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ABSTRACT 
 

The PACE Project investigated the feasibility of using a combination of characterization-driven 
optimization, feedback-directed optimization, and automatic selection of transformations to 
retarget an optimizing compiler to new computer systems. The effort produced the design for a 
complete compilation environment that embodied those concepts, along with a significant set of 
components for that environment. Work was completed as defined in the Modified Statement of Work, 
shown in Appendix A. This report provides an overview of the design, the implementation, and the 
ways in which the PACE components advanced the state of the art in compilation, in 
performance measurement and attribution, in portable measurement of system characteristics, 
and in machine learning. 
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FOREWARD 
 

The Platform-Aware Compilation Environment (PACE) project was funded by the Defense 
Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory 
(AFRL) Contract FA8650-09-C-7915 with Rice University. Rice University was the lead 
institution on the PACE Project, with subcontracts at Ohio State University, Stanford University, 
ET International, and Texas Instruments.1 PACE was part of the DARPA-sponsored 
Architecture-Aware Compiler Environment (AACE) program. 

 

The PACE Project Team investigated the feasibility of using a combination of characterization-
driven optimization, feedback-directed optimization, and automatic selection of transformations to 
retarget an optimizing compiler to new computer systems. The overall direction of PACE was set 
by the AACE program; the detailed approach was set by the investigators. 
 
 

The PACE Project produced a substantial body of software (See Section 3.5). The software 
produced under the PACE Project is available for use by others, under appropriate licenses. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 For a variety of reasons, the Texas Instruments subcontract was never executed. However, Reid Tatge of 
Texas Instruments was an active participant in many of the PACE design discussions and meetings. 
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1. EXECUTIVE SUMMARY 

 

The Platform-Aware Compilation Environment Project (PACE) explored the efficacy of using 
characterization-driven code optimization, feedback-directed code optimization, and automatic 
selection of transformations to simplify the task of porting optimizing compilers to new 
computer systems. PACE was funded as part of the Architecture-Aware Compiler Environment 
(AACE) Program, which explored portable techniques to measure the performance-critical 
characteristics of computer systems and ways to use the knowledge of those characteristics to 
retarget optimizing compilers. 

 
 

This final report describes the fundamental questions that the investigators explored in the PACE Project 
and the results that they obtained. Section 2 describes the investigators’ vision for PACE and the 
overall design of the PACE System. More detailed information on the vision and design can be 
found in the design document produced for the AACE Preliminary Design Review [1]. Section 3 
describes the actual progress that we made in the implementation of PACE. A more detailed 
picture of the status of the PACE System can be found in the PACE Status and Futures document 
[2]. Section 4 discusses specific results in the various subprojects, with particular attention to how 
the PACE work advanced the state of the art. 
 

The PACE Project produced a substantial body of software (See Section 3.5). The software 
produced under the PACE Project is available, along with appropriate licenses, at 
http://pace.rice.edu/ under “Software”. 

http://pace.rice.edu/
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2. INTRODUCTION 
 

The difficulty of achieving a desired level of performance is a major challenge in the design, 
procurement, and use of modern computer systems, from supercomputers to embedded 
controllers. Performance arises from characteristics of both the computer system and the 
application, and from the extent to which the application code can be mapped efficiently onto the 
system’s hardware. To achieve a reasonably high fraction of available performance with existing 
tools, the programmer must understand critical properties of both the underlying computer 
system and the application code, or tools must automatically tailor the code for the underlying 
computer system, or both. 

 

Application code must be translated from some human-usable “programming language”, such as 
Fortran, C, C++, Java, Python, or Ruby, into a form where it executes on the targeted system. 
Unfortunately, the details of that translation determine, to a large extent, the performance that the 
application can achieve. 

 

That translation is accomplished using a software system called a compiler. A compiler is just a 
computer program that translates one executable representation of a program into another. The 
compiler and its runtime support software determine how the algorithms and abstractions 
expressed in the source-language version of the application are implemented on the actual 
computer system when the application executes—or, more properly, when the compiled code for 
the application runs. Thus, the compiler is one of the principal determiners of application 
performance. 

 

Experience over the last thirty years has shown that it typically takes a minimum of three to five 
years after the introduction of a new architectural feature before compilers can make consistent 
good use of the feature. Given the rapid obsolescence of computing systems, the practical 
implication of this delay is that systems are retired before their compilers can take full advantage 
of new features. As a result of this almost constant time lag, most applications run on systems 
where they achieve a small fraction of the available performance—say five to fifteen percent. 

 
 

The overriding goal of the PACE Project was to develop language translation tools—specifically 
a compiler and its surrounding tools—that would simplify the task of achieving a reasonable 
fraction of available performance on new systems.  The approach that we pursued in PACE was 
to design and develop a compiler based on a strategy for automatic retargeting: automatic tools to 
measure performance-critical parameters of the target system coupled to a compiler environment 
that relied on those measured performance parameters to tailor code optimization to the specific 
targeted system.  
 
The remainder of this section describes the investigators’ vision for PACE and the overall design 
of the PACE System. More detailed information on the vision and design can be found in the 
design document produced for the AACE Preliminary Design Review [1]. Section 3 describes 
the actual progress that we made in the implementation of PACE. A more detailed picture of the 
status of the PACE System can be found in the PACE Status and Futures document [2]. Section 
4 discusses specific results in the various subprojects, with particular attention to how the PACE 
work advanced the state of the art. 
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In the design and implementation of the PACE System, we were constrained by two key 
requirements of the AACE Program. 

 

• AACE environments were designed to be portable; in general, the tools should rely on 
the standard C language libraries plus POSIX interfaces. 

 

• AACE environments should rely on a native C compiler to perform the final translation 
of application code for execution on the target system. 

 

These two requirements had a strong influence on the design and implementation of the PACE 
tools. The PACE Project designed and partially implemented an AACE compiler environment. 

 
The PACE environment, as envisioned in PACE Preliminary Design Document [1], and shown 
in Figure 1 has four major components: the PACE Compiler, the PACE Runtime System, the 
PACE Characterization Tools, and the PACE Machine Learning Tools. 

 

• The PACE Compiler is responsible for translating application code so that it executes 
efficiently on the target system. 

 

• The PACE Runtime System provides services for monitoring application performance 
and for runtime adaptation. 

 

• The PACE Characterization Tools derive information about the performance-critical 
characteristics of the target system for use by the other PACE tools. 

 

• The PACE Machine Learning Tools observe the behavior of the other tools and 
applications compiled through PACE, and attempt to encode that observed experience 
into knowledge that the compiler and runtime system can use to improve performance. 

 
Thus, the four major themes of the PACE Project are: 

 

• Measure the effective performance of the target computer system: The PACE 
Characterization tools measure specific characteristics of the target computer system. 
Characteristic values are derived by a combination of microbenchmarks and careful 
analysis.2 The tools are written in a portable style in C. They rely on the capabilities of 
the POSIX standard libraries. 

• Use measured characteristics to drive code optimization: The PACE Compiler contains 
optimizations that are parameterized around the characteristic values measured by the 
PACE Characterization Tools. Changing the characteristic information causes a change in 
optimization behavior, in effect, tuning the compiler’s behavior to the target system. 

 

• Observe, adjust, and adapt application behavior at runtime: The dynamic nature of 
high-performance multiprocessor computation suggests that runtime conditions will have 
a strong impact on performance. Because neither the programmer nor the compiler can 
easily predict or understand runtime conditions, the PACE Runtime System includes 

 
 

2 It is important to note that the AACE program specified that the AACE environments should rely on a 
native C compiler, either open source or vendor-supplied, to perform the final compilation step. Thus, any 
property of the target machine and its compiler that could not be discerned from an ANSI C program was 
not useful to the optimizer. If the microbenchmark could not expose the property, the PACE Compiler 
could not capitalize on it. 
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Figure 1: High-level Overview of the PACE System 
 
 

facilities to measure and report runtime performance and to adjust application behavior in 
response to those measurements. 

 

• Use offline learning to make long-term improvements in code quality: The interactions 
between system, software, and application characteristics and observed performance are 
too complex to solve with a single pre-defined optimization strategy. The PACE Machine 
Learning effort used machine learning techniques to capture these complex relationships, 
with the goal of using the knowledge to inform better optimization decisions. 

 

The PACE Project was designed to instantiate these themes in a sophisticated, feedback-driven 
compilation environment. 

 

When our work on the PACE Project began, our focus was on re-tuning an optimizing compiler 
for distinct computer systems. Over the course of our phase one activities, we became convinced 
that a second, equally powerful, rationale for characterization-driven optimization is the extreme 
divergence in performance characteristics among different implementations of the same 
instruction set architecture (ISA). For example, distinct implementations of the basic x86 ISA 
from a single vendor, either Intel or AMD, can differ in the number of functional units, in the 
relative cost of arithmetic and memory operations, in the size and organization of the various 
structures in the memory hierarchy, and in the number and kinds of processor cores provided by 
the implementation. Each of these details may change the performance of compiled code; a good 
compiler might generate radically different code for different models of the same ISA. 
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These model-specific differences are breaking down the “traditional” model of software 
development, in which the compiler can ignore model-specific differences and the application 
programmer can run the same compiled code on any “x86” implementation. If performance is an 
issue, compilers must pay attention to model-specific performance differences. Characterization- 
driven optimization, in the sense proposed in the PACE Project, is one rational way of dealing 
with the proliferation of implementation models. It offers the promise of model-specific 
optimization without a proliferation of different optimizing compilers. 

 

The remainder of this section describes the PACE System in more detail. Specifically, Section 
2.1 describes the individual components of the PACE System; Section 2.2 describes the different 
ways in which the PACE System adapts its behavior to the target system, application, and runtime 
context. Finally, Section 2.3 lays out the major research questions that the PACE Project tried to 
address. We return to those questions in Section 5. 

 
2.1 Components of the PACE System 

 

The PACE System has four major components: the PACE Compiler, the PACE Runtime System, 
the PACE Characterization Tools, and the PACE Machine Learning Tools. 

 
2.1.1  The PACE Compiler 
The PACE Compiler consists of four primary components, along with some infrastructure to 
coordinate the interactions between them. The PACE Compiler, shown in Figure 2 consists of a 
Compiler Driver that invokes and sequences the various parts of the compiler, an Application- 
Aware Partitioner (AAP) that performs some preliminary file-level and source-level 
transformations on the application’s code, a Platform-Aware Optimizer (PAO) that performs 
high-level, or near-source, optimizations, and a Target-Aware Optimizer (TAO) that tries to 
shape the code so that it compiles well in the native compiler. A native C compiler for the target 
system performs the final translation into object code. On systems that the LLVM Backend 
supports, such as x86 systems, that backend can be used in place of a native C compiler. 

 

To compile an application, the compiler driver first invokes the AAP, which examines the entire 
application and creates a set of refactored program units from the source code. The compiler 
driver then iterates over the program units, and invokes the PAO and the TAO on each of them. 
The gray lines in the figure represent these control relationships, as well as the information 
passed from the Compiler Driver to the other components. Among the parameters that the 
Compiler Driver passes to the TAO is a flag that indicates which backend it should invoke. 

 

Compilation can take one of three paths through the compiler. Each path begins with the AAP 
and the PAO. The Compiler Driver can instruct the PAO to emit C code, which is then compiled 
with the native compiler—an attractive option for a capable native compiler. If the target 
machine has an LLVM backend, such as an x86 ISA machine, the Compiler Driver can direct the 
TAO to use the LLVM backend. On systems without an LLVM backend, the Compiler Driver can 
instruct the TAO to generate C code tailored for the native compiler, and then pass the C 
code to that native compiler. 
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Figure 2: Structure of the PACE Compiler 
 
Application-Aware Partitioner: The AAP is the first component invoked on an application. 
The AAP examines the source code for the entire application and rewrites it into refactored 
program units. The goals of the AAP are to (1) limit the size of any single compilation unit, and 
(2) group together procedures that have similar performance profiles and problems so that they 
can be optimized in the same way. Because compilation times rise non-linearly with the size of 
the compilation unit, the AAP’s refactoring work should help to limit compilation times. 
Similarly, by grouping together procedures that need similar optimization strategies, the AAP 
should help to limit the time required to build a complete application. 

