
Understanding Energy Consumption on the C62x

Keith D. Cooper and Todd Waterman

Department of Computer Science

Rice University

Houston, Texas, USA

Abstract

The emergence of portable computing devices
and high-power processors has fueled recent in-
terest in energy consumption. This paper ex-
amines how a processor consumes energy and a
compiler can assist in energy conservation. Suc-
cessfully transforming programs to reduce energy
consumption is heavily dependent on the target
machine and type of program. We examine a
specific processor, the TMS320C6200 from Texas
Instruments, and demonstrate how a compiler
can reduce energy consumption for certain pro-
grams. We hope that our methodology can be
used as a blueprint for future work on reducing
energy consumption in other processors.

1 Introduction

Energy consumption has recently become an im-
portant concern for various computer systems.
Interest in energy consumption has been fu-
eled by the proliferation of portable computing
devices that have a limited supply of energy,
and high-power processors that dissipate large
amounts of heat. These devices have motivated
architects to design new processors with lower
energy needs and power saving features [4, 7, 11].
It has also caused systems and compiler re-
searchers to inspect how they can design software
which consumes less energy [5, 10].

Most optimizations that decrease a program’s
running time also decrease its energy consump-
tion. Dead code elimination decreases the num-
ber of instruction fetches. Removing memory ac-

cesses helps with both speed and power. Trans-
forming programs solely to conserve energy, how-
ever, has produced mixed results. The profitabil-
ity of an energy reduction technique depends
heavily on the target machine and the type of
program being transformed. While individual
papers show improvement on specific processor
models, those results are often heavily dependent
on the implementation of a specific processor.
Thus, it is unlikely that a general method for
a compiler to reduce energy consumption on all
processors and all programs will ever be found.
This paper shows how program transformation
can save energy for some programs on a partic-
ular processor. The techniques presented in this
paper will not apply to all, or even most, other
processors. However, the goal of this paper is to
serve as a blueprint for other researchers hoping
to reduce energy consumption on different ma-
chines.

The machine investigated in this paper is the
TMS320C6200 series DSP from Texas Instru-
ments. All the experiments described in this
paper use a power simulator provided to us by
Texas Instruments. The simulator calculates
power consumption assuming a 100MHz C6201
CPU with 512K on-chip program memory and
512K on-chip data memory [3]. Analyzing the
energy consumption of the C6200 series shows
that a large portion of the energy dissipation on
the C62x occurs during instruction fetch. We ex-
amine how instruction fetch occurs on the C62x,
and how this allows for the creation of programs
that produce equivalent results, but consume
varying amounts of energy. This paper presents
multiple optimization techniques that can sub-

4-1



0 25 50 75 100
Percentage of Energy Consumption

MM
DM
PM

vecsumsq 

fir4 

dotprod 

Figure 1: Distribution of Energy Consumption

stantially reduce the energy consumption of cer-
tain types of programs on the C62x.

2 The C6200 Architecture

The C6200 series of DSPs produced by Texas
Instruments are VLIW processors with fully
pipelined functional units and predicated opera-
tions [8]. The C6200 has two similar data paths
that each contain four functional units and 16
registers. Three of the functional units on each
path are ALUs with varying capabilities while
the fourth is a dedicated multiplier.

Figure 1 shows the distribution of energy con-
sumption on the C6200 for three different bench-
marks. These benchmarks are hand-optimized
procedures created by Texas Instruments for the
C6200. Energy consumption is divided into three
different sources: the functional units and reg-
isters (MM), data memory (DM), and program
memory (PM). The graph clearly shows that
more than half of the energy dissipation of these
codes on the C6200 occurs in the program mem-
ory, and more than thirty percent occurs in the
functional units. Data memory does not play as
important a role in energy consumption for these
codes.

We began by examining the energy consump-
tion of the functional units with a simple exper-
iment. We analyzed the energy consumption of
two programs that executed for the same num-
ber of cycles. The first program used all eight

functional units each cycle, while the second pro-
gram performed no actual work. In the sec-
ond program each operation that was removed
was replaced with a NOP to prevent changes in
the instruction fetch behavior. Both programs
consisted of a 105-cycle loop that executes for
1000 iterations. This produced programs that
ran long enough to exhibit stable-state behavior
and were not dominated by branch instructions.
The second program achieved a 44% energy sav-
ings in the functional units over the first program
and a 13% energy saving overall. Though these
savings are large, it indicates that over half of
the energy consumed in the functional units is
a fixed overhead that depends solely on running
time.

