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Operator strength reduction is a well-known code improvement technique. It improves compiler-generated code
by reformulating certain costly computations in terms of other less expensive ones. A common case arises in array
addressing expressions used in loops. The compiler can replace the sequence of multiplies with an equivalent sequence
of additions. Together with linear function test replacement, this technique can significantly reduce the execution
time of loops containing array references.

This paper presents an algorithm for performing strength reduction on the static single assignment (SSA) form of
a procedure [12]. It produces results similar to an earlier algorithm due to Allen, Cocke, and Kennedy [2]. Because
it takes advantage of the properties of SSA form, it has several advantages over that technique: (1) it is simple to
understand and to implement, (2) it relies on the dominator tree which must be computed during SSA construction
rather than the loop structure of the program (which can be costly to compute), (3) it avoids instantiating the sets
of induction variables and region constants required by other algorithms, (4) it processes each candidate instruction
immediately rather than maintaining a worklist, and (5) it greatly simplifies linear function test replacement. We
have implemented the algorithm in an SSA-based optimizing compiler.

1 Introduction

Operator strength reduction is a transformation that a compiler uses to replace costly (strong) instructions
with cheaper (weaker) ones. The algorithm replaces an iterated series of strong computations with an
equivalent series of weaker computations. The classic example replaces certain multiplication operations
inside a loop with equivalent addition operations. This case arises routinely in loop-based array address
calculations, and many other operations can be reduced in this manner. Allen, Cocke, and Kennedy provide
a detailed catalog of such reductions [2].

Strength reduction has been an important transformation for two principal reasons. First, multiplying
integers has usually taken longer than adding them. This made strength reduction profitable; the amount
of improvement varied with the relative costs of addition and multiplication. Second, strength reduction
decreased the “overhead” introduced by translation from a high-level language down to assembly code.
Opportunities for this transformation are frequently introduced by the compiler as part of address translation
for array elements. In part, strength reduction’s popularity stems from the fact that these computations are
plentiful, stylized, and, in a very real sense, outside the programmer’s concern.

In the future, we may see microprocessors where an integer multiply and an integer add both take a
single cycle. On such a machine, strength reduction will still have a role to play. In combination with
algebraic reassociation [11, 26, 4], strength reduction may let the compiler use fewer induction variables in
a loop, lowering both the operation count inside the loop and the demand for registers. This effect may be
especially pronounced in code that has been automatically blocked to improve locality [31, 8].

This paper presents a new algorithm for performing strength reduction. It produces results similar to
those of Allen, Cocke, and Kennedy’s classic algorithm [2]. By assuming some specific prior optimizations and
operating on the SSA form of the procedure [12], we have derived a method that (1) is simple to understand
and to implement, (2) relies on the dominator tree which must be computed during SSA construction rather

than the loop structure of the program (which can be costly to compute), (3) avoids instantiating the

Authors addresses: Keith Cooper and Taylor Simpson are currently at Rice University, 6100 South Main Street, Mail Stop 41,
Houston, TX 77005. Chris Vick is at Texas Instruments, PO Box 1443, Mail Stop 730, Houston, TX 77251-1443. Address all
correspondence to Taylor Simpson, 1ts@cs.rice.edu

This research has been supported by ARPA, IBM Corporation, and Texas Instruments Corporation.



sumg «— 0.0

sum «— 0.0 19 — 1
i —1 L: sumy — ¢(sumg, sums)
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doi=1.100 12 —tl x4 tlo%ll—l
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sum «— sum+ t4 t4dg +— load t3g
1—1+1 sums — sumy + tdg
if (¢ < 100) goto L 4o — 11 + 1
if (i2 < 100) goto L
Source code Intermediate code SSA form

Figure 1 Example

sets of induction variables and region constants required by other algorithms, (4) processes each candidate
instruction immediately rather than maintaining a worklist, and (5) greatly simplifies linear function test
replacement. Its asymptotic complexity is, in the worst case, the same as the Allen, Cocke, and Kennedy
algorithm.

Opportunities for strength reduction arise routinely from details that the compiler inserts as it converts
from a source-level representation to a machine-level representation. To see this, consider the simple Fortran
code fragment shown in Figure 1. The left column shows source code; the central column shows a low-level
intermediate code version of the same loop. Notice the four instruction sequence that begins at the label L.
The compiler inserted this code (with its multiply) as the expansion of a(i). The right column shows the
code in pruned SSA form.

