
Compiler Techniques for Software

Prefetching of Cache-Coherent

Shared-Memory Multiprocessors

Nathaniel McIntosch

Katherine Fletcher

Keith Cooper

Ken Kennedy

CRPC-TR96675-S

October 1996

Center for Research on Parallel Computation

Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Compiler Techniques for Software Prefetching on Cache-Coherent

Shared-Memory Multiprocessors

Nathaniel McIntosh�, Katherine Fletchery, Keith Cooper, Ken Kennedy

Department of Computer Science
yDepartment of Electrical and Computer Engineering

Rice University

Abstract

In this paper we present a comprehensive compiler framework for improving the e�ciency of compiler-
directed software prefetching on cache-coherent distributed shared-memory multiprocessors. The key
component of our work is a form of global data-ow analysis that predicts at compile-time the sets
of array references that are likely to cause coherence activity at run-time. The data-ow framework
accurately analyzes the cache behavior in a parallel program by combining array section analysis with
knowledge about the cache con�guration and an encoding of the target machine's cache coherence
protocol. Existing prefetching algorithms have problems issuing prefetches for coherence misses,
resulting in late prefetches and latency penalties. Our compiler identi�es the particular variable
references and loop iterations that cause coherence misses, and schedules prefetches for these references
farther in advance, e�ectively hiding the latency that they incur. In other situations where existing
prefetching techniques encounter di�culties, such as false sharing and many-procesor read sharing,
we use data-ow information to apply optimizations that decrease interconnect tra�c and reduce the
memory latency penalties incurred by the program.

1 Introduction

Cache-coherent shared-memory multiprocessors are an attractive platform for small- to medium-scale parallel

programming, since they provide a convenient programming model based on a hardware-supported shared ad-

dress space. Modern multiprocessors often use a distributed shared-memory (DSM) architecture, in which main

memory is divided up into modules and distributed across all of the processors; the processors are then linked

together with a high-speed interconnection network [1, 6, 17]. If a processor in a DSMmachine accesses a location

that is not already in its cache, the underlying hardware may have to send a request across the interconnect to

the processor that owns the data (and possibly other processors as well); these remote memory accesses can take

many hundreds of cycles.

Because of the penalties associated with remote memory accesses, cache utilization is a critical component of

overall performance for programs running on these machines; techniques that improve cache behavior and/or

�Corresponding author. Email: mcintosh@cs.rice.edu, phone 713-527-8101 x2731, fax 713-285-5930.

1

hide the e�ects of memory latency are an e�ective way to improve program performance.

1.1 Compiler-Directed Software Prefetching

Compiler-directed software prefetching is a hybrid hardware/software technique for hiding the latency of cache

misses [20, 22]. There are two primary components for software prefetching: hardware support for a prefetch

instruction, and a compiler that inserts prefetches into the programs it compiles.

The most successful prefetching schemes make use of advisory prefetches. This type of prefetch is essentially

a hint; the semantics of the program are unchanged if a prefetch is discarded. Prefetch instructions have the

same format and addressing mode as LOAD instructions, except that no destination register is speci�ed. When

a prefetch is executed, the memory subsystem checks to see whether the line containing the speci�ed address

is in cache, and if it is not, it begins fetching the correct line into the cache. The prefetch operation executes

asynchronously{ the processor continues to execute other instructions while the prefetch is in progress. If the

prefetch for a given data item is scheduled su�ciently far in advance of the actual load of the item, then the

location will be in cache when the actual reference occurs, avoiding any cache miss latency. In compiler-directed

software prefetching, the compiler analyzes the application program to determine the set of variable references

likely to result in cache misses at run-time. It then transforms the program, inserting a prefetch instruction

prior to any load instruction that is predicted to cause a cache miss. The compiler uses a specialized type of

software pipelining to insure that prefetch instructions are issued su�ciently far in advance of their corresponding

loads [22].

1.2 Prefetching for parallel programs

The critical di�erence between uniprocessors and DSM multiprocessors with regard to prefetching is that the

time required to satisfy a cache miss varies tremendously depending on data sharing patterns.

Existing uniprocessor prefetching strategies schedule prefetches assuming a worst-case memory latency; if the

prefetched data arrive early in such cases, the consequences are not very serious. In a DSM multiprocessor,

however, cache misses can take many hundreds of cycles; if the compiler schedules all prefetches for the worst-

case latency, data arriving too early may displace the current working set from the cache, eliminating any bene�ts

of the prefetching. In previous studies of software prefetching on multiprocessors, researchers assumed a uniform

\average" miss penalty [20, 21, 24]. This assumption was necessary because existing compilers had no accurate

way to predict coherence misses, and could not take steps to avoid coherence miss latency.