Assuming a program has already been opti-
mized for speed, substantially reducing energy
consumption in the functional units is difficult.
The massive reduction of operations executed,
which reduced power in our experiment, is not
possible in real programs. Furthermore, any type
of rescheduling that lengthens execution time
works against the dominant factor in functional
unit energy consumption.

Program memory is the largest component of
energy consumption shown in figure 1. Tradi-
tional optimizing compilers do not consider the
impact of optimization on the power consump-
tion in program memory. Since almost all opera-
tions on program memory are instruction fetches,
reducing program fetches is an area where energy
consumption might successfully be reduced. To
reduce program fetches, it is necessary to have a
detailed understanding of how this process works
on the C6200.

The C6200 uses a packed VLIW architecture
which attempts to minimize code size and elimi-
nate the fetching of superfluous operations. In
contrast to a traditional VLIW machine, the
C6200 only requires an operation to be specified
for a functional unit when it is used in a given
cycle. This leads to the existence of both fetch
packets and execute packets. A fetch packet is
a group of eight operations that are simultane-
ously loaded from memory. An execute packet
consists of one to eight instructions that are ex-
ecuted at the same time. An execute packet

4-2



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

Functional Units Used

En
er

gy
 C

on
su

m
ed

 (m
W

s)

MM
DM
PM

Figure 2: Impact of Functional Units on Energy Consumption

must exist within a single fetch packet. Hence, a
fetch packet can contain from one to eight exe-
cute packets. When packing execute packets into
fetch packets, if the next execute packet will not
fit in the current fetch packet, the remainder of
the fetch packet is filled with NOPs. These NOPs
become a part of the previous execute packet and
do not require any extra cycles to execute, but
obviously take up space in the program memory.

The existence of fetch and execute packets
complicates the instruction fetch and decode
stages of the C6200s pipeline. The C6200 se-
ries has an 11 stage pipeline with four stages for
instruction fetch and two for instruction decode.
The first decode stage determines the number
of execute packets in the current fetch packet.
Therefore, the processor is not aware of how
many execute packets are in a fetch packet until
four cycles after fetching begins. The processor
begins by loading a fetch packet from memory
every cycle until the first fetch packet has been
decoded and it knows how many execute pack-
ets are contained within. If the fetch packet con-
tains multiple execute packets then the fetch and
decode portion of the pipeline can be stalled a
single cycle for each execute packet beyond the

first. This gives the processor time to place each
of the execute packets into the remainder of the
pipeline.

Some C6200 operations, such as addition, are
implemented on most or all of the functional
units. The energy cost of such an operation
varies from functional unit to functional unit.
Our measurements, however, showed that this ef-
fect was, in general, much smaller than the mem-
ory effects described in this paper.

3 Reducing NOPs Fetched

The packed VLIW design of the C62x reduces
the number of NOPs in the code when com-
pared to a traditional VLIW design. However,
since execute packets cannot cross fetch packet
boundaries, code for the C6200 series still con-
tains some NOPs. For example, consider a pro-
gram that has enough low-level parallelism to
constantly keep five of the functional units busy.
Every execute packet would contain five opera-
tions and each fetch packet would only contain a
single execute packet. Consequently, every fetch
packet would contain three NOPs and instruc-

4-3



tion fetch would perform almost twice as much
work as necessary.

The NOPs required for filling fetch packets
cannot be eliminated without reorganizing exe-
cute packets. If the program with enough par-
allelism to fill five functional units was instead
written to use only four functional units then no
NOPs would be necessary for packing; two exe-
cute packets would fit perfectly into each fetch
packet. The total number of fetch packets would
be halved and the program would require roughly
twenty percent more time to run. Less energy
would be consumed fetching instructions, but the
code would run slower incurring different energy
penalties.

