
S M A R T

Workshop on Statistical and Machine Learning 
approaches applied to Architectures and 

Compilation

Workshop Proceedings

January 28, 2007

Sofitel, Ghent, Belgium



An Effective Local Search Algorithm for an
Adaptive Compiler

Yi Guo, Devika Subramanian, and Keith D. Cooper

Rice University, Department of Computer Science,
Houston, Texas 77005 USA

{yguo,devika,keith}@rice.edu

Abstract. Most algorithms currently used to find good compilation se-
quences in an iterative adaptive compiler, such as genetic algorithms
and hill climbing, search in the space of sequences of fixed length. In
this paper, we argue that restricting the search to fixed-length sequences
limits the ability of search algorithms to find good sequences for some
benchmarks. We propose a new local search algorithm that uses greedy
construction and cleanup to effectively explore the neighborhood of a
start sequence by randomized insertion and deletion of transformations.
Preliminary experimental results show that the quality of the local min-
ima found by our local search algorithm are superior to those sequences
found by GAs and HCs, and are close to the best sequence we know.
Such local minima are found with significantly lower search effort than
GAs and HCs working with fixed-length sequences.

1 Introduction

Over the last several years, various groups [1, 6, 3] have studied the code trans-
formation selection and ordering problem in an iterative adaptive compiler. Sev-
eral search techniques for biased random sampling of the combinatorial space
of program-specific optimization sequences have been proposed. Genetic algo-
rithms (GAs) and hill climbing are two popular search algorithms implemented
in research iterative compilers. While the choice of specific parameters may vary,
these algorithms share one common characteristic: solutions are represented as
fixed-length sequences of code transformations and the length of the solution is
not varied during the search process. This fixed-length framework is dictated by
the use of standard genetic operators, i.e. 1-point crossover and mutation, used
in GAs to generate variations for the next generation, and the use of Hamming
distance to define neighbors in hill climbing.

Figure 1 presents evidence that current search algorithms based on the fixed-
length framework do not find the best solutions for some benchmarks. For
spline, even after 500 trials, our optimized genetic algorithm achieves less than
45% of the performance speedup of the best known sequence. We believe there
are two reasons for this: (1) the fundamental GA operations do not explore the
space of optimization sequences effectively. The mutation operator, which ran-
domly generates point variations of a sequence, makes local changes very slowly,

7



0 100 200 300 400 5000

20

40

60

80

100

Trials
Pe

rce
nta

ge
 of

 P
ote

nti
al 

Im
pr

ov
. A

ch
iev

ed

spline
si
bitcnts
sha

Fig. 1. The percentage of potential improvement achieved by an optimized GA over
500 trials for four benchmarks.

since mutation rates are generally set low. The 1-point crossover operator in
GAs is quite destructive and does not generate semantically meaningful vari-
ations, and (2) The constraint of fixed-length sequences also limits the range
of performance gains that can be achieved. Some benchmarks need fairly short
compilation sequences. For those cases, a fixed-length GA spends valuable time
and resources learning no-op subsequences to pad the sequence to the full pre-
determined length. Other benchmarks need longer sequences, and the GA fails
to realize the full benefit of the range of optimizations available in the compiler.
Attempts to fix these two inherent weaknesses in exploration strategy by tun-
ing algorithm parameters such as the population size, as well as the size of the
fixed-length representation, yield little improvement in search performance for
several benchmarks.

In this paper, we show that if the neighbor set of a given sequence is explored
effectively, the local minima have quality competitive with the best sequences we
know. Instead of defining neighbors by Hamming distance, we define neighbors by
edit distance, and use greedy construction and cleanup to generate a richer set of
meaningful variations by insertion and deletion of transformations. Preliminary
experimental results for some benchmarks on the SPARC backend show that
the local search algorithm can significantly outperform GAs and hill climbers
working in the space of fixed-length sequences.