In this paper, we describe a new form of compiler analysis that predicts coherence activity at important points

within a program. The analysis identi�es the references and loop iterations that incur coherence misses, allowing

the compiler to generate prefetches for them e�ectively (see section 3.1). In addition, the analysis identi�es

and handles other situations that cause di�culties for prefetching, such as false sharing (see Section 3.2.3),

many-processor read-sharing (Section 3.2.1), and read-modify-write access patterns (Section 3.2.2).

An outline for the remainder of this paper is as follows. In Section 2.1, we specify our target programming model

and architectural assumptions. In Sections 2.3 and 2.4, we lay the groundwork for our data-ow framework,

showing how we use array section analysis to capture a parallel loop's data access patterns. In Section 2.5,

2

we give a set of conditions that predict coherence misses for reads and writes. In Sections 2.6 through 2.8, we

describe the data-ow analysis framework that realizes these conditions. In Section 3, we show how our compiler

uses the information generated by the ow analysis to improve program performance. In Section 4, we discuss

our plans for experimentally validating our techniques. Section 5 describes related research. In Section 6, we

o�er concluding remarks.

2 Description

2.1 Target architecture, programs

This work targets shared-memory, cache-coherent DSMmultiprocessors that support invalidation-based coherence

protocols [1, 6, 17]. Examples of machines that support such protocols include the Alewife machine [1], the FLASH

multiprocessor [17], and the Convex Exemplar [6].

We have chosen to target scienti�c Fortran programs, since there is a large existing base of such applications, and

since these programs often place heavy demands on the cache and memory subsystems of the machines they run

on. Our compiler accepts sequential Fortran programs that have been annotated with \DOALL" directives, along

with private/shared classi�cations for each variable. We currently require that loops use barrier synchronization

only, and we assume that the iterations of a given parallel loop are scheduled (assigned to processors) either

statically by blocks, or through the use of an a�nity scheduler [19]. Although our compiler does not currently

incorporate data distribution directives (of the sort provided in High Performance Fortran [14]), our techniques

could easily be extended to exploit information of this nature.

These restrictions and assumptions are intended to coincide with the parallel programs currently generated by

commercially available automatic parallelizers such as KAP [16] or by an advanced workstation compiler.

2.2 Invalidation-based coherence protocols

When a processor writes to a location that other processors may have cached, or when it reads a location that

another processor may have recently written, the underlying hardware takes action to ensure that all processors see

a \coherent" view of memory. In an invalidation-based coherence protocol, when a processor writes to a location,

the hardware brings an \exclusive" copy of the line containing the location into the cache and invalidates any

copies of the line on remote processors. The state of the line is marked as \exclusive", indicating that no other

processor is caching the line. A \shared" state indicates that other processors may have a copy of the line, but

the contents of all the copies are the same as in main memory. Finally, an \invalid" state indicates that the data

in the line is stale, and should not be used. Figure 1 shows an example coherence protocol state diagram.

The coherence protocol impacts prefetching in several important ways. First, coherence misses (accesses to

locations that have been invalidated since they were cached) may add signi�cantly to the total miss count.

Second, the time to retrieve a line from a remote processor's cache can be much greater than when simply

reading the line from memory. Finally, if a processor reads a line and then immediately writes the same line, the

hardware may have to issue two remote requests (one to obtain a shared copy of the line, and one to obtain an

exclusive copy of the line), delaying the write and resulting in additional network tra�c.

3

We address each of these concerns. Our analysis tracks coherence misses in addition to capacity misses; we

identify long-latency misses and issue prefetches for them farther in advance, and we issue \exclusive" prefetches

for lines that will be written in the near future.

2.3 Framework for predicting coherence misses

We have developed a global data-ow analysis method that predicts coherence activity within a parallel program.

We give a brief outline of the procedure here and then describe each component in detail in subsequent sections

of the paper. Our compiler uses array section analysis to identify portions of shared arrays accessed in speci�c

program regions (typically loop nests). We augment array sections with a parallel mapping component that

describes how a region within an array is accessed by the processors in the machine. We develop a series of

equations that compute where a particular data access will be satis�ed (from cache, from local memory, from

remote memory, from a remote cache); the sets used in the equations are in terms of the augmented array sections.

Our compiler solves these equations using interval-based data-ow analysis; the solutions to the equation for a

given control-ow graph node are then used to predict whether particular references within the node will access

data that resides in cache, and if not, whether retrieving the data will require coherence activity. To account

for cache size constraints, we enhance the analysis by incorporating an \age" function on array sections that

approximates the number of capacity misses since the section was cached. The data-ow machinery updates the

ages of each section during the analysis; when a section's age reaches a machine-dependent cuto� point, it is

eliminated from the set that contains it.

2.4 Array section analysis

Most scienti�c Fortran programs spend the bulk of their execution time performing computations on arrays in

loops; in order to characterize the memory usage patterns for these programs, the compiler must analyze how

arrays are accessed within loops. In our framework, we capture information on array access patterns using array

section analysis [3, 4, 13, 18]. When applied to a portion of the program (typically a basic block, loop, or loop

nest), array section analysis produces a summary representation of the region accessed within each array.