Figure 2 presents a more general examination
of the tradeoff between functional units used and
energy consumed. We created a test program
with enough parallelism to constantly use all
eight functional units. The program had a single
loop of 840 operations that iterated 1000 times.
Eight different versions of the program were then
created using from one to eight functional units.
The overall trend of the graph is towards less en-
ergy consumption as more functional units are
used. This can be attributed to the reduction
of energy consumption in the functional units,
which is heavily related to the running time (see
figure 3). However, there are also some anomalies
in the graph. The four functional-unit program
consumes considerably less energy than the pro-
gram that uses five functional units, and slightly
less than the one that uses six. This is due to the
variation of energy consumed in program mem-
ory. The amount of energy consumed by pro-
gram memory depends almost directly on the
number of fetch packets loaded. It does not ap-
pear to depend heavily on the running time of
the program.

The results of figure 2 demonstrate the abil-
ity of careful fetch packet construction to reduce
power. If the amount of instruction level par-
allelism available in a program is over six op-
erations per cycle then scheduling the code to
run as quickly as possible is probably the most
energy conserving choice. If the available paral-
lelism is less, but still above four operations per
cycle, then energy can be saved by trimming the

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

900

Functional Units

R
un

ni
ng

 T
im

e 
(th

ou
sa

nd
s 

of
 c

yc
le

s)

Figure 3: Functional Units vs. Execution Time

schedule to only issue four operations per cycle
and minimizing the number of fetch packets nec-
essary to contain the code.

These experiments suggest a simple heuristic:
avoid fetching operations that do not accomplish
productive work. To implement this, the com-
piler writer could alter the instruction sched-
uler to reduce the number of NOPs placed in
fetch packets. Once the first execute packet in
a fetch packet has been constructed the sched-
uler could guarantee that the next execute packet
constructed would not be larger than the remain-
ing space in the fetch packet. A scheduler using
such a heuristic would produce a slower schedule
than normal since it has an additional restric-
tion on the amount of parallelism available at
each cycle, but would construct a smaller pro-
gram which would reduce energy consumption
in the program memory.

4 Improving Loops

Eliminating the fetching of NOPs is one way to
conserve energy on the C62x processor. How-
ever, even when there are no NOPs in the code
the C6200’s fetch unit can still waste energy
within loops. In the C6200, by the time the
processor has determined the contents of a fetch
packet it has already begun fetching the next
five packets. If the original fetch packet contains
a branch then the processor will begin fetching
future packets from the location of the branch.

4-4



0

1

2

3

4

5

6

7

Length of Loop Body (fetch packets)

En
er

gy
 C

on
su

m
ed

 (m
W

s)

1 2 10 

Figure 4: Energy Effects of Unrolling

When the processor is running at full utiliza-
tion, each fetch packet consists of a single ex-
ecute packet, then the packets already in the
pipeline are needed for the branch’s delay slots.
If there are multiple execute packets in some of
the fetch packets following the branch then not
all of the fetch packets already in the pipeline
will be needed to fill the delay slots. Some num-
ber of fetch packets will have been unnecessarily
fetched.

This problem only occurs when there is a low
degree of parallelism available within the loop.
If five or more operations can be executed simul-
taneously then the execute packets will be large
and only a single packet will fit in each fetch
packet. In this case, each of the fetch packets
in the pipeline when the branch is detected will
be necessary. When there is a lower degree of
parallelism then fetch packets will be loaded un-
necessarily and energy will be wasted.

Since the C62x cannot know the structure of
fetch packets before they are fetched it is im-
possible to avoid the energy waste associated
with branches in code with a low level of par-
allelism. However, code can be restructured to
limit the number of times the situation occurs.
The common loop transformation that can re-
duce energy waste in this case is loop unrolling.
Loop unrolling reduces the number of iterations,
and branches, in a loop at the expense of a longer
loop body. This does not effect the running time
of the program.

The effects of loop unrolling on a loop with a

low level of parallelism can be seen in figure 4.
Figure 4 shows the amount of energy consumed
in a loop that executes only one instruction per
cycle with a varying loop body length. The orig-
inal loop fits inside a single fetch packet, but be-
cause of the C6200’s fetching mechanism five ex-
tra packets are fetched for each that is necessary.
Unrolling by a factor of two causes a great reduc-
tion in energy consumption and further unrolling
continues to reduce energy consumption with di-
minishing returns. Loops that execute more than
a single operation during each cycle will still ben-
efit from loop unrolling provided that they do
not issue at least five operations in each of the
branch’s delay slots.

