and lo

ij = loi then the second technique would coalesce them, with the result that l j is spilled.
Limited coalescing has no deleterious effects on neighboring live ranges. Assume that we have two liv e
ranges li and l j that interfere. Coalescing li with another live range lk cannot raise lo

j . If l j and lk do not
interfere, then lo

j is unchanged. Furthermore, if l j interferes with both li and lk , then combining li and lk
reduces lo

j by one.
Both of these strategies shrink the number of live ranges, reduce the number of copies, undo some of the
excess splitting, and help lower the overall degree of the graph. By placing restrictions on the degree of the
resulting live range, we ensure that limited coalescing will not create new spills. Thus, limited coalescing
pastes live ranges back together in a conservative fashion, undoing splitting in some of the cases where it
did not improve the allocation. However, limited coalescing cannot undo all of the non-productive splitting
introduced by our aggressive strategy.

4.2.2. Biased Coloring
Our second mechanism for pasting live ranges back together involves biasing the order in which colors are
considered for assignment. As live ranges are split, the allocator constructs a list of partners, new liv e
ranges that are all split off from a single original live range. When the allocator assigns a color to li , it first
tries colors already assigned to one of li’s partners. With a careful implementation, this is no more expen-
sive than picking the first available color; it really amounts to biasing the spectrum of colors by previous
assignments to li’s partners.
The biasing mechanism can combine live ranges that limited coalescing cannot. In particular, it can com-
bine two liv e ranges that receive colors when treated separately, but would likely be spilled if combined
during limited coalescing. By virtue of the time of its application – after the allocator has decided that both
live ranges will receive colors – it takes advantage of deep knowledge about the interference graph.
For example, at the time that limited coalescing is performed, the allocator has no knowledge about inter-
ferences between the neighbors of some live range li . Thus, limited coalescing must rely on lo

i as a crude
approximation to li’s colorability. It may be the case that li has 2k neighbors, but that they require only
three colors between them because few of them interfere with each other. The high degree will prevent lim-
ited coalescing from combining li with one of its partners l j , particularly if l j’s neighbors are disjoint from
li’s neighbors. The biasing mechanism, by virtue of its late application, is only invoked when both live
ranges will be assigned colors. This detailed level of knowledge is not available earlier in the process – for
example, when coalescing is performed.

6 To simplify the text, we will use loi to denote degree(li). Similarly, lij denotes the combination of li and l j .

5



4.3. Spilling
When a live range is split, the component live ranges are called partners. Partners are attached to one
another via copies at each split point. Since each set of partners is split from one live range, members of
the same set can spill to the same location. The recognition and proper handling of partners is essential for
obtaining high-quality spill code.
Consider the example in Figure 2. The single live range in (a) is split in (b) by the introduction of a copy.
The resulting live ranges, l j and lk , are partners. If l j is spilled, we should get (c). Alternatively, (d) illus-
trates the result of spilling lk . Note that each partner spills to the same location. Finally, (e) shows the
result of spilling both partners.
Now consider the costs for the sequence from (b) through (c) to (e). Moving from (b) to (c) costs one store
and one load, but saves one copy.7 The transition from (c) to (e) saves one load (at the split point) and costs
one load (at the use point). No new instructions are required; instead, the load is effectively moved. There-
fore, the cost of spilling lk at (c) is determined by the relative loop nesting depth of the split point and the
use. If the split point is nested more deeply than the use, it will be profitable to spill lk .
We account for these situations while computing spill costs and inserting spill code. Additionally, we
update spill costs incrementally while simplifying and coloring. In terms of the example in Figure 2, if l j
cannot be colored and must be spilled, the cost of spilling its partner is immediately adjusted, increasing the
probability of spilling lk . Further, if any liv e range has a negative spill cost, it will be spilled immediately
and its partners’ costs updated appropriately.
The effect of this careful handling of partners is important. Aggressive splitting divides long live ranges
into long chains of partners. If one partner is spilled, it tends to drag its immediate partners along.

i ← j ←
j ←

mem(i) ← j j ←
j ←

mem(i) ← j

k ← j k ← mem(i) mem(i) ← j

← i ← k ← k k ← mem(i)
← k

k ← mem(i)
← k

(a) (b) (c) (d) (e)

li

lj

lk

lj spilled

lk

lj

lk spilled

lj spilled

lk spilled

Figure 2 — spilling partners

7 Naturally, each instruction’s cost should be weighted according to its loop nesting depth.

6



Conversely, when a partner is kept in a register, it tends to hold its immediate partners in registers. These
tendencies, together with register pressure from competing live ranges, work to force spill points (both
loads and stores) out of loop nests.