Each of the summaries (referred to hereafter as \sections") contains a component that describes the geometric

region accessed within the array, in addition to other bookkeeping data and information about the order in which

array dimensions are traversed. In order to be useful for our work, the sections must also capture information

on how the accesses to a given array region are distributed among the available processors at run-time. For

example, in Figure 2, the \do k3" loop nest and the \do j2" loop nest both access the region a(1:100,1:100).

In the �rst case, however, each processor accesses a block of columns, whereas in the second case, each processor

accesses a block of rows [recall that for each \doall" loop, a single contiguous block of iterations is assigned to

each processor].

To distinguish between these cases, we augment each section with a parallel mapping component, or pmap, that

contains information on how the elements within the section are accessed by the available processors at run time.

The pmap is a restricted version of the \mapping function descriptor" used in the Available Section Descriptor

abstraction [10].

4

shared exclusive
(unmodified)

invalid
RW

LR

EP

LW

RR

RW

LWLR

P

LR: local read
LW: local write request
RR: remote read request
RW: remote write request
P: prefetch
EP: exclusive-mode prefetch

RW,
RR

LR, LW

LR,
RR

LW

exclusive
(modified)

Figure 1: State diagram for example MESI cache coherence protocol

do k1 = 1, n

doall k2 = 1, 100

do k3 = 1, 100

: : : = : : : a(k3,k2) + b(k3,k2,k1) + d(k3)

enddo

enddoall

doall k4 = 1, 50

do k5 = 1, 50

: : : = : : : b(k5,k4,k1)

enddo

enddoall

enddo

do i1 = 1, 100

: : : = : : : c(i1,2)

enddo

doall j1 = 1, 100

do j2 = 1, 100

: : : = : : : a(j1,j2)

enddo

do j3 = 1, 50

: : : = : : : a(j3,j1)

enddo

enddoall

Section loop region pmap

S1 do k3 a(1:100,1:100) h2; F (j) = j : j : 1i
S2 do k3 b(1:100,1:100,1:n) h2; F (j) = j : j : 1i
S3 do k3 d(1:100) h0;>i
S4 do k5 b(1:100,1:50,1:n) h2; F (j) = j : j : 1i
S5 do i1 c(1:100,2) h0;?i
S6 do j2 a(1:100,1:100) h1; F (j) = j : j : 1i
S7 do j3 a(1:50,1:100) h2; F (j) = j : j : 1i

Figure 2: Example loop nests with section information

5

We assume an unbounded virtual processor grid with N dimensions (note that since our program model currently

permits only a single level of parallelism, N is currently 1). For a given section S1, the mapping function is of

the form hP; F i, where P and F are vectors of length N . Element i within P (denoted Pi) is the dimension of

the array mapped to grid dimension i, and element i within F (denoted Fi) is a mapping function that gives the

position(s) along the processor grid that array elements are mapped to. The mapping function is of the form

Fi(j) = (c � j + l : c � j + u : s)

where l and u are invariants, s (stride) is an integer constant, and c is either 1 or 0.1 This triplet-style formulation

allows one-to-one mappings (when l = u), one-to-many mappings (when u � l+s) and constant mappings (when

c = 0). The following picture illustrates the e�ects of an example mapping function:

F(j) = j-1:j+1

k

k-1 k k+1

array elements

virtual processors

PMAP:

There are two special-case mapping functions as well. We use the mapping function h0;?i to indicate accesses

that take place outside parallel loops, and the mapping function h0;>i to indicate that that the section in question

is accessed by all processors.

The table appearing at the bottom of Figure 2 shows each of the regions accessed within the loop nests, along

with their parallel mapping functions.

2.5 Predicting coherence misses

Figure 3 shows a program fragment containing a parallel loop, along with its corresponding control ow graph

(CFG). We would like to predict whether some or all of the array accesses in the loop will result in coherence

misses. This will depend on the access patterns within and prior to the loop (i.e. node X and its predecessors).

Suppose that a loop prior to node X writes to a section SX in the array \b", and that the doall j loop accesses

a section Sj in array \b". When the doall j loop executes, there will be coherence activity if regions of the

two sections overlap, but the common elements are cached on di�erent processors (we will formalize this notion

shortly, with the de�nition of conformability of array sections). In order to predict coherence activity, therefore,

the compiler must symbolically compare the regions of the arrays accessed within a given loop with the sections

that are likely to be in cache on entry to the loop.

Cache size is an important factor; if none of the array elements accessed within the doall j loop are resident

in cache upon entry to the loop, then there can be no coherence misses. For simplicity we ignore cache size

constraints initially; in Section 2.8 we show how we take cache size into account.