Simply unrolling a loop with a short body and
a low degree of parallelism can produce a con-
siderable reduction in energy by reducing the
wasted fetches at the end of a loop. As Figure 4
shows, the largest improvement occurs between
the original loop and the loop unrolled by a fac-
tor of two. (In further unrolling, the potential
savings are smaller.) On the C6200, program
memory is distinct from data memory. It is of-
ten implemented with a ROM chip of fixed size.
Since the program is rarely of precisely the same
size as the available program memory, unrolling
could be performed on the most frequently exe-
cuted loops in order to fill up the extra space.

5 Bit Transitions

The reduction of bit transitions on the instruc-
tion bus is another proposed technique to re-
duce energy consumption in instruction fetch.
This approach is motivated by the fact that the
power consumption of CMOS circuits is domi-
nated by switching costs [2]. Reordering oper-
ations within a fetch packet and renaming reg-
isters can both reduce the number of bit tran-
sitions between packets [6, 9, 12]. These tech-
niques have the added benefit of potentially re-
ducing energy consumption without adversely ef-
fecting running time.

Unfortunately, optimizations targeted at bit
transitions have little effect on the overall energy
consumption of the C6200 [12]. These techniques

4-5



Program Trans. per cycle Total Energy

max 113.16 2.080 mWs

min 1.72 1.891 mWs

Table 1: Energy effects of bit transitions

have two problems that prevent significant re-
sults. First, a massive reduction in the number
of bit transitions is necessary to have a significant
energy effect on the program. Second, renaming
registers is hindered by architectural limitations
that prevent a large reduction in the number of
bit transitions.

Table 1 shows the energy effects of two pro-
grams with differing amounts of bit transitions.
This is a contrived example with two programs
that are identical besides the number of tran-
sitions on the instruction bus. A reduction of
over 100 bit transitions per cycle is necessary to
reduce energy consumption by nine percent. Bit
transition variations of this magnitude are not re-
alistic for programs on the C6200. Our attempt
at renaming registers to reduce bit transitions
rarely eliminated more than one bit transition
per cycle. In addition, typical benchmarks for
the C6200 have less than 30 bit transitions per
cycle.

6 Other Processors

This paper’s purpose is not solely to present
strategies that reduce energy consumption on a
single processor. Instead, the goal is to demon-
strate an approach that examines an architecture
and discovers methods in which the compiler can
assist in saving energy. However, it is still of in-
terest to note other architectures to which the
specific techniques mentioned in this paper might
apply.

The C6200 series is part of the larger C6000
set of DSPs produced by Texas Instruments. In
addition to the C62x there is also a C67x which
has the same properties as the C6200 with the
addition of floating point capabilities. The tech-
niques mentioned above should work equally well
on programs for the C6700.

The C64x is a recent addition to the C6000
family that has several additional features. The
C6400 series has double the number of registers
and lacks several of the limitations of the C62x
and the C67x. The feature of primary impor-
tance to this paper is the ability of execute pack-
ets to cross fetch packet boundaries. This means
that codes on the C64x will not have any NOPs
due to packing and nullifies the importance of
our first technique (Section 3). However, the is-
sues with energy consumption in loops remain
(Section 4). The larger register set may increase
opportunities for bit-transition reduction (Sec-
tion 5).

The Intel Itanium architecture is another
VLIW processor with features similar to the
C6200. The Itanium fetches instructions in
three operation bundles which are the analog of
the C6200’s fetch packets [1]. Instead of exe-
cute packets, the Itanium uses instruction groups
which are an unbounded number of instructions
that can safely be executed in parallel. This
allows for easy expansion of the architecture,
though current versions of the Itanium can only
execute six operations in parallel. Since instruc-
tion groups can consist of multiple bundles no
NOPs are necessary for instruction packing on
the Itanium, and eliminating NOPs is obviously
unnecessary. Unrolling loops could still be ben-
eficial when there is a low degree of parallelism
since the Itanium must begin fetching two bun-
dles for each cycle when they may not all be nec-
essary. However, it is important to remember
that the significance of energy consumption dur-
ing instruction fetch could be much less on the
Itanium, a general purpose processor, than on
the C6200 DSP.