The left column of Figure 2 shows the result of strength reduction and the optimizations described in
Section 3.1. The compiler created a new variable ¢5 to hold the value of the expression (i — 1)4 + a. We will
describe an algorithm to automate this process inside a compiler.

Of course, further improvement may be possible. For example, if the only remaining use for iy is in
the control-flow tests that govern the loop, the compiler could reformulate the tests to use tby, making the
instructions that define ¢ useless (or “dead”). This transformation is called linear function test replacement

(LFTR). The results of applying LFTR appear in the right column of Figure 2.

2 The Algorithm
2.1 Preliminary Transformations

To simplify the algorithm, we assume that some prior optimization has been performed. This preprocessing
simplifies the task of strength reduction by encoding certain facts in the “shape” of the code. For example,
after invariant code has been moved out of loops, we can easily identify loop invariant values based on the
location of their definition.

Our compiler utilizes lazy code motion (LCM) to accomplish loop invariant code motion and common
subexpression elimination [19, 21, 16]. This technique is a descendant of partial redundancy elimination
introduced by Morel and Renvoise [23, 15]. We perform global reassociation and global renaming prior to
LCM [4].

Because LCM will not move conditionally executed code out of loops, it is possible that some loop invariant
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Figure 2 Transformed Code

code will remain inside a loop. We account for this by defining a region constant to be either a compile-time
constant or a value whose definition is outside the loop. This does not identify all possible region constants,
but our experiments indicate that the missed opportunities are insignificant in practice. Since we consider
compile-time constants to be region constants, we require some form of constant propagation to identify as
many constants as possible. We use Wegman and Zadeck’s sparse conditional constant algorithm [30].

We construct the pruned SSA form of the program [12]. In the program’s SSA graph, each node represents
an operation or a ¢-node, and edges flow from uses to definitions. The SSA graph can be built from the
resulting program by adding the use-definition chains; which can be represented as a lookup table indexed

by SSA names. Figure 3 shows the SSA graph for the example program in Figure 1.

2.2 Finding Region Constants and Induction Variables

Previous strength reduction algorithms have been centered around loops, or regions, inside a procedure.
These are detected using Tarjan’s flow-graph reducibility algorithm [29]. Given a region r; a node in the SSA
graph is a region constant with respect to r if its value does not change inside r. A variable is an induction
variable with respect to region r if within the region r its value is only incremented or decremented by a
region constant. We avoid the need to build the loop tree by using the dominator tree that was constructed
during the conversion to SSA form [22]. We take advantage of two key properties of SSA form to identify

region constants and induction variables.

1. After invariant code has been moved out of loops, each region constant with respect to region r will
either be a compile-time constant or its definition will strictly dominate every block in r. The SSA
construction algorithm ensures this; if it is not true, the SSA form must have a ¢-node inside 7.

2. Every induction variable forms a strongly connected component (SCC) in the SSA graph. Notice that
the converse is not true (i.e., not every SCC represents an induction variable). In Figure 3, the SCC
containing sum; and sums does not represent an induction variable because t4g is not a region constant.

The idea of finding induction variables as SCCs of the SSA graph is due to Wolfe [32]. To discover the SCCs,
we will use Tarjan’s algorithm based on depth-first search [28]. Tt uses a stack to determine which nodes are
in the same SCC; nodes not contained in any cycle are popped singly, while all the nodes in the same SCC

are popped together.
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Figure 3 SSA graph

Tarjan’s algorithm has an interesting property: when a collection of one or more nodes is popped from
the stack, all of the operands referenced in those nodes that are defined outside the collection have already
been popped. We can capitalize on this observation and process the nodes as they are popped from the
stack. In our method, the SCC-finder drives the entire strength reduction process.

As each SCC is identified, the algorithm decides immediately if it represents an induction variable. The
test 18 simple and efficient. The first step is to consider all basic blocks containing a definition inside the
SCC and to identify the header block — the block with the smallest reverse-postorder number. We use this
information to identify region constants with respect to this SCC: a region constant must either be a compile-
time constant or its definition must strictly dominate the header block. The next step is to check that each
operation and ¢-node in the SCC has the proper form. For ¢-nodes, each argument must be either a member
of the SCC or a region constant. For addition operations, one operand must be a member of the SCC and the
other operand must be a region constant. For subtraction operations, the left operand must be a member of
the SCC and the right operand must be a region constant. The only other permissible operation is a copy.
If the SCC 1s determined to be an induction variable, we label each node with a pointer to the header block.