1In the mapping function that appears in Gupta and Schonberg'sASD, c can take on a rational value, provided that the function

evaluates to a range over integers. This is more general than is needed for our work.

6

2.5.1 Conformability of sections

We say that section S1 conforms to section S2 if and only if all of the following conditions are met:

1. region(S1) contains region(S2), or region(S2) contains region(S1)

2. pmap(S1) = pmap(S2)

3. if pmap(S1) = hN;F i where N > 0, then the bounds on dimension N in region(S1) are identical to the

bounds on dimension N in region(S2)

For example, in Figure 2, section S1 conforms to S7, since these two sections satisfy all of the conditions above.

However S1 does not conform to S6, since pmap(S1) 6= pmap(S6). Similarly, S2 does not conform to S4, since

the third condition above is not met.

For the purposes of this analysis, we relax the de�nition of containment to include situations where there is not

strict geometric containment, but the two regions substantially overlap (i.e. the boundaries match except for a

small constant). For example, we would treat a section S1 = a(1:1000,2:999) as containing the section S2 =

a(1:1000,1:998), and vice versa.

We use the following notation in the remainder of this paper:

notation interpretation
X � Y X conforms to Y
X 6� Y X does not conform to Y
X w Y X contains Y

2.5.2 Read outcomes

Figure 4 shows the possible outcomes for a load (read) of shared data on a DSM multiprocessor, from the

perspective of the processor issuing the load. There are three possible scenarios; the particular outcome depends

on the state of the local cache and the caches of the other processors. For a given scenario, the latency incurred

by the read is given in terms of M , the main memory latency, and N , the network latency (time required to

send a message over the interconnect). For example, in scenario \B", the processor issuing the read is accessing

a location that is currently not cached by any processor. In this scenario, the issuing processor sends a request

message to the processor whose memory contains the location in question, which then sends a message back with

the data. The scenarios shown in Figure 4 are worst-case latencies (we assume that the data being accessed is

owned by a remote processor, not the local processor).

Figure 5 gives a set of conditions that are su�cient to predict each of the three scenarios for a read operation. In

the cases where there are multiple conditions for a given outcome, they should be interpreted as being \and'ed"

together to form the condition for the outcome. In the �gure, X refers to the node containing the read we want

to analyze (note that for the remainder of this paper, the term \node" will be used to refer to a CFG node, not

to a processor within the DSM machine). The superscript notation for array sections speci�es the type of access:

Sw corresponds to a write, Sr corresponds to a read, and Srw is either a read or a write. The subscripts for

sections indicate the CFG node where the access takes place; SrX is the read operation at node X whose outcome

7

: : :X : : :

doall j = 1, n

do i = 1, n

a(i,j) = : : : b(i,j) : : :

: : :

enddo

enddoall

: : : Y : : :

doall j = 1, n loop body

X

Y

Figure 3: Parallel loop with corresponding CFG

in local
cache?

in remote
cache, excl.
state?

read from memory
on home node

read copy
from local
cache

yes

yes

no

noA

B C

changed state of remote
copy to shared; forward
value; update directory

 read
M -- local memory latency
N -- network latency

latency:
 0

latency:
 2N+M

latency:
 4N

Figure 4: Possible outcomes for a cache-coherent read (worst-case)

Scenario Conditions

A 1 a section SrwY reaches node X from some predecessor node Y , and

2 SrwY w SrX and SrwY � SrX

B 1 No SwY (s.t. SwY w SrX) reaches X for any Y

C 1 a section SwY reaches X from some predecessor Y , and

2 SwY w SrX and SwY 6� SrX

Figure 5: Conditions for predicting read outcomes

8

yes no

in other
processor’s
cache?

other proc.
has excl.
copy?

in local
cache in
excl. state?

A

B

no yes

C D

yes
no

read from
cache

acquire
excl. copy
from home
node

invalidate K shared
copies; acquire
exclusive copy from
remote node

invalidate exclusive
copy and forward
data

write
M -- local memory latency
N -- network latency
K -- degree of read sharing

latency:
 0

latency:
 2KN

latency:
 2N+M

latency:
 4N

Figure 6: Possible outcomes of cache-coherent write (worst-case)

Scenario Conditions

A 1 a section SwY reaches X from a predecessor Y , where SwY � SwX and SwY w SwX , and

2 there is no intervening section SrY such that SrY w SwX , and

3 there is no intervening section SwZ such that SwZ 6� SwX but (SwZ \ SwX) 6= ;

B 1 No section SrwY reaches X

C 1 a section SrY reaches X, where SrY w SwX , and

2 there is no intervening section SwZ such that (SwZ \ SrY) 6= ;

D 1 a section SwY reaches X, where SwY w SwX but SwY 6� SwX , and

2 there is no intervening section SrZ such that (SrZ \ SwY) 6= ;

Figure 7: Conditions for predicting write outcomes

9

we want to predict. In the �gure, the term \a section S reaches X from Y " should be interpreted as follows: a

region S of an array is accessed in node Y , and this section is still in the cache(s) of the accessing processor(s)

when node X is subsequently executed.