 

As a practical matter, the AAP also ensures that the PACE Compiler has access to all of the 
source code for an application. It creates a private directory with a copy of the application. Within 
that directory, it creates a subdirectory for the current invocation of the compiler where it writes 
its refactored program units. The directory will also hold the work products and annotations of the 
other compiler components; it serves as the working directory for the current invocation of the 
compiler. 



 

7 
Approved for public release; distribution unlimited 

Platform-Aware Optimizer: The PAO reads in the C code for a refactored program unit and 
applies analyses and transformations to the code that are intended to tailor it based on platform- 
wide considerations. Of particular concern in the PAO are efficient use of the memory hierarchy 
and effective use of thread-level parallelism. The PAO includes a subsystem, PolyOpt, that uses 
polyhedral analysis and transformations to reorganize loop nests for efficient memory access. For 
loops that are not susceptible to polyhedral analysis, the PAO includes implementations of other 
loop-level transformations, such as tiling, interchange, unrolling, and scalar replacement. 

 

The PAO uses data about system characteristics, such as the organization of the memory hierarchy 
and the effective amount of available parallelism, to drive its optimizations. The PACE 
Characterization Tools provide that data. The PAO also has access to performance measurements 
made by the PACE Runtime System during prior executions of the code that it can use to focus 
its attention on the hot paths in the code. 

 

The PAO makes use of a novel feedback mechanism, the PAO→TAO query interface, to adapt its 
optimization decisions. For example, in choosing loop unroll factors, the PAO asks the TAO to 
compile a code fragment containing the prospective transformed loop; the TAO responds with 
information about the quality of the code that it can generate, including estimates of both 
operation counts and register spill operations in the final version of the loop. Using this 
feedback, the PAO can adjust the unroll factor to avoid generating code that would cause the 
TAO and the native compiler to insert excessive and expensive spill code. 

 

As its final step, the PAO invokes the PAO→TAO IR translator to rewrite the abstract syntax 
trees used by the PAO into the low-level linear code used in the TAO. The translator also maps 
analysis results and annotations created in the PAO so that they refer correctly to the TAO form 
of the IR. 

 

Target-Aware Optimizer: The TAO takes the transformed, annotated code produced by the 
PAO and maps it onto the architectural resources of the individual processing elements. The 
TAO also provides a strong level of scalar (or uniprocessor) optimization to compensate for 
potential weaknesses in the native compiler. 

 

The TAO was designed to have three distinct back ends: a native backend for the x86 ISA, a 
backend that generates C code suitable for use with a vendor-supplied or open-source native C 
compiler, and the PAO→TAO query backend, which supplies feedback about generated code to 
the PAO. 

 

2.1.2  The PACE Runtime System 
 

The PACE Runtime System (RTS) provides performance monitoring and runtime parameter 
tuning. The PACE Compiler prepares an executable for the RTS by including the runtime hooks 
necessary to initialize the RTS, and by constructing a measurement script that sets environment 
variables and flags that control and direct the measurement system. The user invokes the 
executable through a measurement script.3 

 

When invoked, the RTS interposes itself between the application and the operating system to 
intercept events such as program launch and termination, thread creation and destruction, signal 

 
3 It is possible to invoke a PACE-compiled executable without invoking the RTS. The preferred 
mechanism to achieve that goal is to invoke it through the measurement script, with the appropriate 
parameter settings to disable runtime performance monitoring. 
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handler setup, signal delivery, loading and unloading of dynamic libraries, and MPI initialization 
and finalization. It then launches the application, monitors its behavior using a variety of 
mechanisms, and records the results. 

 

The RTS also provides an interface for runtime selection of optimization parameters. The 
compiler rewrites the code region into an optimized, parameterized form and builds the various 
data structures and support routines needed by the RTS harness for online feedback-directed 
optimization. 

 
2.1.3  The PACE Characterization Tools 

 

The PACE Characterization tools are a standalone package designed to measure the performance 
characteristics of a new system that are important to the rest of the PACE System, and to provide 
a simple consistent interface to that information for the other PACE tools. The tools consist of a 
collection of microbenchmark codes and scripts that invoke them. Each microbenchmark 
performs a series of measurements followed by an analysis of the measured data. 

 

The Characterization tools are written in a portable style in the C programming language. They 
rely on entry points from the standard C libraries and the POSIX operating system interface. The 
specific characteristics that the tools measured in phase one of the AACE program are shown in 
Table 2.2 of the PACE Status and Futures document [2]. 

 

In many cases, the Characterization tools capture an effective number for the parameter, rather 
than the actual number provided by the underlying hardware. The effective quantity is, in 
general, defined as the amount of that resource available to a C program. For example, the 
effective number of floating-point registers available to a C program depends, in part, on the 
number of such registers provided by the underlying hardware. However, the compiler is almost 
always the limiting factor in this case. If the hardware provides 16 floating-point registers, but 
the compiler cannot allocate more than 14 of them to variables in the application code, then the 
effective number should be 14 registers.4 

 

In some cases, a hardware characteristic may not be discernible from a C program. In those 
cases, the PACE Compiler cannot rely upon that characteristic in optimization, since the C code 
cannot control the behavior. Associativity in the memory hierarchy is a good example of this 
problem. If the L2 cache on a processor is physically mapped, the mapping between a source- 
level data structure, such as a large array, and its cache locations depends on the mapping of 
virtual memory pages to physical page frames, and the tools cannot measure the associativity of 
that cache level with any certainty. 

 
 
 
 
 
 
 

4 For example, some register allocators reserve a small number of registers to use for values that are used 
too infrequently to merit their own registers. If the compiler reserves two such registers, it reduces the 
effective number available to the application. The PACE Compiler, which will control the number of 
simultaneously live floating-point values, should not plan on using those last two registers. Similarly, 
sharing in the cache hierarchy (between instructions and data or between cores) can lead to effective cache 
sizes that are significantly smaller than the hardware cache size. 
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2.1.4  The PACE Machine Learning Effort 
 

The PACE Machine Learning (ML) tools are intended to augment specific decision making 
processes within the PACE System, through analysis of past experience and behavior. A modern 
compilation environment, such as PACE, can produce reams of data about the application itself, 
the process used to compile it, and its behavior at runtime. Unfortunately, the application's 
runtime performance can depend in subtle ways on an unknown subset of that information, and 
neither humans nor algorithmic programs are particularly good at discerning those relationships. 

 

The ML effort will develop tools that learn models for distinct decision problems that arise in the 
PACE Compiler and the PACE Runtime System. As those models emerge, the tools will use them 
directly to improve the quality of decisions. The models draw their inputs from the other PACE 
tools. They query the resource-characterization interface directly. They find the input data from 
the compiler and the runtime system where it is stored with the application. The ML tools have 
their own private repository where they can store their context, data, and results. As output, the 
models will produce directives, refined input parameters, or changes to optimization plans. In this 
way, the ML tools will improve the behavior of the other PACE tools. 

 

To facilitate offline learning, the PACE System needs a mechanism that invokes the offline 
portions of the ML tools on a regular basis. The POSIX crontab facility could be used to 
schedule regular invocations of the offline PACE ML tools. Problems that are solved online 
would invoke the appropriate ML tools directly. 
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2.2 Adaptation in the PACE System 
 

Adaptation is the key strategy embodied in the PACE System. The compiler changes its behavior 
in response to either internal or external feedback. The other PACE tools exist to provide data 
that guides adaptation or to facilitate that adaptation. 

 

Adaptation in the PACE Compiler falls into two categories: short-term adaptation that tailors the 
behavior of one executable, and long-term learning that changes the behavior of the compiler. 
The PACE System includes four different mechanisms to achieve adaptation: 

 

1.   Characterization-driven adaptation, 
2.   Offline feedback-driven adaptation, 
3.   Online feedback-driven optimization, and 
4.   Long-term machine learning. 

 

The mechanisms are summarized in Table 1 and described below. 
 

In combination, these four mechanisms provide the compiler with the ability to adapt its behavior 
to the target system, the application, and the runtime situation. Taken together, 1 and 2 combine 
to let the PACE Compiler automatically select transformations. These mechanisms allow the 
PACE System to be flexible in its pursuit of runtime performance. 

 
2.2.1  Characterization‐Driven Optimization 

 

The concept of characterization-driven optimization forms the core of the PACE Project. AACE 
compiler environments include tools that measure performance- critical characteristics of the 
target system and transformations that use those measured characteristics as an integral part of 
the optimization process. In the PACE Compiler, for example, the loop optimizations in the 
PAO use the measured parameters of the memory hierarchy to help choose tile sizes. 

 
 

Table 1: Adaptation Mechanisms in the PACE Compiler 
 

 Characterization 
Driven 

Offline 
Feedback-Driven 

Online 
Feedback-Driven 

Machine 
Learning 

Kind of 
Adaptation 

Long-term 
learning 

Short-term 
adaptation 

Short-term 
adaptation 

Long-term 
learning 

Time 
Frame 

 
Install time 

 
Across compiles 

 
Runtime 

 
Across compiles 

Affects All applications One application One application All applications 
 
Adapts to 

 
System 

 

System 
Application 

System 
Application 
Data 

System 
Application 
PACE 

Initiated by RC tools various PAO ML tools 
Changes 
Behavior of 

 
AAP, PAO, TAO 

 
AAP, PAO, TAO 

 
RTS 

 
AAP, PAO, TAO 

 
Persistence Until next run of 

RC tools 
 
Short-term Records results 

for ML and PAO 

 
Long-term 
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Characterization-driven adaptation is a simple form of long-term learning. It relies on algorithmic 
adaptation to pre-determined parameters. The compiler writers identify parameters and the PACE 
Characterization tools measure them. The compiler writers implement the transformations that 
use the results from the characterization tools. This strategy automatically adapts the 
transformation to the target system; it does not take into account any properties of the application 
or its data set. 

 

In PACE, characterization-driven optimization performs its adaptation at installation time, when 
the PACE Characterization tools run. The adaptation can be repeated by re-running the 
characterization tools to generate a new target-system characterization. The results of this 
adaptation are persistent; they last until the PACE Characterization tools are re-run. 

 
2.2.2  Offline Feedback‐Driven Optimization 

 

The second strategy for adaptation in the PACE Compiler is the use of offline feedback-driven 
optimization. This strategy produces a short-term adaptation. The actual mechanism for 
implementing feedback-directed optimization in PACE is simple. The Compiler Driver creates, 
for each application, a default optimization plan.5 The AAP, PAO, and TAO each consult the 
application's optimization plan before they transform the code. Changes to the optimization plan 
change the behavior of these components. This design simplifies the implementation and 
operation of an adaptive compiler. It does not, however, provide a clear picture of how PACE 
will perform offline, feedback-driven adaptation. 

 

In principle, any component in the PACE System can change the optimization plan for the 
current compilation of an application. We considered three strategies for controlling offline 
feedback-driven adaptation. 

 

• The compiler driver may use an external adaptive controller to change the optimization 
plan across multiple compile-execute cycles. This mechanism can modify gross 
properties of optimization, such as the specific transformations applied and their relative 
order or the path through the compiler. 

 

• Any phase of the compiler may contain an optimization pass that performs self- 
adaptation. For example, the implementation of unroll-and-jam in the PAO uses the 
PAO→TAO query mechanism to choose good unroll factors. It generates prospective 
versions of the loop and has the TAO estimate operation counts and register pressure. It 
adjusts the unroll factor to reduce operation counts and avoid register spilling. 