7 Conclusion

Traditionally, when optimizing a program there
have been two important considerations: execu-
tion time and code size. Recently, energy con-
sumption has also become an issue for compilers.
However, unlike traditional considerations, it is
unclear how a compiler can assist in reducing
the energy consumption of a program. Energy

4-6



consumption is obviously a machine dependent
property, so energy saving techniques will obvi-
ously vary between machines.

This paper examines the energy consumption
characteristics of a specific processor – the Texas
Instruments’ C6200 DSP. After determining that
a large portion of the energy consumption on the
C6200 is derived from fetching instructions, we
examined the instruction fetch mechanism on the
C6200 and determined where energy was being
expended without benefit. This lead us to de-
velop two techniques for saving energy on the
C6200.

First, we determined that the fetch packet
mechanism of the C6200 could allow for a large
number of NOPs to be fetched in a program. Re-
constructing fetch packets to minimize the num-
ber of NOPs fetched saves energy even though it
can result in a slower program. Second, we saw
that loops with a low degree of parallelism con-
sume significantly more energy than straight line
code, even when there are no NOPs. This energy
waste can be reduced through loop unrolling.

These energy saving techniques are specific to
the C6200. Though some similar architectures
may profit from these techniques as well, the ma-
jority of other processors may not. This is the
nature of a problem that is as machine depen-
dent as energy consumption. This paper hopes
to demonstrate the process by which energy was
saved on the C6200 and how a similar process
can be conducted on other processors.

Acknowledgements

This work was supported by the State of
Texas through its Advanced Technology Pro-
gram. Linda Hurd built the power simulation
tools that we used. Reid Tatge and Gene Frantz
encouraged this work in myriad ways. Tim Har-
vey and Steve Reeves helped us with informed
discussion throughout this work. The members
of the scalar compiler group at Rice built infras-
tructure that we used in this project. To all these
people go our heartfelt thanks.

References

[1] Volume Ia Application Architecture. In-
tel IA-64 architecture software developer’s
manual, January 2000.

[2] Anatha P. Chandrakasan, Samuel Sheng,
and Robert W. Broderson. Low power
CMOS digital design. Journal of Solid State

Circuits, 27(4):473–484, April 1992.

[3] Linda Hurd. TMS320C6201 Projected

Power Dissipation on TI’s TImeLineTM

Technology. Texas Instruments, October
1997.

[4] Alexander Klaiber. The Technology Behind

CrusoeTM Processors. Transmeta Corpo-
ration, January 2000. Available online at
http://www.transmeta.com/about/white papers.html.

[5] Mike Tien-Chien Lee, Vivek Tiwari, Sharad
Malik, and Masahiro Fujita. Power anal-
ysis and low-power scheduling techniques
for embedded DSP software. International

Symposium on System Synthesis, September
1995.

[6] Huzefa Mehta, Robert Michael Owens,
Mary Jane Irwin, Rita Chen, and Debashree
Ghosh. Techniques for low energy software.
In Proceedings of the International Sympo-

sium on Low Power Electronics and Design,
pages 72–75, August 1997.

[7] James Montanaro et al. A 160-MHz,
32-b, 0.5-W CMOS RISC microproces-
sor. IEEE Journal of Solid-State Circuits,
31(11):1703–1714, November 1996.

[8] Nat Seshan. High VelociTI processing.
IEEE Signal Processing Magazine, pages
86–101,117, March 1998.

[9] Dongkun Shin and Jihong Kim. An opera-
tion rearrangement technique for low-power
VLIW instruction fetch. In Proceedings of

the Workshop on Complexity-Effective De-

sign, June 2000.

4-7



[10] Tajana Simunic, Luca Benini, Andrea Ac-
quaviva, Peter Glynn, and Giovanni De
Micheli. Dynamic voltage scaling and power
management for portable systems. In Pro-

ceedings of the 38th Design Automation

Conference, pages 524–529, June 2001.

[11] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee,
and Peter Marwedel. Assigning program
and data objects to scratchpad for energy
reduction. In Proceedings of Design, Au-

tomation and Test in Europe, March 2002.

[12] Todd Waterman. Post-compilation analysis
and power reduction. Master’s thesis, Rice
University, May 2002.

4-8