2.5.3 Write outcomes

Figure 6 shows the possible outcomes for a write (store) to shared data; the section being written is SwX . For

writes, the cost of some of the outcomes is no longer �xed: the latency depends on the degree of sharing prior to

the execution of the loop. In particular, if a processor tries to write a cache line that is currently read-shared by

K processors, the latency will be proportional to K.2

Figure 7 gives a set of conditions that are su�cient to predict each of the scenarios for a write operation. As

before, all of the numbered conditions for a given outcome must be satis�ed.

2.6 Interval analysis

Our data-ow framework is based on interval analysis. We refer the reader to previous works for a complete

description of the terminology and mechanics of this form of data-ow analysis [2, 8, 9, 12, 15].

Interval analysis proceeds in two steps: an \interval contraction" phase, followed by an \interval expansion" phase.

In the contraction phase, intervals are processed from innermost to outermost; an interval is only processed after

all the intervals it contains are completed. We solve a set of equations for the nodes in the current interval, and

then the nodes in the interval are summarized and collapsed into a single node. The contraction phase proceeds

until all intervals have been contracted; the �nal graph (a DAG) is then analyzed as if it were an interval. In

the expansion phase, the process is reversed: summary nodes are expanded into their original intervals and then

re-analyzed.

As with the work of Gross and Steenkiste [9] and of Granston and Veidenbaum [8], we present two sets of

equations, the �rst for computing information within an interval, and the second for collapsing the nodes in an

interval into a single summary node.

2.7 Data-ow equations

Figure 8 gives the names and de�nitions for the sets of sections used in our ow analysis. For a given basic block

n, initial values of \UREF(n)" and \CREF(n)" are computed by simply inspecting n; these initial sets are used

as the inputs to the framework. The remainder of the variables are computed during the ow analysis. In the

equations, we parameterize set names according to access type (\r" and \w" superscript notation indicates read

and written sections, respectively; an \rw" superscript indicates that the section is either read or written).

During the analysis we maintain the invariant that for every node n, UREFw(n) \ UREFr(n) = ;; if a region of

an array is both read and written within a node, then we place the region in UREFw(n) and not in UREFr(n).

Figure 9 and 10 show the data-ow equations that we solve to obtain information about coherence activity. The

2It should be noted that machines that combine a relaxed memory consistency model with an aggressive write bu�er design may

be able to hide most write latency.

10

equations in Figure 9 are computed for each of the nodes within an interval. When processing the interval, we

visit the nodes in the interval in reverse postorder; for each node, we compute the \IN" sets and then the \OUT"

sets. All sets are initially set to ;.

Note the use of the \�nc" operator in equations 4 and 8. Intuitively, X �nc Y subtracts sections in Y from X,

but removes only those sections that do not conform to the sections in X. In other words, if there is some section

S1 2 X and S2 2 Y such that (S1 \ S2) 6= ;, but S1 � S2, then S1 will not be removed from X when forming

X �nc Y . Similarly, the \�c" operator removes only the sections that do conform.

Intuitively, if a section S 2 UINr(n), then this means that the cache lines containing S will be in a shared state

(see Figure 1) on entry to node n, whereas if S 2 UINw(n), the lines containing S will be in a modi�ed state.

The \UREFr(n) � UINw(n)" term in equation 3 seems counterintuitive, but it is necessary due to the way the

coherence protocol works. If a previously written line is already in the cache in a modi�ed state when a read

takes place, the line will remain in the exclusive state (thus a section S already in UINw(n) should not be added

to UOUTr(n), even if S 2 UREFr(n)).

Figure 10 shows the data-ow equations used to summarize an interval into a single representative node. On the

left hand side of these equations, the node S refers to the summary node being created; on the right hand side

of the equations, node E refers to the exit node of the interval being summarized. The] operator is de�ned as

\loop translation"; when applied to a section within a given loop, it substitutes in the bounds of the loop for the

loop induction variable [3]. For example, in Figure 2, the section accessed on a given iteration of the \doall j1"

loop is a(j1,1:100). Applying the operation]j1 to this section will produce the section a(1:100,1:100).

Figures 11 and 12 show how the results of the ow analysis correspond to the scenarios in Figures 4 and 6; they

are analogous to Figures 5 and 7, except that the conditions have been rewritten in terms of the sets generated

by the data-ow framework.

2.8 Incorporating cache size constraints

The data-ow framework we have described thus far does not take processor cache size into account; in order for

the analysis to generate useful information, it must model capacity e�ects. For example, if the set UREFr(n)

for a given node n contains a section SrX , this tells us that the section in S was accessed some time in the past,

but not whether the section is still resident in cache on entry to node n. In this section we summarize the

modi�cations to our framework that incorporate cache size and organization. This work builds on the techniques

described in a previous paper [5].