 

• One phase of the compiler may change the optimization plan for another phase, based on 
the code that it generates. This capability addresses two different needs. It allows one 
phase to disable transformations that might reduce the impact of a transformation that it 
has applied. For example, the PAO might disable loop unrolling in the TAO to prevent 
the TAO from de-optimizing a carefully tiled loop nest. This adaptation would occur 
within a single compilation. 

 
 
 
 

5 The optimization plan is a persistent document that records compiler options for a specific application, 
including the path to be taken through the compiler, specific optimizations to be applied, and parameters 
that should be passed to those optimizations [1]. 
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Alternatively, this capability allows one phase to provide feedback to another phase in the 
next compilation. For example, if the TAO discovers that the code needs many more 
registers than the target system (hardware + compiler) can supply, it might change the 
AAP's optimization plan to forbid inline substitution in the region. Similarly, it might tell 
the PAO to reduce its unroll factors. 

 

While these offline feedback-driven adaptations can produce complex behavior and subtle 
adaptations, their primary impact is short term; they affect the current compilation (or, perhaps, 
the next one). They do not build predictive models for later use, so they cannot be considered 
learning techniques.6 

 

2.2.3  Online Feedback‐Driven Optimization 
 

The third strategy for adaptation in the PACE System is the use of online feedback-driven 
optimization. Because the performance of optimized code can depend on the runtime state of the 
system on which it executes, even well planned and executed transformations may not produce 
the desired performance. Issues such as resource sharing with other cores and interference from 
the runtime behavior of other applications can degrade actual performance. 

 

To cope with such dynamic effects, PACE includes a mechanism that lets the compiler set up a 
region of code for runtime tuning. The PAO establishes runtime parameters to control the aspects 
of the code that it wants the runtime to adjust. It generates a version of the code for that region that 
uses these control parameters to govern the code's behavior. Finally, it creates a package of 
information that the PACE Runtime needs to perform the runtime tuning. The PACE Runtime 
uses that information to find, at runtime, settings for the control parameters that produce good 
performance. The resulting application tunes itself to the actual runtime conditions. 

 

As an example, consider blocking loops to improve locality in the memory hierarchy. The 
compiler could assume that it completely understood memory behavior and use fixed tile sizes. 
Alternatively, it can generate code that is parameterized around the tile sizes and use the PACE 
Runtime System’s API for runtime adaptation to select good tile sizes at runtime.7 The 
compiler’s choice of bounds for the runtime search are, in turn, informed by values on effective 
cache sizes from the PACE Characterization Tools. The runtime search might use performance 
counter information, such as the L2 cache miss rate, from the Runtime System to judge 
performance. 

 

Online feedback-directed optimization produces a short-term adaptation of the application's 
behavior to the runtime situationthe dynamic state of the system and the input data set. The 
technique, by itself, does not lead to any long-term change in the behavior of either the PACE 
System or the application. However, the PACE Runtime System records the final parameter 

 
 
 

6 In the ACME system, we coupled this kind of adaptation with a persistent memoization capability and 
randomized restart. The result was a longer-term search incrementalized across multiple compilation steps 
[20]. 
7 The PACE Runtime System both defines and implements an API for online, feedback-driven 
optimization. The API lets the compiler register tunable parameters and suggested initial values, and 
provides a runtime search routine (an adaptive controller) that the PACE Runtime System can use to vary 
those parameters. The PACE Runtime will collect the data needed by the runtime search routine and 
ensure that it is invoked periodically to reconsider the parameter values. 
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values in its record of the application's performance history. Other components in PACE may use 
these final parameter values as inputs to long-term learning. 

 
2.2.4  Machine Learning 

 

The fourth strategy for adaptation in the PACE System is to apply machine learning techniques 
to discover relationships among target system characteristics, application characteristics, 
compiler optimization plans, and variations in the runtime environment. Machine learning is, by 
definition, a long-term adaptation strategy. Machine Learning tools will derive models that 
predict appropriate optimization decisions and parameters. In the PACE Project, we chose 
several specific problems to attack with Machine Learning techniques. 

 

A central activity in the design of a machine-learning framework for each of these problems is 
the design of a feature vector for the problemthe set of facts that are input to the learned 
model. The PACE System provides an information rich environment in which to perform 
learning; the Machine Learning tools have the opportunity to draw features from any other part 
of the environmentthe characterization tools, the compiler tools, and the runtime. The 
determination of what features are necessary to build good predictive models for various 
compiler optimizations is an open question and a significant research issue in PACE. 

 

The goal of learning research in the PACE Project was to create a process that will automatically 
improve the PACE System's behavior over time. Offline learning tools examine records of 
source code properties, optimization plans, and runtime performance to derive data on 
optimization effectiveness, and to correlate source-code properties with effective strategies. This 
knowledge will inform later compilations and executions. 

 

The PACE Compiler uses Machine Learning-derived models directly in its decision processes. 
The goal is to replace some static decision processes and some short-term adaptive strategies 
used by the compiler with a simpler implementation that relies on predictions from Machine 
Learning-derived models. 
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2.3 Major Questions in the PACE Project 
 

The PACE Project focused on finding the answer to two fundamental questions. 
 

1.   Can we simplify the task of building and deploying high-quality optimizing compilers for 
new computer systems? 

 

2.   Can we reduce the effort required to achieve good application performance on those 
systems? 

 

The PACE Project explored a specific approach to solving both of these problems: the use of 
characterization-driven optimization to re-target or re-purpose an optimizing compiler. In the 
context of PACE, we set out to answer the following questions. 

 
 

3.   Can a characterization-driven approach to compiler-based code optimization yield both 
portability and performance? 

 

4.   Can we measure performance-critical system characteristics in a portable way, with 
enough accuracy to use in a characterization-driven optimization system? 

 

5.   To what extent can we use feedback and adaptation — either runtime performance 
measurement or introspective insights from compiler components — to improve the 
results of characterization-driven optimization? 

 

6.   What kinds of runtime support are necessary to achieve reasonable application 
performance on modern computing systems? 

 

7.   Can machine-learning techniques predict optimization parameters as well as, or better 
than, measured performance characteristics? 

 

The next two sections describe what we accomplished in the PACE Project. Section 3 focuses on 
the actual implementation and clarifies which parts of the design were implemented and which 
were not. Section 4 focuses on our results, with an emphasis on how the PACE work extended 
existing tools and advanced the state of the art. Section 5 concludes by revisiting these 
fundamental questions in light of our experience in the PACE Project. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 
 

In the PACE Project, our approach to resolving the fundamental questions was constructive—to 
design and build a retargetable optimizing compiler that achieved reasonably high levels of 
application performance by relying on characterization-driven optimization, feedback-directed 
adaptation, and automatic selection of transformations.  This section focuses on the 
implementation effort. 

 

The PACE System components were designed and implemented under a series of assumptions and 
constraints that were defined by the AACE BAA and by the AACE testing teams (University of 
California San Diego and University of Tennessee Knoxville) in consultation with the PACE and 
BAE AESOP development teams. The AACE testing teams presented the PACE team with a set 
of specifications for interfaces that we could assume were present on the target system. To a first 
approximation, the PACE implementation could assume the presence of C, C++, and 
Fortran compilers, a POSIX interface, OpenMP, and MPI. The detailed specifications should be 
found in the AACE testing teams’ documentation. 

 
3.1 The PACE Compiler 

 

In the PACE Compiler, our phase one activity focused on: (1) selection of base infrastructure for 
the PAO and the TAO; (2) design of the PACE Compiler and its interfaces; (3) construction of 
the foundational infrastructure for the compiler; (4) implementation of the interfaces between the 
PACE Compiler and the other PACE tools; (5) implementation of the PAO-TAO interfaces, 
including the PAO→TAO IR Translator and the PAO→TAO query interface; and (6) 
implementation of a prototype of the AAP. 

 

In phase two, we began to implement the transformations in the PAO and TAO, as well as the 
analyses that support them. Under the modified Statement of Work (see Appendix A), we 
implemented a limited set of transformations in the PAO (polyhedral transformations, parametric 
loop tiling, and unroll-and-jam) with a limited set of supporting analyses (array dependence 
analyses), and in the TAO (operator strength reduction, linear function-test replacement, graph- 
coloring register allocation, and improved vectorization). The remainder of the implementation is 
potential future work under other funding. 

 

The PAO is implemented in the ROSE compiler infrastructure, while the TAO is implemented in 
the LLVM compiler infrastructure. These choices affected the design of individual components, as 
well as our distribution strategies for the resulting software. Both ROSE and LLVM have their 
own distinct open-source licenses. Components developed with the ROSE infrastructure are 
distributed under the ROSE license, while those developed with the LLVM infrastructure are 
distributed under the LLVM license. 

 
3.1.1  The Application‐Aware Partitioner 

 

The long-term goal for the Application-Aware Partitioner was to manage the source code for an 
entire application and to refactor that source code in ways that reduce overall compilation times. 
In phase one, we built and tested a preliminary version of the AAP, with the necessary 
infrastructure for refactoring. The prototype AAP used a clustering heuristic along with profile 
data derived from the Runtime System to make refactoring decisions. It also performed 
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interprocedural array padding. Our plan for phase two was to use feedback from the PACE 
Runtime System and other components in the compiler to direct the refactoring process. Under 
the modified Statement of Work, we discontinued work on the AAP. 

 
3.1.2  The Platform‐Aware Optimizer 

 

The primary goal for the Platform-Aware Optimizer is to prepare the application code for 
execution on the target system, with particular attention to efficient use of the memory hierarchy, 
mapping the application well onto inter-core parallelism, and exposing enough intra-core 
parallelism to achieve a high rate of utilization on each core. The PAO emphasizes the key 
PACE themes: characterization-driven optimization, feedback-directed optimization, and 
automatic selection of transformations for the specific application and target. 

 

A large part of the PAO implementation effort was devoted to putting in place the infrastructure 
and interfaces to support the PACE vision: characterization-driven optimization, feedback-driven 
improvement, and automatic selection of transformations based on properties of the specific 
target system and application. The remainder of the effort went into implementation of specific 
analyses and transformations. To that end, we: 

 

1.   Modified the ROSE compiler infrastructure to simplify the process of building and 
installing those components needed for the PACE infrastructure and to improve 
portability across multiple systems. 

 

2.   Built the various interfaces between the PAO and other PACE System components. 
These interfaces include the PAO→TAO query interface, an interface to read data 
produced by the PACE Characterization tools, and an initial interface to read execution 
profile data produced by the PACE Runtime System. (This latter interface was also used 
by the AAP.) 

 

3.   Implemented PolyOpt, a subsystem that performs polyhedral analyses and transformations 
on affine loops. We extended the polyhedral techniques to cover some non-affine loops, as 
well. PolyOpt performs data dependence analysis, data alignment analysis, loop fusion, 
loop distribution, loop interchange, loop skewing, loop shifting, and loop tiling [3]. 
PolyOpt is integrated with the ROSE compiler infrastructure. 

 

PolyOpt operates as a subsystem of the PAO. (See the description under PAO 
Optimization Strategy below.) It takes as input a source code fragment in Sage AST 
form. It identifies subtrees of the AST that represent affine computations, transforms 
those subtrees to a polyhedral representation, analyzes and transforms the code in its 
polyhedral form, and finally converts the polyhedral form back into Sage AST. Analysis 
results from PolyOpt are mapped back into the Sage AST; dependence polyhedra are 
translated into conventional distance vectors. These annotations are then persistent 
throughout the PAO and are carried through the TAO by the PAO→TAO IR Translator. 