For each node that is not a member of an SCC, we can decide immediately if it is a candidate for strength
reduction and perform the code replacement described in the next section. This is an improvement over
previous algorithms that require a worklist of candidate instructions. For simplicity, we will restrict our

discussion to instructions of the following forms:
rT—1Xj x+—1tj x—j+1

where ¢ is an induction variable and j is a region constant with respect to the header block for ;. Allen,
Cocke, and Kennedy describe a variety of other candidate types [2]. These are straightforward extensions
to the technique. If this operation is a candidate for reduction, the REPLACE function described in the next
section is invoked immediately. Since this function transforms « into an induction variable; z is labeled as

an induction variable with the same header block as ¢. This allows further reduction of operations using z.



2.3 Code Replacement

Once we have found a candidate instruction of the form « «— ¢ x j, we update the code so that the multiply
is no longer performed inside the loop. The compiler creates a new SCC in the SSA graph and replaces the
instruction with a copy from the node representing the value of ¢ x j. This process is handled by three

mutually recursive functions:
REPLACE Replace the current operation with a copy from its reduced counterpart.
REDUCE Insert code to strength reduce an induction variable and return the SSA name of the result.

APPLY Insert an instruction to apply an opcode to two operands and return the SSA name of the result.
Simplifications such as constant folding are performed if possible.

The replacement process is supported by a hash table that tracks the results of reduction [18]. This prevents
us from performing the same reduction twice and causes the recursion in REDUCE to terminate. Access to

the hash table is through two functions:

search takes an expression (an opcode and two operands) and returns the SSA name of the result.

add takes an expression and the name of its result and adds an entry to the table.

The REPLACE function is straightforward. It provides the top-level call to the recursive function REDUCE
and replaces the current operation with a copy. The resulting operation must be an induction variable.
void REPLACE(operation, iv, rc)
result — REDUCE(operation— opcode, iv, rc)

Replace operation with a copy from result
operation—header «— iv—header

The REDUCE function is responsible for adding the appropriate operations to the procedure. The first
step 1s to check the hash table for the desired result. If the result is already in the hash table, then no
additional instructions are needed, and REDUCE returns the SSA name of the result. Otherwise, it must
copy the operation or ¢-node that defines the induction variable and assign a new name to the result. The
copyDef function does this. Next, REDUCE considers each argument of the copy. If the argument is defined
inside the SCC, REDUCE invokes itself recursively on that argument. Arguments defined outside the SCC are
either the initial value of the induction variable or the value by which the induction value is incremented. If
we are reducing a multiply operation, we apply the operation in both cases. However, if we are reducing an
addition operation, we only operate on the initial value. Therefore, REDUCE invokes APPLY on arguments
defined outside the SCC only if we are reducing a multiply or if we are processing the arguments of a ¢-node.

SSAname REDUCE(opcode, iv, rc)
result — search(opcode, iv, rc)
if result is not found
result — inventName()
add(opcode, iv, e, result)
newDef — copyDef(iv, result)
for each operand o of newDef
if 0 is an induction variable
Replace o with REDUCE(opcode, o, rc)
else if opcode == x or newDefis a ¢-node

Replace o with APPLY (opcode, o, rc)
return result

The APPLY function is conceptually simple, although there are a few details that must be considered.
The basic function of APPLY is to create an operation with the desired result. We rely on the hash table



to determine if such an operation already exists. It is possible that the operation we are about to create is
a candidate for strength reduction. If so, we perform the reduction immediately by calling REDUCE. This
case often arises from triangular loops — where the bounds of an inner loop are a function of the index of an

outer loop.

SSAname APPLY (opcode, opl, op2)
result — search(opcode, opl, op?2)
if result is not found
if op! is an induction variable and op?2 is a region constant
result — REDUCE(opcode, opl, op2)
else if 0p2 is an induction variable and op! is a region constant
result — REDUCE(opcode, op2, opl)
else
result — inventName()
add(opcode, opl, op2, result)
Choose the location where the operation will be inserted
Decide if constant folding is possible
Create a new operation at the desired location
return result

Before inserting the operation, the algorithm must select the location where it is legal to do so. Rather
than construct “landing pads” before the loop being reduced, our algorithm relies on dominance information
created during SSA construction. Intuitively, the instruction must go into a block that is dominated by
both operands. If one of the operands is a constant, we may have to copy its definition to satisfy this
condition. Otherwise, both operands must be region constants, so their definitions dominate the header
block. One operand must be a descendant of the other in the dominator tree, so the operation can be
inserted immediately after the descendant. This avoids the need for landing pads; it may place the operation

in a less deeply nested location than the landing pad.