2.8.1 Array section age

First, we introduce the concept of the \age" of an array section with respect to a particular point in the program.

We de�ne the age of a given section as the number of capacity misses since the �rst element of the section was

brought into the cache.

During the analysis, we associate age values with each of the sections in our data-ow sets. When an array

section is �rst added to one of the \OUT" sets for a node (corresponding to the point where it is �rst brought

11

Set name De�nition Remarks

UREF(n)
the sections accessed within node n that uncondi-
tionally downwardly reach the end of node n.

computed for each basic block as
part of the initial information.

UIN(n)
the sections accessed by some predecessor of node n
that unconditionally downwardly reach the start of
node n

computed during data-ow prop-
agation

UOUT(n)
the sections accessed within node n or node n's
predecessors that unconditionally downwardly reach
the end of node n

computed during data-ow prop-
agation

CREF(n)
the sections accessed in node n that conditionally
downwardly reach the end of n (i.e. sections that
may be accessed in n)

computed for each basic block as
part of the initial information.

CIN(n)
the sections accessed by some predecessor of node
n that conditionally downwardly reach the start of
node n

computed during data-ow prop-
agation

COUT(n)
the sections accessed within node n or node n's pre-
decessors that conditionally downwardly reach the
end of node n

computed during data-ow prop-
agation

Figure 8: Data-ow sets

UINr(n) =
\

p2PRED(n)

(UOUTr(p)) (1)

UINw(n) =
\

p2PRED(n)

(UOUTw(p)) (2)

UOUTr(n) = (UINr(n) [(UREFr(n) �c UINw(n))) � CREFw(n) (3)

UOUTw(n) = (UINw(n) [UREFw(n)) �nc CREFrw(n) (4)

CINr(n) =
[

p2PRED(n)

(COUTr(p)) (5)

CINw(n) =
[

p2PRED(n)

(COUTw(p)) (6)

COUTr(n) = (CINr(n) [(CREFr(n) � UINw(n))) � UREFw(n) (7)

COUTw(n) = (CINw(n) [CREFw(n)) �nc UREFr(n) (8)

Figure 9: Data ow equations computed within an interval

12

UREFr(S) =
]

loop

(UOUTr(E)) �
]

loop

(COUTw(E)) (9)

UREFw(S) =
]

loop

(UOUTw(E)) �nc

]

loop

(COUTrw(E)) (10)

CREFr(S) =
]

loop

(COUTr(E)) �
]

loop

(UOUTw(E)) (11)

CREFw(S) =
]

loop

(COUTw(E)) �nc

]

loop

(UOUTrw(E)) (12)

Figure 10: Data-ow equations for interval summarization

Scenario Conditions

A 9 SrwY in UINw(X) or UINr(X) such that SrwY w SrX and SrwY � SrX

B No SrwY in UINr(X) or in UINw(X) such that SrwY w SrX

C 9 SwY in UINw(X) such that SwY w SrX but SwY 6� SrX

Figure 11: Read outcomes based on data-ow sets

Scenario Conditions

A 9 SwY in UINw(X) such that SwY � SwX and SwY w SwX

B No SrwY in UINr(X) or in UINw(X) such that SrwY w SwX

C 9 SrY in UINr(X) such that SrY � SwX and SrY w SrX

D 9 SwY in UINw(X) such that SwY w SwX but SwY 6� SwX

Figure 12: Write outcomes based on data-ow sets

13

into the cache), we assign it an initial age value based on its volume. As the section is propagated to other points

in the program, other accesses will start to displace the section from the cache;3 when this displacement takes

place, the age of the section is incremented. Eventually the age of the section reaches a cuto�, at which point we

consider the section \dead" (i.e. totally displaced from the cache) and we remove it from the set that contains it.

We conservatively assume that cache conicts (due to limited associativity) will reduce the amount of reuse that

takes place by a �xed factor. We currently estimate the \e�ective" size of the cache (used in the analysis) by

multiplying the actual cache size by 1 � 1
2S , where S is the set associativity of the cache. More details can be

found in [5].

2.8.2 Data-ow framework modi�cations

The equations in 13 compute the same information as those in Figure 9, except that they incorporate several

important changes that take cache size into account.

First, when computing UINr(n) and CINr(n), we use the _ and ^ operators in place of [and \. _ and ^ still

form the intersection and union of their arguments, however when a given section S appears in both arguments,

the age value of S in the result set will be the maximum of the ages of S in the arguments.

Second, we introduce a new operator �, which models the \aging" e�ects of passing through a given block. Let

X be the set of sections that reaches the start of node n, and let Y be the set of sections accessed within n. To

form the set X�Y , we compute the number of capacity misses that will be caused by executing n (by computing

the volume of the set Y � (X \Y)), then \age" each of the sections in X by the resulting miss count, and �nally

remove any sections whose age values indicate that they have been displaced from the cache.