 

From a practical perspective, PolyOpt is the first fully automatic, end-to-end system for 
polyhedral optimization available in the ROSE compiler infrastructure. The development 
of PolyOpt included development or improvements to a number of packages, including 
the Candl package for data dependence analysis, the Pluto transformation set, and the 
CLooG package for polyhedral code generation, along with development of the PTile 
parametric tiling software and the code in ScopLib and PAST that supports polyhedral 
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intermediate representations. The PolyOpt code is currently in use by several other 
projects. 

 

4.   Implemented a set of high-level loop transformations that operate directly on the Sage 
AST. These transformations include parametric loop tiling and unroll-and-jam. These 
transformations rely on dependence analysis results from the polyhedral dependence 
analyzer, translated from representation as polyhedra to representation as classical 
dependence distance vectors. 

 

5.   Implemented support in the PAO for the TAO vectorization pass. The PAO performs a 
legality analysis for vectorization. It annotates loops where vectorization is legal with 
information on data dependences and data alignment. 

 

6.   Implemented a parametric tiling transformation that separates the specification of tile 
sizes from the actual transformations. The code produced by this transformation is 
suitable for either runtime selection of tile sizes [1] or for choice of tile sizes by an 
external model, as in [4]. 

 

7.   Implemented a demonstration system that used the PAO→TAO query mechanism to 
select loop unroll factors based on low-level code quality concerns from the register 
allocator and scheduler. 

 

PAO Optimization Strategy: The PAO contains both polyhedral analyses and transformations, 
and traditional non-polyhedral transformations. It uses each kind of transformation to its best 
advantage. PolyOpt is applied to those code regions that have a suitable form. Code regions that 
are not suitable for PolyOpt are subjected to traditional techniques. To accomplish this, the PAO 
takes the following steps with each function or procedure. 

 

1.   Identify “Static Control Parts” (SCoPs) in each function. There are multiple constraints 
that restrict which loop nests are eligible for inclusion in a SCoP. 

 

2.   Invoke the PolyOpt component separately for each SCoP. The PolyOpt component 
performs a number of loop transformations on each SCoP including fusion, distribution, 
interchange, skewing, permutation, shifting and tiling, in addition to identifying 
vectorizable loops that are marked as such and passed to the TAO for vectorization. 

 

3.   Invoke polyhedral dependence analysis on all non-SCoP loop nests. 
 

4.   Perform parametric loop tiling on non-SCoP loop nests (using RC information), when 
legal to do so. 

 

5.   Perform unroll-and-jam on innermost loops nests (using RC information and TAO cost 
feedback), when legal to do so. 

 

Strategy for Automatic Selection of Transformations: To build a compiler where we could 
experiment with automatic selection of transformations, we established a clear separation of 
concerns among legality analysis, profitability analysis, and program transformation. This 
separation makes it far easier to reason about the selection and sequencing of operations. In 
practice, it limits the phase-order restrictions between passes in the optimizer. 

 

To facilitate automatic selection, we decomposed the selection of high-level optimization 
problems into separate categories by effect—that is, we consider optimization of memory 
hierarchy behavior, of inter-core parallelism, and of intra-core parallelism as separate problems. 
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The formulation of each optimization problem is, then, based on quantitative cost models that are 
built on derived system characteristics and on application characteristics that include context- 
sensitive profiles. Multiple transformations may be used to optimize a single class of hardware 
resources (e.g., loop interchange, tiling, and fusion may all be used in tandem to improve 
memory hierarchy locality), and a single transformation may be employed multiple times for 
different resource optimizations (e.g., the use of loop unrolling to improve both register locality 
and instruction-level parallelism). 

 
3.1.3  The PAO→TAO IR Translator 

 

The PAO→TAO IR Translator takes an abstract syntax tree in ROSE’s Sage AST format and 
translates it into a valid program in the low-level, linear, static single-assignment (SSA) form IR 
used by LLVM. It assumes that the input AST represents a valid C program. This tool allows 
direct and efficient communication between tools built on the ROSE infrastructure and tools built 
on the LLVM infrastructure. It is a vital link between the PAO and TAO that ensures the faithful 
transmission of both code and derived annotations. 

 

The alternative process, pretty printing the Sage AST into C code and then parsing the C code into 
LLVM IR is problematic. The PAO develops knowledge about the input program that may have 
no expression in C. Examples include data dependence and data alignment information. A given 
loop nest might have multiple legal translations into C, some of which lose information. For 
example, the Sage-to-C translation might convert array-style code to pointer-style code. (In a 
naïve compilation, the pointer code may, in fact, be faster.) The pointer-style code is likely to be 
inferior for further optimization because of the difficulty of analyzing pointer-based references. 

 

The PAO→TAO IR Translator is distributed through the ROSE Project’s web site. A link to the 
distribution can be found on the PACE web site. 

 
3.1.4  The Target‐Aware Optimizer 

 

The Target-Aware Optimizer has several specific goals. It should include optimizations that 
specifically target the code produced by the PAO, such as the output from polyhedral analysis 
and transformation and the output from vectorization activities. The TAO should generate C code 
that carefully matches the capabilities and assumptions of the native C compiler. The TAO 
should provide a testing ground for low-level, characterization-driven, scalar optimizations. 
Finally, the TAO should provide direct feedback to the PAO on the impact that PAO 
optimization decisions have on the effectiveness of low-level optimization. 

 

As groundwork for our implementation activity, we first completed a study on LLVM’s 
optimization effectiveness. The study used the Nullstone and SPEC benchmarks, along with 
some smaller microbenchmarks, to assess the quality of LLVM’s output code.8 The study 
identified several areas where improvements to LLVM would have an impact. To this end, we 
built a series of enhancements to the LLVM 3.0 compiler infrastructure. 

 

1.   Operator Strength Reduction and Linear Function Test Replacement: The PAO 
transformations, both in PolyOpt and in the non-polyhedral optimizer, produce loop nests 
that contain many similar and related array references. Operator Strength Reduction 

 
 

8 Specific provisions in the NULLSTONE license prohibit us from publishing the results of those tests. 
We can, however, discuss in general terms the weaknesses that the tests revealed. 
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directly attacks the cost of array access by simplifying the code for array address 
computations. Operator Strength Reduction can significantly reduce the overhead of 
computations in array intensive loops. 

 

LLVM’s original strength reduction algorithm was limited in its scope and effectiveness. 
We implemented the more general Cooper-Simpson-Vick algorithm that performs 
strength reduction and linear function test replacement [5] [6]. This pass can run inside a 
standard LLVM 3.0 implementation. 

 

2.   Short SIMD Vector Code Generation: LLVM had no provision to make systematic use of 
short vector instructions, such as the Intel SSE operations. Vectorization was an explicit 
requirement of the AACE program. The TAO team worked with the PAO team to 
implement a vectorization pass for LLVM, based on the dynamic programming approach 
to vector code generation [7]. The pass relies on analyses in the PAO’s PolyOpt package 
for information on legality and on results from the PACE Characterization Tools for 
profitability analysis (see Section 8.3.3 and Appendix B of PACE: Status and Future 
Directions [2]). The PAO analysis results are translated, first from polyhedral form to 
conventional dependence vectors, and then from referring to the Sage AST to referring to 
constructs in the LLVM IR. 

 

Because it relies on information from other parts of the PACE Environment, this pass can 
only run inside a complete PACE installation; it will not work in a standard LLVM 
implementation. 

 

3.   Register Allocator: To improve LLVM’s ability to handle the complex loop nests 
produced by the PolyOpt tools, we implemented a Chaitin-Briggs graph-coloring register 
allocator [8] that includes rematerialization [9]. Improved register allocation was of 
particular interest to the PACE Project because the complex loop nests produced by the 
PAO’s transformations tend to have high demand for registers. 

 

LLVM includes several previous, but less powerful register allocators. The Chaitin- 
Briggs implementation can run inside a standard LLVM 3.0 implementation. 

 

4.   PAO-TAO Feedback: To provide answers in the PAO→TAO query mechanism, the TAO 
team created a synthetic back end that can provide information about the quality of code 
compiled for a specific code fragment. To use this facility, the PAO wraps the code 
fragment in a function, annotates it with auxiliary information that includes alias 
information and array dependence information, and sends that package to the TAO. The 
TAO optimizes the code and produces estimates of several performance parameters, 
including demand for registers, the amount of spill code required, the critical path length, 
and the cost of SIMD vectorization. Details can be found in [2], Section 8.3.5. 

 

Because it relies on information from other parts of the PACE Environment, this pass can 
only run inside a complete PACE installation; it will not work in a standard LLVM 
implementation. 

 

Our study of LLVM optimization effectiveness revealed some shortcomings that we did not, 
because of limited time and resources, address. Foremost among these is the lack of systematic 
code motion in LLVM. (Many of the best practice algorithms are not well suited to SSA form.) 
We considered several strategies and settled on an implementation of the Cytron, Lowry, and 
Zadeck algorithm [10].  We began an implementation of this algorithm, but ran into significant 
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problems transforming the LLVM IR. In particular, the implementation needs to replicate large 
amounts of code, which creates code that is not in correct SSA form. The process of creating this 
non-SSA-form code and then repairing it so that it is correct SSA-form code made it difficult to 
design, difficult to implement, and difficult to reason about the results. In the end, we concluded 
that implementing this particular transformation in LLVM was untenable. Were we to make 
another attempt at adding code motion to LLVM, we would probably start from one of the 
algorithms that has been specifically formulated for SSA form. 
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3.2 The PACE Runtime System 
 

The design for the PACE Runtime System included four capabilities: measurement of 
performance of generated code, attribution of performance measurements back to the source 
program for feedback-directed optimization, analysis of rate-limiting factors for different code 
regions to provide guidance for offline tuning, and online tuning of program performance via 
parameter selection. Work on the PACE Runtime System began late in the project and work on 
the last two aspects was not completed. As a result, the principal results of work on the PACE 
Runtime System are support for online performance measurement and support for attributing 
performance measurements to support feedback-directed optimization. 

 

Support for Performance Measurement: The PACE Runtime System was designed to measure 
program performance for compiler-generated code, assess performance and scalability 
bottlenecks, and attribute performance characteristics to the program source code. Attribution to 
source code leverages compiler-generated mappings, binary analysis of the generated code, and 
unwinding of the dynamic call stack at runtime. This enables the performance measurement 
subsystem to support attribution of performance at multiple levels of granularity, including 
attribution to full calling dynamic contexts, procedures, inlined functions, and loop nests, as well 
as individual source code statements. 

 

Performance measurement, analysis, and attribution capabilities for the PACE Runtime System 
were integrated into Rice University’s HPCToolkit performance toolsa standalone toolkit for 
application performance analysis. New capabilities developed for PACE included expanding the 
set of architectures supported by HPCToolkit. For this purpose, a new version of the libunwind 
interface was integrated into HPCToolkit to add the capability to provide support for call stack 
unwinding on the ARM and Itanium processor families, both of which were represented in the set 
of AACE test systems. The libunwind support complements existing stack unwinding 
capabilities already present in HPCToolkit for MIPS, PowerPC, and x86, which leverage custom 
binary analyzers. Additionally, as part of work on PACE, we extended the unwinding 
capabilities for PowerPC to support 64-bit Power architectures, which include the Power7 and 
Blue Gene/Q processors. 

 

An important aspect of the PACE Runtime System was the ability to measure and identify 
performance bottlenecks in parallel code. A key challenge for modern processors is to make 
efficient use of thread-level parallelism on multicore architectures. As the PACE Project began, 
quad-core processors were standard. Today, AMD’s Interlagos processors have 16 cores; the 
emerging Blue Gene/Q processor has 16 cores, each with 4-way hardware multithreading; and 
the forthcoming Intel MIC chip will have over 50 cores, each with 4-way hardware 
multithreading. Support for quantifying performance losses due to insufficient threaded 
parallelism and attributing losses to program regions is essential guidance needed for either 
manual or automatic tuning. 