2 Related Work

Schielke’s 1999 paper [2] appears to be the first use of a GA to find compilation
sequences. He showed improvement in both code size and execution speed. The
framework of the GAs used in the paper is similar to those used in current re-
search iterative compilers. Several techniques have been proposed to improve the
GAs’ searching performance without changing its fixed-length framework. Kulka-
rni et al. [6] proposed techniques to speed up searches for compilation sequence
in genetic algorithms by detecting and removing redundant trials of equivalent
programs, and prohibiting certain dormant or disabled transformations.

SMART'07

8



Statistical and machine learning techniques have been used to improve the
performance of searching. Agakov et al [1] selected a set of benchmarks and
learned an offline model for each benchmark. When given a new program, the
model of the benchmark that is most similar to the new program is used to focus
the search space.

In [3], Grosul describes and compares several variations in an adaptive com-
piler and found that GAs outperform hill climbing and other algorithms on a
budget of several hundreds to a few thousand compilations. In this paper, we use
the same experimental setup and compare our local search algorithm to the ge-
netic and hill climbing algorithm in [3]. We show that our local search algorithm
significantly outperforms GAs and hill climbing by finding better sequences with
far fewer compilations.

Several groups have worked on the problem of finding good parameter set-
tings for specific transformations. Triantafyllis et al. [7] demonstrated the promise
of using multiple compilation configurations in a practical compiler. Zhao et
al. [8] described an approach for modeling interactions in a predictive framework.
Kisuki et al. [5] have used various search algorithms to find good optimization
settings for loops in numerical kernels.

3 Neighbor Exploration: Finding Local Minima

The definition of neighbor is fundamental to search algorithms. In the fixed-
length framework, it is easy to define neighbors by Hamming distance: two se-
quences of the same length are considered neighbors if they differ in exactly one
character. The experiments in [3] show that the hill climbers using Hamming
distance do not deliver satisfactory results. Our local search algorithm defines
neighbors by edit distance, i.e., two sequences are considered neighbors if one
can be derived from another by inserting or removing one transformation.

Two procedures are used to find local minima in sequence space by exploring
the neighborhood of a starting sequence: cleanup and greedy construction. The
cleanup procedure removes transformations that are redundant or detrimental
to the quality of the given sequence. Such transformations can appear during
both greedy construction and random sequence generation. Greedy construc-
tion extends the base sequence one transformation at a time. At each step it
picks a transformation and inserts it into the position that delivers the most
improvement. If a transformation does not yield improvement, it is discarded.

Fig. 2. Neighbor Exploration

SMART'07

9



Figure 2 shows an example of greedy construction and cleanup. Transforma-
tion v, o and d are inserted into sequence y, and transformation y is removed
by cleanup. Our algorithm starts the search from random sequences. Local min-
ima are found by iteratively running greedy construction and cleanup. Detailed
algorithm description can be found in our technical report [4].

4 Experiments

In this paper, we use 16 transformations, which are listed in Table 3.1 on page 17
of [3]. They are low-level code transformation based on ILOC, which is a RISC-
like assembly language. Our implementation ensures that each transformation
can take any valid ILOC program as input and producesa valid ILOC program
as output. This feature allows us to run the compilation transformations in
arbitrary order, which is critical for an adaptive compiler. When using the default
compilation sequence rvzcodtvzcod, the performance of the code generated by our
ILOC compiler is comparable to the GCC compiler using -O2 flag.

We compare our local search algorithm to GA and Hill Climbing (HC). The
parameter settings for GA and impatient hill climbing(HC-10) are described on
page 76 in [3]. For GA, we tried three length settings, 15, 20 and 25, and the
curve represents the best among the three. The sequence length for HC is fixed
at 15. Figure 3 shows the search performance for three algorithms within 1000
trials. The speedup of a sequence is normalized to 0-100% where the default
sequence rvzcodtvzcod is set to 0% and the best sequence is set to 100%.

According to Figure 3, our search algorithm excels other algorithms after
200 trials, and after 1000 trials, the quality of sequence we found is close to the
best. Table 4 shows the length of the best sequence we known and the best GA’s
length setting. The best length settings of GA is program-specific, and there is
no obvious relation to the length of the best sequence.