The OUT sets are then computed using the aged (\�") versions of the various IN sets (i.e. UINr
�(n), UIN

w
�(n),

CINr
�(n), and CINw

�(n)).

The equations for interval summarization are the same as those in Figure 10, except that the] operator must

take section volume e�ects into account.

3 Optimizations

In this section we show how our compiler uses the data-ow information to improve prefetching for parallel

programs. Section 3.1 outlines our strategy for prefetching of references that incur coherence misses. Section 3.2

discusses additional optimizations for false sharing and widely shared data.

3.1 Exploiting coherence miss information

Our framework provides information about the sets of references likely to cause coherence misses, but in order

to derive an e�ective prefetching strategy, our compiler combines this knowledge with dependence information

and with knowledge about the iteration space of the loop nest being optimized.

3For the purpose of age calculations, we ignore coherence misses that only change the state of a cached line from shared to

modi�ed. Only misses that cause evictions are counted when updating age values.

14

UINr(n) =
^

p2PRED(n)

(UOUTr(p)) (13)

UINr
�(n) = UINr(n) � (UREFr(n) [UREFw(n)) (14)

UINw(n) =
^

p2PRED(n)

(UOUTw(p)) (15)

UINw
�(n) = UINw(n) � (UREFr(n) [UREFw(n)) (16)

UOUTr(n) = (UINr
�(n) [(UREFr(n) � UINw(n))) � CREFw(n) (17)

UOUTw(n) = (UINw
�(n) [UREFw(n)) �nc CREFrw(n) (18)

CINr(n) =
_

p2PRED(n)

(COUTr(p)) (19)

CINr
�(n) = CINr(n) � (CREFr(n) [CREFw(n)) (20)

CINw(n) =
_

p2PRED(n)

(COUTw(p)) (21)

CINw
�(n) = CINw(n) � (CREFr(n) [CREFw(n)) (22)

COUTr(n) = (CINr
�(n) [CREFr(n)) � UREFw(n) (23)

COUTw(n) = (CINw
�(n) [CREFw(n)) �nc UREFrw(n) (24)

Figure 13: Data ow equations computed within an interval (with cache constraints)

doall j = 2, 99

do i = 1, 100

a(i,j) = : : :

b(i,j) = : : :

enddo

enddoall

doall k = 2, 99

do i = 1, 100

: : : = a(i,k) + b(k,i) : : :

: : : = a(i,k+1) + a(i,k-1)

enddo

enddoall

Figure 14: Example with coherence misses

15

doall j = 1, 100

do i = 1, 100

: : : = x(i,1)

enddo

enddoall

doall k = 1, 100

do i = 1, 100

x(i,k) = : : :

enddo

enddoall

Figure 15: Example with many-processor read-sharing

doall j = 2, 99

do i = 1, 100

a(i,j) = : : :

enddo

enddoall

doall i = 1, 100

a(i,1) = : : :

a(i,100) = : : :

enddoall

Figure 16: Example with false sharing

16

Consider the second loop nest in Figure 14. The data-ow framework will predict coherence activity for 3 of the

4 references in this nest: a(i,k+1), a(i,k-1), and b(k,i). Our compiler then further classi�es the references

into two sets: those that incur coherence misses on every loop iteration (unconditional coherence misses) and

those that incur coherence misses only on some small subset of iterations (conditional coherence misses).

3.1.1 Unconditional coherence misses

Our main mechanism for handling the long latencies of coherence misses is to issue prefetches for the references

in question farther in advance than for other data. We do this by increasing the prefetching distance for the

references. The prefetching distance for a given loop nest is the number of iterations in advance that data items

are fetched; it is dependent on the number of instructions in the loop and on the expected miss latency.

Since most loop nests contain a mixture of cache hits, coherence misses, and capacity misses, we use a double

prefetch pipeline, in which the long-latency references are prefetched farther in advance that the rest of the data.

3.1.2 Conditional coherence misses

Consider the references a(i,k+1) and a(i,k-1) in Figure 14. In the doall k loop, if processor P is assigned

iterations Kp through Kp+b, then it will read the set of elements a(1:100,Kp�1:Kp+b+1). Of these elements,

a(1:100,Kp:Kp + b) were written previously on the same processor (and thus will not cause coherence misses),

whereas the elements a(1:100,Kp � 1) and a(1:100,Kp + b+ 1) were written on a neighboring processor and

will probably result in coherence misses. This type of \nearest neighbor" communication occurs quite often in

matrix-based scienti�c programs.

In such situations, we don't want to treat all the references as long-latency misses, since coherence activity only

takes place on a subset of the iterations (and since prefetches that arrive too early may displace useful data).

Instead, our compiler applies loop peeling to isolate the coherence-causing loop iterations.