 

As part of PACE, we refined ideas for diagnosing performance bottlenecks in multithreaded 
programs by pinpointing program regions with insufficient parallelism. We extended our 
measurement system to maintain information about instantaneous thread idleness and refined a 
technique that we call “blame shifting” to accumulate and attribute measurements of idleness and 
work to program regions – shifting blame from symptoms of performance losses due to idleness 
(i.e., spin waiting for work or for access to a critical section guarded by a lock) to their 
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underlying causes – insufficient parallelism and resource contention for locks. As the PACE 
Project was winding down, we explored the utility of these ideas in the context of OpenMP 
codes, as well as programs that use heterogeneous cores in systems with both CPU and GPU 
components. The fundamental ideas and implementation to support blame shifting for 
multithreaded programs is complete. 

 

Support for Feedback-Directed Optimization: A second aspect of the PACE Runtime System 
is to attribute performance measurements back to an abstract syntax tree representation of the 
program source code to support feedback-directed optimization. To provide this capability, 
measurement data collected by the PACE Runtime System is parsed and attributed directly to the 
Sage AST representation of the ROSE compiler infrastructure, which serves as a substrate for the 
PACE Compiler. 

 

Prior to the PACE Project, the ROSE compiler infrastructure contained some support for 
importing performance measurements from HPCToolkit. This support was developed several 
years ago by members of the ROSE team at LLNL and not maintained since. As a result, it was 
several years out of date and unable to digest call stack profiles generated by the current version 
of HPCToolkit. As part of PACE, we updated the support in ROSE to import HPCToolkit’s new 
call stack profiles and put in place regression tests to verify this functionality. 

 

Identifying Rate Limiting Factors: An important goal of the PACE Runtime System was to 
develop support for identifying the rate limiting factors associated with various code regions. To 
address this issue, we collaborated with Jim Browne (University of Texas) and Martin Burtcher 
(Texas State University) to develop support for this capability based on performance 
measurements collected by the HPCToolkit measurement subsystem. The PerfExpert tool 
developed by Browne and Burtcher uses measurements from hardware performance counters in 
conjunction with machine characteristics (e.g., pipeline latencies, cache latencies, TLB miss 
latency, etc.) to calculate LCPI – local cycles per instruction – for individual loop nests. The 
performance losses associated with each factor (e.g., L1 cache misses, L2 cache misses, L3 
cache misses, TLB misses, floating point pipeline stalls, mispredicted branches, etc.) is 
quantified by taking the product of each kind of hardware counter event measured with its 
associated delay. Based on this information, PerfExpert qualitatively assesses performance, 
rating it from poor to excellent. Rate limiting factors are identified by assessing the magnitude of 
the losses associated with each cause of performance loss (e.g., cache misses, pipeline stalls, 
mispredicted branches, etc.). Based on the type of loss and the structure of the code (e.g., single 
loop, nested loops) identified by HPCToolkit’s binary analysis, PerfExpert identifies some 
potential code transformations that might improve performance. As future work, it would be interesting 
to integrate the LCPI assessment of rate limiting factors and transformation recommendations by 
PerfExpert into the PACE Compiler. 

 

As part of phase two, our plan for PACE was to also use information collected by the PACE 
Runtime System to guide the Application Aware Partitioner (AAP) to direct program refactoring. 
While measurement data collected by the PACE Runtime System was read and attributed to the 
internal program representation of the AAP, under the modified Statement of Work, we 
discontinued the AAP and our work on measurement-directed refactoring was abandoned. 

 

Additionally, phase two plans for PACE included building a harness in the PACE Runtime 
System for runtime tuning by online parameter selection (e.g., tile size selection). Under the 
Revised Statement of Work, we abandoned work on this capability. 
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3.3 The PACE Characterization Tools 
 

The goal of the PACE Characterization Tools subproject was to develop a set of standalone, 
portable tools that could reliably measure the system characteristics needed by the other PACE 
tools. Thus, the project had three key thrusts: leading the effort to identify those performance- 
critical system parameters; developing microbenchmarks to expose those parameters; and 
packaging the tool set in a way that let the AACE Testing Teams evaluate the work and let the 
other PACE tools use the results. See Chapter 2 and Appendix A of PACE: Status and Future 
Directions [2] for a detailed discussion of the design and implementation of these tools. 

 
3.3.1  Identifying Characteristics 

 

The Characterization Tools team worked with the PACE Compiler and Runtime teams, as well 
as the other AACE teams, to identify a set of system parameters that would affect optimization 
and tuning. The AACE testing teams also helped to identify parameters and to standardize 
definitions across the AACE program. 

 

As a general rule, the Characterization Tools only measure a characteristic if it can be used in the 
source-to-source optimization provided by the PACE Compiler (or in the Runtime System). This 
rule eliminates some parameters from consideration and changes the definitions of others. For 
example, the tools measure the number of simultaneous live values that the native compiler can 
maintain, rather than the number of hardware registers available on the target processor. In a 
compiler that has a native backend, the number of registers is an important number. In a system 
that relies on the native compiler to perform the final translation step, the capabilities of that 
compiler matter more than the capacities of the underlying hardware. 

 

While the tools should, in principle, measure any property of the target system and its software 
environment that might impact optimization, practical limits imposed by the project’s schedule, 
its budget, and the plans of the other tools limited the number of characteristics that we 
measured. Tables 2.2 in PACE: Status and Future Directions [2] summarize the characteristics 
measured by the PACE tools. As a design goal, we only wanted to measure parameters that 
would be used by some component in the PACE System. Table 2.3 in PACE: Status and Future 
Directions [2] shows potential uses of each characteristic that the tools measure. 

 
3.3.2  Microbenchmarks and Analyses 

 

The PACE Characterization Tools consist of a set of microbenchmarks. Each microbenchmark 
consists of code designed to expose the characteristic behavior and analysis that distills a single 
number from the measured system behavior. PACE: Status and Future Directions [2] describes 
the various microbenchmarks in Chapter 2 and Appendix A. Two examples will make clear the 
wide differences in approach that are required for different characteristics. 

 

The cache capacity microbenchmark measures the amount of time required to access thoroughly 
an array of a given footprint. By gathering data on successively larger footprints, the 
microbenchmark builds up a curve that describes memory latency as a function of footprint. It 
repeats each test many times and retains the minimum time at each footprint. This strategy lets 
the microbenchmark sample a large number of virtual-address to physical-address mappings. The 
automatic analysis smooths that curve and fits a step function to it. The step function indicates 
the number of levels of cache memory in the system, the effective latency of each level of cache, 
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and the effective capacity of each of those cache levels, defined as the footprint beyond which 
latency begins to rise. 

 

By contrast, the test for live ranges—the number of simultaneously live values that a C program 
can have before register spilling degrades performance—does not need to execute the compiled 
code. The microbenchmark compiles a series of carefully designed codes and compares the size of 
the compiled code. Each version of the code contains a long sequence of additions. The codes 
differ in the pattern of names used in the additions; the patterns produce a different number of 
simultaneously live values. To discover the characteristic value, the analysis finds the first version 
where the code size jumps—it jumps because the compiler had to insert loads and stores to spill 
and reload live values. That version is one live range above the compiler’s effective limit. 

 

Both parts of the microbenchmark—the code that demonstrates the effect and the code that 
analyzes the results—require careful design and testing across multiple ISAs, multiple chip 
models, multiple system configurations, and multiple compilers. It is difficult to achieve the twin 
goals of accuracy and portability in a single code. 

 

Our goal for the PACE Project was to achieve a 75% measured accuracy for the measured 
parameters by the end of phase one and then raise that accuracy to 90% by the end of phase two. 
The AACE testing teams measured the accuracy of the PACE Characterization Tools on a set of 
systems whose properties were unknown to the PACE team. Both testing teams found that the 
PACE tools met their standards for accuracy—the 75% accuracy listed as our goal in Section 
3.3.1.9 Most of the individual tests achieved accuracy better than 90%, in our internal trials and 
in the end-of-phase tests. We had one microbenchmark that had accuracy problems; those 
problems are easily correctable. Table 2.2 on page 16 in [2] shows the characteristics used in those 
tests along with the page numbers in Appendix A [2] where additional information is provided 
for each of the characteristics. 

 

For phase two, our plan was to focus on better metrics for shared resources under controlled 
loads on other cores, to measure effective latencies for a variety of thread-related primitives, to 
measure several more compiler-related characteristics, and to investigate the impact of 
“processor throttling” behavior on Intel Nehalem and Westmere processors. Table 2.3 on page 
18 in the PACE Preliminary Design Document [1] details most of these characteristics. 

 

We achieved partial results on many of these characteristics. Under the Revised Scope of Work, we 
shifted the remaining characterization resources from exploration of new characteristics to 
ensuring that the phase one software was distributed in a useful and accessible form. 

 

On the issue of characterization under load, our initial results were disappointing. We saw large 
variances in the measured values for effective cache size, with constant-sized loads on the other 
cores. We surmise that the variances are, in fact, real, and that they arise due to the impact of 
virtual-to-physical address mapping on all of the cores, coupled with the fact that the shared 
caches are physically mapped. We have ideas on how to test this hypothesis, but it will require 
the use of superpages—a distinctly non-portable feature not included in the POSIX API. 

 

On the issue of processor throttling, we found that it was difficult to write a microbenchmark that 
consistently triggered the behavior. Either our systems have adequate cooling for the processor 

 
9 Each of the testing teams had its own systems and scoring metrics. Their testing and scoring 
methodology is described, presumably, in their final reports. The AACE program established a passing 
score of 75% accuracy in phase one. 
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chips, or the effect almost never occurs. In either case, our inability to trigger the behavior 
suggests that compiled code is not particularly likely to encounter this problem. 

 
3.3.3  Packaging the Characterization Tools 

 

The PACE Characterization Tools were designed to produce output for three different end users: 
the AACE testing teams, the other PACE tools, and interested individuals. The interface for the 
AACE testing tools specified a tight set of requirements so that the PACE Characterization Tools 
could fit into an automated testing harness. Under the Revised Scope of Work, we stopped support 
for that interface and re-packaged the tools as a standalone system that produces results in two 
forms: a human-readable file and an automatic interface used by the other PACE tools. 

 

The distributed software unpacks into a directory. The user invokes it by running a “makefile”. 
The tools write their results into an ASCII text file. The PACE tools interface reads that file to 
obtain data. 
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3.4 The PACE Machine Learning Effort 
 

The PACE Machine Learning (ML) team identified four problems to attack as part of the PACE 
effort [1]: 

 

1.   Finding the optimal tile size to maximize performance of a loop nest 
 

2.   Selecting compiler flag settings for good performance of an application program, given a 
fixed optimization sequence 

 

3.   Predicting an application program’s performance based on characteristics of the program, 
the target system, and the compiler 

 

4.   Finding a sequence of compiler optimizations for an application program that yields 
performance improvements over some baseline sequence 

 

We prioritized these problems, taking into account the overall project schedule and the 
availability of other PACE components. Problems one and three were attacked first, with plans 
to tackle problem two next and problem four last. 

 

Consider problem one. To train a model so that it can predict good tile sizes, we need extensive 
data. The ML team took a single benchmark code—a tiled FFT—and measured execution times 
on one machine configuration at the complete set of reasonable tile sizes. The PIs proposed that 
we consider a predicted execution time as a “good” prediction if it is within five percent or less of 
the actual measured time. 

 

To obtain accurate and consistent data, all runs were made using the RCacheSim simulator, 
rather than relying on native execution. This strategy eliminated any impact of other system 
loads from the data for an individual run. It also decoupled progress on the ML tasks from 
progress in the PACE Compiler and PACE Runtime System. The data from all these runs was 
then validated—to ensure completeness and to verify that the execution times made sense.10

 
 

The ML effort used artificial neural networks with self-organizing maps to build models. These 
models were compared against linear least squares regression, cubic least squares regression, and 
a conventional multi-layer perceptron using back propagation [1]. 