4.4. Implementation
Integrating these ideas into our allocator was a major task. Conceptually, the task is fairly straightforward;
Figure 3 shows a high-level view of the resulting allocator. Sev eral points have changed from the allocator
depicted in Figure 1.
(1) Split finds strongly connected regions in the procedure’s control flow graph and splits live ranges

along each edge that enters a region. This may introduce some new basic blocks to hold the copies
that break the live ranges.

(2) Limited coalesce combines live ranges using one of the strategies described in section 4.2.1. In
effect, this phase undoes some splits that are unproductive.

(3) Biased color is almost identical to the color phase of the original allocator. The biased method uses
a dynamically determined ordering to choose colors rather than a static ordering. The dynamic
ordering gives preference to colors already assigned to one of the live range’s partners.

Unfortunately, Figure 3 is too pretty; reality is somewhat uglier. Figure 4 shows the allocator as actually
implemented.
We hav e peeled off the first iteration of the allocate-spill loop. In the first iteration, coalesce and color are
the originals shown in Figure 1. Any procedure that generates no spill code avoids the expense of splitting;
it will take the exit after color (called ‘‘Markstein’s exit’’). If the first iteration must generate spill code,
control passes on to split and subsequent iterations are handled by the modified allocator. Limited coalesce
and biased color implement the coalescing mechanisms described in Section 4.2.
Finally, Figure 4 includes an edge that was omitted in both earlier figures. The loop from biased color back
to simplify graph shows that the allocator implements the ‘‘best of three spill choice’’ computation sug-
gested by Bernstein et al. [BGGK 89]. They observed that the cost of simplifying and coloring is much less
than the cost of building the graph. They suggested trying three different spill choice heuristics and using
the result that produces the lowest spill cost.
The initial iteration has one other effect. Because it uses the full strength coalesce from the original alloca-
tor, and repeats the build graph-coalesce loop until the graph stabilizes, it gets rid of any extraneous copy
operations introduced as a by-product of other optimizations. Thus, before the splitter is ever inv oked, the
allocator will reduce the number of live ranges to some canonical set. In this reduced graph, any remaining
copy instructions are meaningful.

Split Renumber Build
Graph

Limited
Coalesce

Simplify
Graph

Biased
Color

Insert
Spills

Figure 3 — the splitting allocator: conceptual view

7



Renumber Build
Graph Coalesce Simplify

Graph Color

Split

Renumber Build
Graph

Limited
Coalesce

Simplify
Graph

Biased
Color

Insert
Spills

Figure 4 — the splitting allocator: realistic view

As we built the splitting allocator, we encountered one additional opportunity for improvement. Because
splitting increases the number of live ranges (see Section 4.5), the number of candidates that must be exam-
ined on any spill decision grows. Our original allocator simply searched through the remaining nodes; this
did not cause significant performance problems. In the splitting allocator, it proved to be excessively slow.
Of course, using a more complex data structure to order the spill candidates can decrease the asymptotic
cost of this operation. Tw o possibilities are interesting:
(1) a single heap for all nodes, or
(2) a collection of heaps, each containing all nodes of a given degree.
The former scheme is simpler, in that the allocator need only manage a single heap. The latter scheme is
attractive because it decreases the number of division operations required – nodes of the same degree can
be compared without division.
From a performance perspective, the key issue is clearly updating the heaps. As each node is removed from
the graph, it must be removed from its heap and the degrees of all its neighbors updated. In both schemes,
removing the spill candidate is inexpensive – O(log2 n) where n is the number of nodes in the heap from
which it is removed.
The cost for updating the degrees of its neighbors is radically different in the two schemes.
(1) With a single heap, the weight, or key, of each neighbor must be adjusted. If the magnitude of the

change is small relative to the surrounding keys, this should involve a couple of comparisons and a
pointer swap. In the worst case, it requires O(log2 n) operations.

(2) With a distinct heap for each degree, each neighbor must be removed from its heap and inserted into the
heap of next lower degree. Each of these operations costs O(log2 n) operations, where n is the number
of nodes in the involved heap.

8



In computing the key for each node, the degree is used in the divisor. Nodes in the heap must have degree
of k or greater. Thus, we expect the change in the key’s magnitude to be small.8 We are implementing the
single heap solution in the allocator; we expect it to be fast in practice.