Benchmark Source Suite Len. of the Best Seq. Best GA’s Len. Settings

spline fmm 13 20
si spec 24 20
bitcnts mibench 29 25
sha mibench 29 20

Table 1. Benchmark

5 Conclusion

This paper considered two hypotheses for the poor performance of GAs and HCs
on complex compilation sequence spaces for some benchmarks. The first is the
fixed-sequence length limitation and the second is the choice of genetic operators
for constructing variations to explore during search. We introduces a local search
algorithm with a richer neighborhood definition generating variable length se-
quences. We demonstrate that this new local search algorithm outperforms GAs
and HCs on a set of benchmarks, both on the quality of solutions and the search
effort needed to find them.

SMART'07

10



0 200 400 600 800 10000

20

40

60

80

100
spline

Trials

Pe
rce

nta
ge

 of
 Po

ten
tia

l Im
pro

v. 
Ac

hie
ve

d

Local
Best GA
HC

0 200 400 600 800 10000

20

40

60

80

100
si

Trials

Pe
rce

nta
ge

 of
 Po

ten
tia

l Im
pro

v. 
Ac

hie
ve

d

Local
Best GA
HC

0 200 400 600 800 10000

20

40

60

80

100
bitcnts

Trials

Pe
rce

nta
ge

 of
 Po

ten
tia

l Im
pro

v. 
Ac

hie
ve

d

Local
Best GA
HC

0 200 400 600 800 10000

20

40

60

80

100
sha

Trials

Pe
rce

nta
ge

 of
 Po

ten
tia

l Im
pro

v. 
Ac

hie
ve

d

Local
Best GA
HC

Fig. 3. Average percentage of potential improvement achieved by our local search al-
gorithm, GA and HC on the SPARC backend for four benchmarks

References

1. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M.
F. P., Thomson, J., Toussaint, M., and Williams, C. K. I. Using machine
learning to focus iterative optimization. In CGO ’06: Proceedings of the Interna-
tional Symposium on Code Generation and Optimization (2006).

2. Cooper, K. D., Schielke, P. J., and Subramanian, D. Optimizing for reduced
code space using genetic algorithms. In LCTES ’99 (1999).

3. Grosul, A. Adaptive Ordering of Code Transformations in an Optimizing Com-
piler. PhD thesis, Rice University, 2005.

4. Guo, Y., Subramanian, D., and Cooper, K. A new local search algorithm for
effective exploration of compilation sequences. Tech. rep., Rice University, 2006.

5. Kisuki, T., Knijnenburg, P. M. W., and O’Boyle, M. F. P. Combined selection
of tile sizes and unroll factors using iterative compilation. In PACT ’00: Proceedings
of the 2000 International Conference on Parallel Architectures and Compilation
Techniques (2000).

6. Kulkarni, P. A., Hines, S. R., Whalley, D. B., Hiser, J. D., Davidson,
J. W., and Jones, D. L. Fast and efficient searches for effective optimization-
phase sequences. ACM Trans. Archit. Code Optim. 2, 2 (2005), 165–198.

7. Triantafyllis, S., Vachharajani, M., Vachharajani, N., and August, D. I.
Compiler optimization-space exploration. In CGO ’03: Proceedings of the interna-
tional symposium on Code generation and optimization (2003).

8. Zhao, M., Childers, B., and Soffa, M. L. Predicting the impact of optimizations
for embedded systems. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems (2003).

SMART'07

11


	frontpage.pdf
	toc.pdf
	Table of Contents
	Track: Compilation
	Track: Computer Architecture


	tussen1.pdf
	Track: Compilation

	paper_8_6.pdf
	paper_8_10.pdf
	paper_8_12.pdf
	paper_8_13.pdf
	paper_8_15.pdf
	paper_8_19.pdf
	tussen2.pdf
	Track: Computer Architecture

	paper_9_1.pdf
	paper_9_9.pdf
	paper_9_16.pdf
	paper_9_17.pdf