 

Next, multiple rounds of learning experiments were performed to determine the sampling 
resolution of the training data in the parameter space that was needed for accuracy in the 
predicted tile sizes. 

 

1.   Predict the performance of the application on a hardware configuration based on data 
from the same application and same hardware with different input data. 

 

In these tests, our neural network models predicted execution times based on a given tile 
size. The accuracy of the four models is as follows: 

 

•  Our neural network made good predictions for 88.7% of the trials. 
 
 
 

10 The individual timing runs were run on a large cluster at Rice. Because of the sheer number of individual 
executions and the vagaries of the batch queuing system, some individual runs were terminated early and 
produced misleading results; others failed for ancillary reasons. Our validation process discovered these 
problems and allowed us to repeat the suspicious runs and replace the questionable data with correct data. 
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•  Linear least squares regression made good predictions for 7 to 8.5% of the trials. 
 

•  Cubic least squares regression made good predictions for 12.8% of the trials. 
 

•  Back propagation made good predictions for 59.6 to 65.6% of the trials. 
 

Based on the predicted execution times, the neural network model would predict tile sizes 
close to the optimal tile sizes, as would the back propagation model. The least squares 
models did not predict well enough to produce good tile sizes. 

 

2.   Predict the performance of the same application with different input data on other 
hardware configurations. In this context, a hardware configuration consists of a set of sizes 
for the L1, L2, and L3 caches, as well as the TLB. Again our neural network model did 
quite well. It made good predictions for 95.8 to 97.4% of the cross-machine predictions. 

 

The increase in accuracy for the cross-machine trials over the single-machine trials is 
partly due to the fact that the predictions were for another configuration11 and partly due 
to improvements in learning—refinement of the models during the single-machine 
experiments. 

 

In summary, we achieved roughly 95% success at predicting execution time as a function of 
configuration, input data, and tile size—a good result for both problems one and three. 

 

When the project ended, we were working on cross-program predictions—using data from one 
application to predict the performance of another application, both on the same configuration and 
on other configurations. Unfortunately, we ran out of time before completing those experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 We would expect prediction accuracy to vary somewhat between architectural configurations. 
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3.5 Software 
 

The PACE Project produced a set of software artifacts. All are available from the “SOFTWARE” 
link on the PACE web site (http://pace.rice.edu). Some of them have been re-integrated into the 
distributions for the underlying systems, in particular ROSE and HPCToolkit. 

 

PACE Compiler: 
 

• AAP: The code for the AAP is built on top of the open-source Xerces XML parser and the 
standard GNU utilities Bison and Flex. The code is available from the PACE web site 
under the Rice open-source license. 

 

• PAO: The PAO is built on top of the ROSE Compiler Infrastructure, an open-source 
system designed to facilitate the implementation of compilers and source-to-source 
translators. The code for the PAO is included in the PACE Compiler distribution. Most 
of the code for the PAO falls under the ROSE open-source license. Any code not covered 
by the ROSE licenses falls under the Rice open-source license. 

 

o The PolyOpt tools are also available from the ROSE web site. 
 

o The PAO→TAO IR Translator is also available from the ROSE web site, where it 
is described as a translator from the ROSE Sage AST to LLVM IR. 

 

• TAO: The released components of the TAO are built on top of the LLVM compiler 
infrastructure. They are available from the PACE web site under the LLVM 3.0 license. 

 

o Most of these components are included in the PACE Compiler distribution. 
 

o The operator strength reduction/linear function test replacement pass and the 
Chaitin-Briggs graph-coloring register allocator are available as standalone 
distributions from the PACE web site. Both passes are usable in LLVM without 
any other PACE software. 

 

PACE Runtime System: 
 

• Performance Measurement: The HPCToolkit performance tools, including 
enhancements developed to support the goals of the PACE Project, are available as a 
standalone distribution. HPCToolkit leverages a large collection of third-party open 
source software including GNU Binutils, the Apache Xerces XML parser, libDWARFa 
library for reading compiler-generated debugging information, libelfa library for reading 
and manipulating application executables in ELF format, libunwinda library 
that provides an API to determine the dynamic call chain of an executing program, 
symtabAPIa library for reading and manipulating symbol table information for 
executables, libxml2an XML C parser used by symtabAPI, OpenAnalysisa library 
that supports representation independent analysis of programs, and the Apache Xerces 
XML library, which HPCToolkit uses to read and validate XML. Code for the 
HPCToolkit performance tools is available separately under a simple open-source 
license. 

• Support for Feedback-Directed Optimization: Support for parsing and attributing 
measurement data collected by the PACE Runtime System’s measurement subsystem 
(HPCToolkit) to the Sage AST of the ROSE compiler infrastructure was integrated 
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directly into ROSE. This code will be available as part of the standard distribution of 
ROSE provided by Lawrence Livermore National Laboratory.12

 
 

PACE Characterization Tools 
 

• The PACE Characterization Tools are a standalone package. The package can be 
downloaded from the PACE web site. The software is available under the Rice open- 
source license. 

 

PACE Machine Learning Tools 
 

• The ML project built on software developed by Dr. Erzsébet Merényi in earlier projects, 
under funding from the National Aeronautics and Space Administration (NASA). The 
software was original applied to analysis of hyperspectral remote sensing images, a 
problem with a high-dimension feature space and complexly structured data. The 
software modules are accessible for licensed use; contact Dr. Merényi for details 
(erzsebet@rice.edu). A link is included on the software page of the PACE web site. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12 As of this writing, the code for reading and attributing HPCToolkit performance measurements is 
undergoing extensive multi-platform regression testing, which is required to commit code to the master 
software repository for the ROSE project at Lawrence Livermore National Laboratory. 
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4. RESULTS AND DISCUSSION 
 
4.1 The PACE Compiler 

 

The primary goal for the PACE Compiler was to optimize an input program for a wide range of 
hardware characteristics in a given platform, as identified by the PACE Characterization Tools, 
and a representative set of program inputs, represented in the form of execution profile 
information from the PACE Runtime System. We recognized early in the process that achieving 
this goal would require tight integration between high-level transformations and low-level 
transformations. This observation motivates many aspects of the PACE Compiler’s design, 
including the specification of separate platform-aware and target-aware optimizers and the query 
interface between them [1]. 

 

Many of the individual transformations proposed for the PACE Compiler have already appeared 
in past work. Their application in the PACE Compiler is novel for two reasons. First, the PACE 
implementation modified these transformations to use measured characteristics of the target 
hardware/software system. Second, the PACE Compiler design and implementation focused on 
the question of automatic selection of transformations and combinations of transformations. 
Together, these two strategies simplify retargeting the PACE Compiler for a new platform and 
re-tuning it for application or system properties. These strategies are critical for the PACE 
Compiler because we cannot know, a priori, the target platforms for the compiler. This situation 
differs from that of a vendor-produced compiler, where compiler releases are tightly matched to 
specific processor releases. 

 

Novel Contributions: 
 

• The use of characterization information to drive high-level transformations is novel. In 
prior art, platform constants are usually hard-coded in compiler files. PACE built a 
compiler environment in which platform constants were obtained by automatic tests that 
measured the resource characteristics of a target system through the lens of the native 
platform compiler. In [4], we observed that the use of these measured characteristics could 
lead to more effective code optimization than the use of publicly advertised platform 
constants. 

 

• PolyOpt includes approximation techniques that extend polyhedral analysis and 
transformation techniques to certain non-affine computations. These extensions increase 
the set of codes that the PAO can optimize with PolyOpt. 

 

• PolyOpt includes novel algorithms that generate parametrically tiled code—loop nests 
where the tile sizes are parameters rather than fixed constants [11] [12] [13] [4]. The 
resulting code makes it easy for a runtime mechanism to adapt tile sizes to compensate for 
the actual runtime conditions [13] or for a tool external to the compiler, such as a model 
generated by machine learning techniques, to provide tile sizes. 

 

• Working with parametrically tiled loops, we developed a new approach to static estimation 
of tile sizes that significantly reduces the size of the search space. It uses the compiler to 
generate analytical lower and upper bounds on tile sizes that should be considered for 
optimality. Further, the combination of these lower bounds and the values measured by the 
PACE Characterization tools leads directly to a set of tile sizes that can be automatically 
selected by the compiler, either for use as default tile sizes or for use as a starting point for 
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searching for optimal tile sizes. We are unaware of any prior art that follows this approach 
of compiler-generated analytical bounds on tile sizes. 

 

• PolyOpt’s implementation was designed to accommodate iterative compilation [14], 
allowing the combination of empirical search and model-driven optimization. As part of 
this effort, we developed an advanced theoretical characterization and exploration of a 
large space of possible polyhedral optimizations [15]. PolyOpt’s flexibility opened the way 
for experiments that used machine-learning techniques to address the problem of selecting 
polyhedral optimizations. The space of possible combinations of transformations is 
enormous, making systematic search prohibitively expensive and causing most work in 
iterative compilation to rely on either manually constructed heuristics or inefficient 
automatic techniques such as genetic algorithms. To improve on search quality without 
paying the price of genetic algorithms, we applied machine-learning techniques to build 
models that predict the performance of transformed code from a characterization of the 
program’s dynamic behavior [16]. This work holds the promise of making good selections 
of polyhedral transformations for a region of code in an efficient way 

 

• The PolyOpt team also considered the problem of selecting tile sizes for arbitrary programs 
by sampling in the full space of tile sizes. We developed a technique that builds a 
performance predictor for a specific program, using statistical machine learning to train an 
artificial neural network to predict the distribution of execution times. This technique 
improves significantly over the variability of random search [12]. 

 

• The use of dependence information from polyhedral analysis to guide non-polyhedral 
transformations is, in practice, novel. In current practice, polyhedral tools are strictly 
segregated from non-polyhedral parts of the optimizer. While the polyhedral frameworks 
are quite precise, they are only applicable to a restricted set of code structures. Non- 
polyhedral frameworks are more robust with respect to code structures, but usually employ 
lower-precision analysis techniques. 

 

In the PAO, we showed how to convert PolyOpt’s dependence polyhedra into the 
dependence vectors that are more commonly used in non-polyhedral frameworks, even for 
code structures that do not match the traditional requirements of polyhedral frameworks. We 
are unaware of any prior work that has taken this approach. This approach produced 
improvements in the dependence analysis performed in the non-polyhedral optimizer in 
ROSE, which were used in the PACE Compiler to check data dependence legality for tiling 
and unrolling. 

 

• The PAO→TAO query mechanism allowed us to build an unroll-and-jam transformation 
that used feedback from the low-level compiler to pick better unroll factors that would be 
otherwise possible. Prior implementations of unroll-and-jam have had problems selecting 
good unroll factors. Too large a factor leads to problems in code generation that erase many 
of the benefits of unroll-and-jam. Too small a factor leaves additional performance 
unrealized. The practical difficulty that arises in building a feedback mechanism to guide 
unroll-factor selection is that the dependence analysis necessary for legality analysis on 
unroll-and-jam can be performed more effectively as a near-source level of abstraction (in 
the PAO) while the detailed cost estimates necessary for profitability analysis can be 
performed more effectively in a near-assembly level of abstraction (in the TAO). 
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To address this challenge, we leveraged the unique PAO→TAO query mechanism to 
provide the PAO with fine-grained cost-estimates on actual code sequences that result from 
various unroll factors. To obtain an estimate, the PAO creates a synthetic function for a 
specific unroll configuration, and then passes it to the TAO via the PAO→TAO IR 
translator. The TAO then optimizes the code and estimates the cost of the synthetic 
function along multiple dimensions (register spills, instruction counts), reporting the cost 
back to the PAO. The PAO repeats this process for multiple unroll configurations, enabling 
the PAO to converge on a set of optimized unroll factors. To our knowledge, this is the first 
time that anyone has built a system that uses a feedback cycle between high-level and low- 
level optimizers. We are unaware of any prior systems that use this kind of internal, 
introspective, cross-optimization feedback in a systematic way. 