4.5. Experimental Results
We hav e implemented a prototype splitting allocator. It builds on our earlier work for the IBM RT/PC
[BCKT 89]. The new allocator has a variety of options, allowing us to experiment with various heuristics for
splitting and coalescing. While we have only conducted a limited set of experiments to date, the results are
gratifying.
Our best result was a 27 percent reduction in estimated spill costs. This improvement was measured
against our best previous efforts on the FORTRAN routine, SVD.9 It has 37 DO-loops, organized into five
loop-nests. As a result, it is ideally suited to our loop-based splitting techniques.
Obviously, our scheme increases the number of live ranges, which increases the number of nodes and edges
in the interference graph. In our experiments, the number of nodes grew by a factor of 1.5 to 5. The num-
ber of edges in the graph increased by a factor of 3 to 10. For SVD, the number of live ranges grew from
705 to 3076, a factor of 4.4, and the number of edges grew from over 38,000 to over 367,000, a factor
of 9.5. The space requirements for the graph grew by a factor of 10, to just over one megabyte. We feel
that one megabyte for the graph is reasonable. While the growth on SVD is high, it is important to remem-
ber that the structure of SVD provokes a large amount of splitting.
We are constructing a new version of our allocator as part of a compiler for the Intel i860. The complete
paper will include detailed measurements (including compile-times, run-times, and graph sizes) from a
broad range of test cases.

5. Other Work
Other researchers have noted weaknesses in Chaitin’s register allocator and have dev eloped new approaches
to the allocation problem. Since a complete survey of the many different approaches would be difficult, we
offer a limited comparison of related work. It seems helpful to characterize the various approaches based
on the amount of structural information derived from the control flow graph and employed during alloca-
tion.
• The earliest work on graph coloring register allocation emphasizes the coloring problem with little con-

sideration for the questions of spill choice and placement. Algorithms by Cocke and Ershov (as
reported by Schwartz [Schw 73]) are concerned exclusively with minimizing the number of colors
required. There is no discussion of spill code and the flow graph is ignored entirely.

• The first complete register allocator based upon graph coloring is described in [CACC 81]. Spilling is
handled by a variety of heuristics, some based upon an interval analysis of the flow graph. Unfortu-
nately, these ad hoc techniques are expensive and not always effective. In a subsequent paper, Chaitin
introduces a simpler technique that attempts to solve the spilling problem based on the interference
graph and spill cost estimates for each live range [Chai 82]. The cost estimates are based on the loop
structure of the flow graph; but spill code is introduced without regard for any control structure. Our
1989 paper describes an improved coloring heuristic, but is otherwise identical to Chaitin’s 1982 tech-
nique [BCKT 89].

• The cleaning heuristic introduced by [BGGK 89] is an attempt to avoid problems arising from the very
conservative spill techniques employed by Chaitin. In this case, basic blocks are recognized while

8 In Chaitin’s original spill choice heuristic, the key has degree in the divisor [Chai 82]. Of the three heuristics proposed by
Bernstein et. al., one has degree in the divisor, while two hav e degree2 in the divisor [BGGK 89]. For these latter two spill choice
heuristics, the variation in magnitude will be larger. We hope that further measurements with the allocator will show whether this in-
creases the average number of comparisons required to reposition the node after a recomputation of its key.

9 SVD is a version of the singular value decomposition from Forsythe, Malcolm, and Moler [FoMM 77].

9



spilling, but no distinction is made for higher level constructs.
• The notion of live range splitting was introduced in Chow and Hennessy’s 1984 paper [ChHe 90]. Loop

nesting is used to help prioritize coloring and basic block boundaries are used to establish split points.
Larus and Hilfinger refined this approach to extend live ranges after splitting using a breadth-first traver-
sal of the blocks comprising the old live range [LaHi 86]. Gupta, Soffa, and Steele describe a variation of
Chow’s approach that partitions the interference graph into subgraphs that are colored individually and
later merged [GuSS 89]. While the partitioning is performed by examining the code, no particular atten-
tion is paid to the structure of the flow graph.

• Meltzer describes an interesting approach to global register allocation that is not based on coloring
[Melt 89]. He performs a detailed analysis of the flow graph, constructing a control tree containing a
hierarchical description of the control constructs used in the graph [Shar 80]. Register allocation is per-
formed in two passes over the tree. Callahan and Koblenz take a similar tack [CaKo 91]. They construct
a fine-grained hierarchical decomposition of the flow graph, a tiling. Coloring is performed for individ-
ual tiles and the results are merged in two passes over the tree.

Our approach fits in the middle. We perform structural analysis of the control flow graph to find the natural
spill points – on the edges leading in and out of high-pressure loops. We split all live ranges at these poten-
tial spill points and then color a global interference graph. While coloring, we remove splits when profitable
via conservative coalescing and biased coloring. Spill costs are incrementally adjusted while coloring,
allowing accurate placement of spill code.