2.4 Example

As an example of how the code replacement functions operate, we will apply them to the SSA graph in
Figure 3. The first candidate identified is ¢t15. We invoke REPLACE with v = ¢; and r¢ = 1. The hash
table search in REDUCE will fail, so the first SSA name invented will be osry. We add this entry to the
hash table and create a copy of the ¢-node for 7;. Next, we process the arguments of the copy. Since the
first argument, ¢, is a region constant, we replace it with the result of APPLY, which will perform constant
folding and return the SSA name osr;. The second argument, i5, is an induction variable, so we recursively
invoke REDUCE. Since no match is found in the hash table, we invent a new SSA name, osrs, add an entry
to the hash table, and copy the operation for ¢5. The first argument is the region constant 1, which will be
left unchanged. The second argument is i1, which is an induction variable. The recursive call to REDUCE
will produce a match in the hash table with osry as the result. At this point, the calls to REDUCE finish,
and the SSA name osry is returned to REPLACE. We replace the operation defining {1y with a copy from
osrg. We label t1p as an induction variable so that t2; and ¢3; will also be identified as candidates for
strength reduction. Figure 4 shows the SSA graph of our example program after operator strength reduction

1s completed.

2.5 Running Time

The time required to identify the induction variables and region constants in an SSA graph is O(N + F),
where N is the number of nodes and E is the number of edges. The REPLACE function performs work that



@ 19 @ [ Xigl @ 08714 @ oSy sumo@
4 4 4

2 2 2 2 ()
D [ [ [
o 12 ‘30

O O (D (D

) ) ) N \

Figure 4 After Operator Strength Reduction

1 =20 1 =20 ts =0
t1 =0
t, =0
while (F;) do while () do
if (P;) then if (P;) then
t=1t+1 th =1 + ¢ th =1y + Cn
k:i*q t22t2—|—62 ZIZ—|—1
-1
if (P5) then if (P5) then
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k=t
if (P,) then if (P,) then
t=i4+n ti=ti +n*c t,=t, +n*ec,
k=1i*c¢, to =ta +n *cy t=1t4+n
. k=t,
end end
Original code Transformed code

Figure 5 A worst-case example



is proportional to the size of the SCC containing the induction variable, which can be as large as O(N).
Since REPLACE can be invoked O(N) times, the worst case running time is O(N?). This seems expensive;
unfortunately, it is necessary. Figure b shows a program that generates this worst case behavior in the
replacement step. It requires introduction of a quadratic number of updates. Note that this behavior is a
function of the code being transformed, not any particular details of our algorithm. Any algorithm that
performs strength reduction on this code will have this behavior. In practice, experience with strength
reduction suggests that this problem does not arise. In fact, we have not seen this problem mentioned in the
literature. Since the amount of work is proportional to the number of instructions inserted, any algorithm

for strength reduction that reduces these cases will have the same, or worse, complexity.

3 Linear Function Test Replacement

After strength reduction, the code often contains induction variables whose sole use is to govern control
flow. If so, linear function test replacement can convert them into dead code. The compiler should look for
comparisons between an induction variable and a region constant. For example, the comparison “if (é2 <
100) goto L” in our example program (see Figure 1) could be replaced with “if (¢srg < 396 + a) goto L”.
This transformation is called linear function test replacement (LFTR).

Previous methods would search the hash table for an expression containing the induction variable refer-
enced in the comparison. In the example in Figures 3 and 4, a “chain” of reductions was applied to node
15. If LFTR is to be effective, we must follow the entire chain quickly. To facilitate this process, REDUCE
records the reductions it performs on each node in the SSA graph. FEach reduction is represented by an
edge from a node to its strength-reduced counterpart labeled with the opcode and the region constant of the
reduction. When a candidate for LFTR is found, it is a simple matter of traversing these edges, inserting
code to compute the new region constant for the test, and updating the compare instruction. We use two

procedures to support this process:

FOLLOW_EDGES Follow the LFTR edges and return the SSA name of the last one in the chain.