 

• The vectorization pass that we built for LLVM is a new capability—both a new capability 
for LLVM, which had no systematic vectorization facility, and a new idea in that it used 
dependence analysis and alias results from the high-level optimizer (from the polyhedral 
optimizer, translated into the non-polyhedral framework and then translated by the 
PAO→TAO IR Translator into LLVM IR) in low-level vectorization. The AACE Program 
specifically highlighted vectorization as a key capability; this cross-tool implementation 
directly addresses that specific issue. 

 

The implementations of Operator Strength Reduction and the Chaitin-Briggs register allocator 
did not create significant new algorithmic results. They do, however, improve the code 
optimization capabilities of LLVM, a major open-source compiler infrastructure. 
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4.2 The PACE Runtime 
 

The PACE Runtime measurement subsystem, integrated into the HPCToolkit performance tools, 
enables us to measure and attribute program performance characteristics on multicore systems to 
a wide array of processor architectures. This software is in wide use for measurement and 
analysis of application performance bottlenecks. 

 

Preliminary tests of the blame shifting approach for pinpointing bottlenecks in thread-level 
parallelism enabled us to pinpoint and diagnose performance losses in an algebraic multigrid 
solver (AMG2006) on a multicore CPU and in a UHPC unstructured shock hydrodynamics code 
(LULESH) on a hybrid CPU+GPU system. Work on OpenMP is continuing under separate 
support from the DOE Center for Scalable Application Development Software to relate program 
measurement data back to a source-code level view from an implementation-level view. 
Reconstructing a source-level view requires integrating different runtime views of the main 
program and worker threads. Work to generalize our prototype for these capabilities to support an 
arbitrary OpenMP runtime system is ongoing. We expect that an eventual product of this work 
will be a new tools API for the OpenMP standard. Work with the OpenMP standards committee 
to define a standard application-programming interface for tools is ongoing as of this writing. A 
preliminary manuscript describing support for using blame shifting to analyze performance of 
OpenMP was written; at this writing, it is currently under revision. 

 

The capabilities for identifying rate-limiting factors based on HPCToolkit’s measurements using 
hardware performance counters have proven popular and the PerfExpert tool developed at UT 
and Texas State for this purpose has attracted significant interest. We aim to continue 
collaboration with our external collaborators on PerfExpert and extend this work to emerging 
manycore systems, including the Intel MIC. 
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4.3 The PACE Characterization Tools 
 

The PACE Characterization Tools differ somewhat from the other subprojects, in that the first 
release of the tools underwent rigorous testing by the AACE testing teams. As part of the 
transition from phase one to phase two, we provided the testing teams with a release of these 
tools, in a format designed to plug directly into their internal testing harness. The AACE testing 
teams ran the PACE Characterization Tools on a set of systems that were unknown to us and 
measured the accuracy of the results. The PACE Characterization Tools passed the phase one 
trials, where the minimal passing score was set to 75% accuracy, under metrics defined by each 
of the AACE testing teams. Most of the individual microbenchmarks from PACE scored better 
than 90% accuracy. 

 

The PACE Characterization Tools represent a significant advance over the prior state-of-the art 
in two respects. First, the tools provide greater coverage, both in terms of the number of 
characteristics measured and the number of systems across which the tools were demonstrated, 
than prior systems. Second, the automated analysis tools embedded in the microbenchmarks go 
beyond what has been applied in other projects. 

 

To focus on the memory-hierarchy benchmarks, the best-known and most widely cited work is 
the X-Ray system developed by Pingali et al. [17]. The PACE Tools measure more memory 
parameters than the X-Ray tools. The X-Ray tools do not measure TLB effects. The X-Ray tools 
rely on superpages—a distinctly non-portable feature—to measure associativity and capacity in 
physically mapped caches, which include most of the upper level caches on modern 
microprocessors. The PACE Tools reliably find capacities in physically mapped caches using 
only portable (e.g., POSIX) features. Like X-Ray, the PACE approach would need to use 
superpages to discover associativity in physically mapped caches. 

 

Two major advances in the Characterization Tools work are the robust analysis developed for the 
memory-hierarchy measurements, and the clear separation and isolation of effects. 

 

Thresholds and Heuristics: Based on a close reading of prior papers and, in some cases, the 
code for these prior systems, it is clear that their analysis techniques relied on some combination 
of heuristics and thresholds—such as “a jump of ten percent in latency signals a new level in the 
memory hierarchy”. Our experience in testing the PACE Tools across more than twenty systems 
showed that such heuristics were unreliable. The ratio of operation latencies, such as a level-one 
cache hit to a level-two cache hit, change significantly across different systems and different 
generations of hardware. This effect makes any particular threshold suspect; in fact, for every 
threshold that we tried in the cache capacity benchmark, we found a system where that threshold 
did not work. 

 

In contrast, the PACE Tools use an analytical technique based on smoothing the data and 
building a histogram to determine the number of levels present in the hierarchy, either cache or 
TLB; prior systems take the number of levels as a given. Then, they go back to the original data 
and fit it with a step function of the appropriate number of levels, which represents the ideal and 
expected response curve. The analysis discovers the number of levels in the cache from the 
latency, and then fits a model to the data. 

 

These techniques can produce surprising results. For example, the PACE Tools characterize the 
level-three cache of a Power7 processor as comprising a small level-three cache and a much 
larger and slower level-four cache. Careful reading of the Power7 literature shows that the level 



 

35 
Approved for public release; distribution unlimited 

three cache is managed as a core-local adaptive victim cache, coupled with a shared cache. The 
level-three cache is implemented as a distributed cache with a non-uniform access time. Thus, 
the model suggested by the PACE Tools is a surprisingly accurate portrayal of a very complex 
cache structure. 

 

Isolation of Effects: We found that modern memory hierarchies are sufficiently complex that 
the effects of different memory structures obscure each other. To combat this confusion, the 
PACE Characterization Tools carefully isolate each kind of behavior. 

 

For example, the level-two cache and the TLB on an Intel Nehalem chip both cover 256 KB of 
RAM. For a variety of reasons, cache latency begins to rise at about 228 KB, so a combined test, 
such as the one that X-Ray uses (even with superpages) will produce a muddled picture of 
behavior between 200 KB and 300 KB. By carefully isolating cache behavior from TLB 
behavior, the PACE Tools obtain a clear picture of each, with the result that they discover cache 
latency rising at 228 KB and TLB latency jumping at 256 KB. 

 

A similar confusion arises in some of the AMD x86 chips, where the parameters of the cache 
system cause false positives in the TLB test. As detailed in [18] and [19], we developed a simple 
extension to the testing methodology that exposes such false positives. 

 

Sharing:  The major shortcoming of the implemented PACE Characterization Tools is that they 
do not address well the effects of sharing in a multicore environment. Clearly, load from other 
executing programs can affect the availability of resources, such as thread-level parallelism, 
cache capacity in a shared cache level, or communications bandwidth. Before characterization- 
driven optimization can reach its full potential, we need methods to measure effective capacities 
under varying system loads. 

 

Two major issues arise in making such measurements. First, we need a way to quantify and 
control system load. That problem was clearly beyond the scope of the PACE Project. Second, the 
microbenchmarks need an interface that allows them to understand and control the placement of 
specific threads. The POSIX API does not provide clean and reliable mechanisms to describe 
thread placement and to control it. 

 

Using thread affinity interfaces that are not included in the POSIX APIs, we were able to build 
microbenchmarks that derived an accurate picture of sharing within the cache hierarchy of a 
multicore processor. The tool could discover which levels of cache were dedicated to a single 
core and which were shared among cores. It could discern how many cores shared a specific 
level of cache. The tool, however, could not be built within the stricture of the POSIX API. 
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4.4 The PACE Machine Learning Effort 
 

The PACE Machine Learning effort produced models that demonstrate a high-degree of 
accuracy in predicting execution times, under limited circumstances. The accuracy of the cross- 
machine predictions (same application, different memory system configuration) is quite good— 
approximately 95% of runs were predicted within 5% accuracy. We are unaware of any other 
studies that produced similar accuracy. Unfortunately, most of the literature on predicting tile 
sizes and predicting execution times as a technique to guide compiler-based optimization has 
focused on measuring changes in optimization effectiveness, rather than reporting on the 
effectiveness of the learning regime. 

 

The next step in that research, predicting execution times for an application from the 
performance of another application, should be pursued. Successful models for that problem could 
be extremely useful as drivers for optimization decisions: either as predictors of good strategies 
or as evaluators in a feedback-directed optimization scheme. 
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4.5 Students Supported by the PACE Effort 
 

The PACE Project provided full or partial support for the following graduate students: 
 

1.   Raj Barik (Rice) 
 

2.   Thomas Barr (Rice) 
 

3.   Brian Bue (Rice) 
 

4.   Milind Chabbi (Rice) 
 

5.   Varadharajan Chandran (OSU) 
 

6.   Sanjay Chatterjee (Rice) 
 

7.   Karthiyayini Chinnaswamy (OSU) 
 

8.   Jason Eckhardt (Rice) 
 

9.   Nanzin Fauzia (OSU) 
 

10. Ashwin Gururaghavendran (OSU) 
 

11. Thomas Henretty (OSU) 
 

12. Justin Holewinski (OSU) 
 

13. Kishor Kommmanaboina (OSU) 
 

14. Kirthi Muntimadugu (OSU) 
 

15. Mohanish Narayan (OSU) 
 

16. Scott Novich (Rice) 
 

17. Patrick O’Driscoll (Rice) 
 

18. Jeffrey Sandoval (Rice) 
 

19. Kamal Sharma (Rice) 
 

20. Sanket Tavarageri (OSU) 
 

21. Anna Youssefi (Rice) 
 

22. Lily Zhang (Rice) 
 

23. Ryan Zhang (Rice) 
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5. CONCLUSIONS 
 

The PACE Project designed a sophisticated compilation environment that would rely on 
characterization-driven optimization, feedback-directed optimization, and automatic selection of 
transformations to provide high-quality code optimization in a tool that was easy to retarget to 
new computer systems [1]. The PACE Project produced a significant body of software, described 
in Section 3.5. Many of these components can be used independent of the PACE System. 

 

• Both PolyOpt and the PAO→TAO IR Translator (also known as the ROSE-to-LLVM IR 
Translator) are available as part of the ROSE compiler infrastructure. 

• Some of the components of the PACE Runtime System are included in the ROSE 
infrastructure and the HPCToolkit system. 

• The operator strength reduction and register allocation components developed for LLVM 
plug directly into in a standard LLVM installation 

 

All of these components are available under “Software” at http://pace.rice.edu. 
 

As we discussed in Section 2.3, the PACE Project was an attempt to address a number of 
questions about the design of compilation environments and tools. 

 

1.   Can we simplify the task of building and deploying high-quality optimizing compilers for 
new computer systems? 

 

The PACE System showed that we can design sophisticated environments that employ 
strategies which should automate large parts of retargeting and retuning an optimizing 
compiler. The PACE implementation effort did not reach the stage of proving the 
efficacy of that design. We believe, however, that the prospects for characterization- 
driven optimization, feedback-directed optimization, and automatic selection of 
transformations are strong. 

 

2.   Can we reduce the effort required to achieve good application performance on those 
systems? 

 

If we take current practice in high-performance computing as a baseline, then it is clear 
that we can simplify performance tuning and improve compiler effectiveness, both of 
which should decrease the effort required to achieve good application performance. 