6. Acknowledgements
Greg Chaitin, Ben Chase, John Cocke, Marty Hopkins, Bob Hood, Ken Kennedy, Peter Markstein, Tom
Murtagh, Randy Scarborough, Rick Simpson, Tom Spillman and Matt Zaleski have all contributed to this
work through encouragement and enlightened discussion. Our colleagues on the ParaScope project at Rice
have provided us with an excellent testbed for our ideas. To all these people go our heartfelt thanks.

7. References
[BGGK 89] D. Bernstein, D. Goldin, M. Golumbic, H. Krawczyk, Y. Mansour, I. Nahshon, R. Pinter. ‘‘Spill

code minimization techniques for optimizing compilers,’’ Proceedings of the SIGPLAN 89 Confer-
ence on Programming Language Design and Implementation, SIGPLAN Notices 24(7), July, 1989.

[BCKT 89] P. Briggs, K.D. Cooper, K. Kennedy, and L. Torczon. ‘‘Coloring heuristics for register alloca-
tion,’’ Proceedings of the SIGPLAN 89 Conference on Programming Language Design and Imple-
mentation, SIGPLAN Notices 24(7), July, 1989.

[CaCK 90] D. Callahan, S. Carr, and K. Kennedy. ‘‘Improving register allocation for subscripted variables,’’
Proceedings of the SIGPLAN 90 Conference on Programming Language Design and Implementa-
tion, SIGPLAN Notices 25(6), June, 1990.

[CaKo 91] D. Callahan and B. Koblenz. ‘‘Register allocation via tiling,’’ Proceedings of the SIGPLAN 91
Conference on Programming Langauge Design and Implementation (to appear), SIGPLAN Notices
26(6), June, 1991.

[Chai 82] G.J. Chaitin. ‘‘Register allocation and spilling via graph coloring,’’ Proceedings of the SIGPLAN
82 Symposium on Compiler Construction, SIGPLAN Notices 17(6), June, 1982.

[CACC 81] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein.
‘‘Register allocation via coloring,’’ Computer Languages 6, January, 1981.

[ChHe 90] F. Chow and J. Hennessy. ‘‘The priority-based coloring approach to register allocation,’’ ACM
TOPLAS 12(4), October, 1990.

[CoHT 90] K.D. Cooper, M. Hall, and L. Torczon. ‘‘An experiment with inline substitution,’’ Soft-
ware–Practice and Experience, to appear. Also available as Computer Science Technical Report
90-128, Rice University, August, 1990.

10



[Ersh 62] A.P. Ershov. ‘‘Reducing the problem of memory allocation when compiling programs to one of
coloring the vertices of graphs,’’ Doklady Akademii Nauk S.S.S.R. 142(4), 1962; English transla-
tion in Soviet Math 3, 1962.

[Ersh 66] A.P. Yershov.10 ‘‘ALPHA – an automatic programming system of high efficiency,’’ Journal of the
ACM 13(1), January, 1966.

[FoMM 77] G.E. Forsythe, M.A. Malcolm, and C.B. Moler. Computer Methods for Mathematical Computa-
tions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

[GuSS 89] R. Gupta, M.L. Soffa, T. Steele. ‘‘Register allocation via clique separators,’’ Proceedings of the
SIGPLAN 89 Conference on Programming Language Design and Implementation, SIGPLAN Notices
24(7), July, 1989.

[Kenn 71] K. Kennedy. ‘‘Global flow analysis and register allocation for simple code structures,’’ Ph.D. The-
sis, Courant Institute, New York University, October, 1971.

[LaHi 86] J.R. Larus and P.N. Hilfinger. ‘‘Register allocation in the SPUR Lisp compiler,’’ Proceedings of
the SIGPLAN 86 Symposium on Compiler Construction, SIGPLAN Notices 21(7), June, 1986.

[Lavr 61] S.S. Lavrov, ‘‘Store Economy in Closed Operator Schemes,’’ Journal of Computational Mathe-
matics and Mathematical Physics, 1(4), 1961, pp. 687-701. (English translation in U.S.S.R. Com-
putational Mathematics and Mathematical Physics 3, 1962)

[Melt 89] A. Meltzer. ‘‘Control tree based register allocation,’’ unpublished abstract, COMPASS, 1989. (a
full version is in preparation).

[Schw 73] J.T. Schwartz. ‘‘On programming: An interim report on the SETL project. Installment II: The
SETL language and examples of its use,’’ Computer Science Department, Courant Institute of
Mathematical Sciences, October, 1973.

[Shar 80] M. Sharir. ‘‘Structural analysis: a new approach to flow analysis in optimizing compilers,’’ Com-
puter Languages 5, 1980.

10 There appear to be two accepted spellings for Ershov’s name. We use the more modern spelling for references, but spell the
citations as they originally appeared.

11