APPLY_EDGES Apply the operations represented by the LFTR edges to a region constant and return the
SSA name of the result.

The APPLY_EDGES function can be easily implemented using the APPLY function described in Sec-
tion 2.3. For each LFTR candidate, we replace the induction variable with the result of FOLLOW_EDGES,
and we replace the region constant with the result of APPLY_EDGES. Notice that LFTR renders the original
induction variable dead. Subsequent optimizations should remove the associated instructions.

In the example in Figure 2, there are two sets of these edges:
. -1 x4 +a

® 1) — 08Ty — 0873 — 08T
. -1 x4 +a

® iy — 08Ty —— 0875 — 0ST3

To transform the test ¢s < 100, we replace ¢ with the result of FOLLOW_EDGES, osrg, and we replace 100
with the result of APPLY_EDGES, (((100 — 1) x 4) + a) = 396 + a.

3.1 Follow-up Transformations

The algorithm presented here operates in a compiler that performs a suite of optimization passes. To provide
a good separation of concerns, we leave much of the “cleaning up” to other well-known optimizations that

should be run after operator strength reduction.



Since operator strength reduction has the potential to introduce equal induction variables, we need a
global value numbering algorithm to detect and remove common subexpressions. Any non-global technique
will be unable to detect the equality of SCCs because they contain values flowing through back edges. Alpern,
Wegman, and Zadeck presented a technique that uses a variation on Hopcroft’s DFA-minimization algorithm
to partition values into congruence classes [3, 1]. We have made improvements to this algorithm that include
AVAIL-based removal [5].

The SSA graph in Figure 4 contains a great deal of dead code. This is because many of the use-definition
edges in the original SSA graph have been changed, resulting in “orphaned” nodes. We rely on a separate
pass of dead code elimination to remove these instructions [12, Section 7.1].

Many of the copies introduced during strength reduction can be eliminated. For example, the copy into
t3p in Figure 4 can be eliminated if the load into ¢4y uses the value of osrg directly. We rely on the copy

coalescing phase of a Chaitin-style graph coloring register allocator to accomplish this task [6].

4 Previous Work

Reduction of operator strength has a long history in the literature. The classic method 1s presented in a
paper by Allen, Cocke, and Kennedy [2]. Tt, in turn, builds on earlier work by Cocke and Kennedy [10, 18].
These algorithms transform one loop at a time, working outward through each loop nest, making passes to
generate def-use chains, find loops and insert landing pads, find region constants and induction variables, and
to perform the actual reduction and instruction replacement. Linear function test replacement is a separate
pass for each loop. Chase extended the Allen, Cocke, and Kennedy method to reduce more additions [9].

A second family of techniques has grown up around the literature of data-flow analysis [13, 17, 14, 20].
These methods use the careful code placement calculations developed for code motion to perform strength
reduction. These methods avoid the control-flow analysis used in the Allen, Cocke, and Kennedy methods;
our algorithm uses properties of SSA for the same purpose. Their placement techniques avoid lengthening
execution paths; our algorithm cannot make the same claim. Their principal limitation is that they work
from a simpler notion of a region constant—only literal constants can be found. The Allen, Cocke, and
Kennedy-style techniques, including ours, include loop invariant values as region constants.

Paige has looked at reducing a number of set operators [25, 24] and using multiset discrimination as an
alternative to hashing to avoid its worst case behavior [7]. Sites looked at the related issue of minimizing the
number of loop induction variables [27]. Markstein, Markstein, and Zadeck, in a chapter for a forthcoming
ACM Press Book, present an algorithm that combines strength reduction, expression reassociation, and code

motion. Our work has treated these issues separately.

5 Conclusions

This paper presents a simple and elegant algorithm for performing reduction of operator strength. The
results of applying our method are similar to those achieved by the Allen, Cocke, and Kennedy algorithm.
Our technique relies on prior optimizations and properties of the SSA graph to produce an algorithm that (1)
is simple to understand and to implement, (2) relies on the dominator tree which must be computed during
SSA construction rather than the loop structure of the program (which can be costly to compute), (3) avoids
instantiating the sets of induction variables and region constants required by other algorithms, (4) processes
each candidate instruction immediately rather than maintaining a worklist, and (5) greatly simplifies linear
function test replacement. The result i1s an efficient algorithm that is both easy to understand and easy to

implement.
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