 

PACE, however, did not reach the stage of providing experimental results that can 
quantify the improvement in performance attainable with the kinds of techniques it 
embodied; equally important, it did not conduct human studies to quantify changes in 
productivity. 

 

3.   Can a characterization-driven approach to compiler-based code optimization yield both 
portability and performance? 

 

At this point, we know of a number of significant optimizations—that is, optimizations 
that play a key role in determining performance on modern computer systems—that can 
be formulated in a parameterized, characterization-driven way. The PACE work on 
parametric loop tiling is a good example; it combines parametric code generation with 
good static bounds (derived from both system characterization and performance metrics 
from prior runs) and runtime techniques to adjust for dynamic conditions. The PACE 

http://pace.rice.edu/
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work on feedback-directed unroll-and-jam relies on measurements of the effective 
number of live ranges that the native compiler could support.  These techniques use 
characterization results as fundamental inputs to their decision-making processes. 

 

Another large opportunity for characterization-driven optimization lies in the compiler’s 
back end. Much work has been done on retargetable instruction selection—porting the 
compiler to a new instruction set architecture. Less algorithmic work and less practical 
implementation work has focused on retargeting the other hard problems in code 
generation: register allocation and instruction scheduling. Both of these problems appear 
amenable to the characterization-driven approach. 

 

4.   Can we measure performance-critical system characteristics in a portable way, with 
enough accuracy to use in a characterization-driven optimization system? 

 

The PACE Characterization Tools demonstrate that we can measure many system 
characteristics in a portable and reasonably precise way.  To be sure, the AACE 
restriction to POSIX APIs for portability limited the scope of what PACE could measure. 
Without superpages, we cannot measure the associativity of physically mapped caches. 
Without support for thread affinity, we can accurately measure the behavior of some 
shared resources. However, interfaces for these kinds of facilities are still evolving. We 
expect that standards will emerge to make these measurements possible. 

 

The lesson of the PACE Characterization effort is that, with appropriate care and 
creativity, we can accurately measure many performance-critical parameters of complex 
systems—particularly, parameters that matter to an optimizer. 

 

5.   To what extent can we use feedback and adaptation — either runtime performance 
measurement or introspective insights from compiler components — to improve the 
results of characterization-driven optimization? 

 

The PACE implementation effort did not reach the stage where we could measure 
improvements from runtime performance feedback. PACE did demonstrate, for what we 
believe is the first time, that introspective feedback from one compiler component to 
another could be used to drive optimization decisions in another, and that this process 
produced better performance than a static decision procedure. 

 

The PAO→TAO Query mechanism was used to guide selection of unroll factors; the 
feedback provided by the TAO allowed the PAO to avoid generating code that caused 
excessive register spilling or increased operation counts. A publication describing this 
experiment is in preparation. The publication will be posted on the PACE Web site 
(http://pace.rice.edu) under "Publications". 

 

6.   What kinds of runtime support are necessary to achieve reasonable application 
performance on modern computing systems? 

 

The PACE Project provided partial answers to this question. Clearly, before we can 
achieve reasonable application performance, we must understand application 
performance. Much of the PACE Runtime System effort was directed at improving our 
ability to understand runtime performance and to provide that information to the 
programmer or to the compiler. The PACE System did not reach the maturity to provide 
experimental measurements of how much benefit accrued from using that knowledge in 
optimization. 
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The PACE experience also suggests that optimization for modern computing 
environments must have a component that can adapt application behavior to runtime 
conditions. The PACE design included an API environments adaptation [1]; the PACE 
Compiler developed parametric loop tiling to target that API. This technique is a 
promising area for future work. 

 

7.   Can machine-learning techniques predict optimization parameters as well as, or better 
than, measured performance characteristics? 

 

The PACE Machine Learning effort demonstrated the ability to generate models capable 
of high-fidelity predictions of program performance. Those predictions can, in turn, be 
used to discover good optimization parameters, such as tile sizes for parametric loop 
tiling. More work remains to show that these ideas generalize to other problems. 

 

Summary: The PACE Project suggests that the characterization-driven optimization can 
produce an optimizing compiler that delivers high-quality code optimization and automates some 
of the effort of retargeting and retuning the compiler. Unfortunately, the PACE Project ended 
before the tools reached the level of maturity where we could quantify those results. 
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GLOSSARY OF ACRONYMS 
 

Acronym Definition 
AACE 

 
AAP 
AFRL 
API 
AST 
DARPA 
ISA 
ML 
PACE 
PAO 
PolyOpt 
POSIX 
RTS 
Sage 
SCoP 
SSA 
TAO 

Architecture-Aware Compiler Environment Program, a DARPA/AFRL sponsored 
research program that include the PACE Project 
Application-Aware Partitioner Air 
Force Research Laboratory 
Application programming interface 
Abstract Syntax Tree 
Defense Advanced Projects Research Agency 
Instruction-set Architecture 
Machine Learning 
Platform-Aware Compilation Environment 
Platform-Aware Optimizer 
Polyhedral Optimizer 
Portable Operating System Interface, specified by the ISO/IEC 9945 standard. 
Runtime System 
The internal representation inside the ROSE compiler infrastructure 
Static Control Part 
Static Single Assignment form 
Target-Aware Optimizer 
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APPENDIX A: MODIFIED STATEMENT OF WORK FOR THE PACE PROJECT 
 
 
 

Platform Aware Compilation Environment 
Proposed Settlement Work 
— March 23, 2011—   

 
Overview 
This document outlines, at a high level, the tasks on which we propose spending the 
remaining dollars allocated for the PACE Project. The various tasks that we propose 
comprise a subset of the work envisioned under the original statement of work. Most are 
explicitly discussed in the PACE Phase 1 design document. 

 

At a high level, our goal is to complete those aspects of the PACE Project that make sense 
within the reduced funding. In particular, we want to bring the various infrastructure 
projects begun under PACE to the point where the code can be distributed, and to produce 
several demonstrations of key pieces of PACE technology. In particular, we want to 
demonstrate (1) the efficacy of the characterization‐driven approach to optimization and 
(2) the effectiveness of machine learning applied to one or more of the PACE machine‐ 
learning problems. 

 

All of the activities that we plan are consistent with our plans for the PACE System, as 
expressed in the original proposal, in the statement of work, and in the Preliminary Design 
Document developed for the Phase 1 Preliminary Design Review. For each major piece of 
the PACE System, we have identified a set of specific tasks that we believe to be achievable. 

 

In principle, we are deleting work that was included to satisfy the needs of the AACE Task 2 
teams or work that would exceed our available funding. Within the funding envelope, we 
have identified individual tasks that we believe should have high priority, either because 
they demonstrate AACE program objectives or they advance the state of our knowledge. 

 

Relationship to the Rough Order of Magnitude Estimate 
The tasks described in this document relate directly to the “Tasks” shown in the Rough 
Order of Magnitude estimate of our efforts. We have not allocated funds to some of the 
subprojects that are, essentially, finished (e.g., the AAP and the IR Translator, both part of 
the PACE COMPILER). 

 
TASK 1: PACE Resource Characterization 

 

Much of the focus of the Phase 1 activity in PACE was on resource characterization (RC). 
With the remaining funds, we will: 

 

1.   Convert the Phase 1 software release into a standalone tool and make it available under 
Rice University’s standard open source license on the PACE web site. We will produce a 
standalone tool that builds both the RC file needed by the PACE Compiler and a human‐ 
readable report. 

 

2.   Modify the compiler’s interface to RC information to work with the results produced by 
the standalone tool from item 1. 
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3.   Develop a microbenchmark to measure the effective capacity of a shared multicore 
cache under uniform load from all its cores. The resource characterization tools will be 
used in the compiler group’s demonstration of characterization‐driven optimization. 

 
TASK 2: PACE Compiler 
The PACE Compiler has three key components: the application‐aware partitioner (AAP), 
the platform‐aware optimizer (PAO), and the target‐aware optimizer (TAO), along with a 
tool that translates from the PAO’s intermediate representation to that of the TAO 
(hereafter called the Rose‐>LLVM IR Translator). 

 

AAP Subproject 
We consider the AAP a completed subproject. The Phase 1 prototype has enough 
functionality to allow us to continue work on the PAO and TAO. We will cease development 
work on the AAP. We will continue to use the prototype AAP in our work with the PAO and 
the TAO. We will distribute the source code for the existing AAP through the PACE web site. 

 

PAO Subproject 
The PAO is based on the Rose system, an open‐source infrastructure for analyzing and 
transforming programs in a near‐source level intermediate representation. With the 
remaining funding, we will: 

 

1.   Continue to work on the PAO optimizations that we have in progress, specifically 
polyhedral analysis and transformations, non‐polyhedral loop transformations, and 
supporting analyses and transformations. 

 

2.   Explore incremental re‐computation of program analysis results to facilitate 
exploration of different transformation sequences. 

 

3.   Release the code developed for the PAO under the open‐source license inherited from 
Rose. Our preference will be to move this code into the Rose distribution. If that proves 
difficult, we will distribute it through the PACE web site. 

 

TAO Subproject 
The TAO is based on the LLVM system, an open‐source compiler infrastructure. The TAO 
group has been working to improve optimization in LLVM, particularly optimization for 
codes similar to the ones produced by the polyhedral analysis and transformation tools in 
the PAO. With the remaining funds for this subproject, we will: 

 

1.   Complete the implementations of LLVM transformations that are currently underway, 
and undertake implementation of transformations for LLVM that are already in design. 

 

2.   Continue to modify existing LLVM passes in support of adaptation and the machine 
learning experiments. 

 

3.   Suspend all work aimed at using LLVM’s facility for generating C code. The LLVM 
community has deprecated the current LLVM‐to‐C backend. LLVM implementers 
elsewhere are building a new C backend. For the remainder of the PACE Project, we will 
conserve resources and focus on using LLVM’s native backends. 

 

We will release the code developed in the TAO project in open‐source form under the 
license inherited from the LLVM project. We will pursue moving our passes into the LLVM 
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standard distribution. PACE‐developed code for LLVM will also be available on the PACE 
web site. 

 

Rose‐>LLVM IR Translator 
We will continue to perform maintenance work on the existing translator, in support of the 
work in the PAO and the TAO. The Rose group has expressed interest in distributing this 
code; it will also be available from the PACE web site. 

 
TASK 3: PACE Runtime System 
The PACE Runtime System is designed to provide runtime support for compiler‐generated 
mappings, runtime adaptation of compiler‐generated code, and binary analysis of 
programs, along with software that measures runtime performance, attributes runtime 
costs to source code lines, and pinpoints performance and scalability bottlenecks. 

With the funds remaining in this portion of the project, we will 
1.   Continue to work on performance measurement and attribution to provide higher‐level 

metrics and information. 
 

2.   Extend the current support to the ARM processor. 
 

3.   Provide runtime support to help the compiler pinpoint performance and scalability 
bottlenecks. 

 

We will continue improvements as long as funds permit. 
 

Code developed for the runtime system will be distributed under the same open source 
license as the underlying HPCToolkit system. It will be available from the HPCToolkit web 
site, hpctoolkit.org, with a link from the PACE web site. 

 
TASK 4: PACE Machine Learning 
The PACE Machine Learning group will continue work on development, training and 
testing of offline learning engines for the problems identified as ML1, ML2, and ML3 in the 
PACE Preliminary Design Document, funds permitting. 

 

With the funds remaining in this portion of the project, we will: 
 

1.   Produce a trained engine for several variants of the ML1 problem, as well as engines for 
ML2 and/or ML3, as time and funding permit; 

 

2.   Produce software that allows more general use of the ML algorithms developed under 
PACE. 

 

We will distribute software developed for these demonstrations from the PACE web site, 
under Rice’s standard open‐source license. 
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