We identify peeling opportunities as follows. Given a section Sr corresponding to read reference r in CFG node

N , peeling is applicable if there is a section SwX 2 UINw(n) such that SwX 6� Sr where

1. pmap(Sr) = pmap(SwX), and

2. pmap(Sr) = hN;F i where N > 0, and

3. the bounds on dimension N in region(Sr) are equal to the the bounds on dimension N in region(SwX)

shifted by a small constant c.

If any references meet these criteria, then the compiler peels the �rst and/or last c iterations of the parallel loop,

e�ectively isolating the coherence misses within the peel loop. We use a similar process for write references.

17

3.2 Additional optimizations

3.2.1 Many-processor read sharing

As previously discussed, the worst-case latency for write misses takes place when a process needs to write a line

that is being read-shared by K di�erent processors (requiring the writing processor to wait for K invalidation

messages and acknowledgements). Figure 15 shows an example.

Consider the doall k loop in this example. Suppose that processor 1 is assigned iteration 1 of the loop. Each

time it writes a cache line in the section x(1:100,1), the hardware must invalidate all K copies of the line,

resulting in very long latency for the write. Depending on the circumstances, an advanced write bu�er might be

able to hide the latency for such a write. However due to the nature of the invalidation protocol, there would

still be considerable additional network tra�c.

One solution would be to determine the parallel nest where the line is multiply shared and apply a local inval-

idation operation following the last read of the data. This would cut the total network tra�c in half (provided

that the invalidations did not require acknowledgements) and would spread the tra�c out over a longer period

of time.

The data-ow analysis required to drive such an optimization is very similar to that presented in this paper, but

requires backward instead of forward propagation. We are unable to present the details of the analysis here, due

to lack of space.

3.2.2 Exclusive-mode prefetching

When a processor issues a prefetch for a line that is about to be written, it makes sense to fetch the line in an

exclusive (as opposed to shared) state (see Figure 1). Selecting the type of prefetch based solely on the type of

operation (load or store) is not always the best strategy, however. If a location is going to be written shortly

after being read, it pays to issue an exclusive-mode prefetch for the initial read, since exclusive ownership will be

needed for the subsequent write.

Previous researchers have studied this problem; Mowry, Lam, and Gupta developed a scheme for selecting the

prefetch mode using an algorithm in which references in a loop nest are divided into equivalence classes based on

a form of vector-space reuse analysis [20].

The information provided by our analysis framework can be used to improve on previous methods. By comparing

the array sections for a given pair of read/write references, for example, we can issue exclusive-mode prefetches

only when we know that they will be pro�table. Due to space constraints, we are unable to present the complete

details of this process.

3.2.3 False sharing

The parallel loops in our model are synchronization-free, thus we can be guaranteed that if one processor writes

an array element within a parallel loop, no other processor will read that element. With non-unit cache line sizes,

however, there may be false sharing. For references to false-shared data, prefetching may actually make matters

18

worse, not better. Figure 16 illustrates this situation.

In the �rst parallel loop (\doall j") each processor writes a block of columns of the array. In the second parallel

loop, however, each processor is assigned a chunk of the �rst and last columns in the array. This will result in

contention for the cache lines that are on the boundary between processors{ if a line is prefetched too far in

advance, it may very well be invalidated before it can be used, since another processor may be trying to write it.

Our framework provides a simple way recognize such situations: we examine all of the sections S 2 UREFw(N)

(where N is a node contained in an inner loop), and suppress prefetching for references whose sections have

mapping functions of the form pmap(S) = h1; : : :i. While this will not eliminate the false sharing, it does get rid

of the additional network tra�c and thrashing caused by the prefetching.

4 Experiments

4.1 Implementation

We have implemented the data ow framework described previously in our research compiler. Our compiler

uses Data Access Descriptors to represent array sections [3]. In addition to the multiprocessor enhancements,

the compiler fully supports uniprocessor software prefetching, including reuse analysis, loop peeling, and loop

unrolling [22]. In order to avoid having to implement an instruction-level optimizing \back end" that supports

prefetch instructions, we instead create simulated prefetches at the Fortran level: for each array \A" within the

application program, we introduce a shadow array \SA" of the same type, length, etc. The compiler then issues

prefetches using stores to the shadow array; a store to location N in the shadow array is caught by our simulator

and treated as a prefetch of location N in the actual array.

4.2 Experimental strategy

For the full version of this paper, we intend to provide an experimental study that will measure how well our

techniques work in practice, using a set of parallelized Fortran programs taken from the SPEC benchmark

suite [25]. We compare the performance of these programs when run without prefetching, with prefetching, and

with the enhanced prefetching (i.e. adding the optimizations enabled by our analysis framework).

We use an execution driven parallel architecture simulator derived from RPPT [7]. Our simulated parallel

machine consists of a series of clusters of RISC processors connected by a high speed interconnection network;

the cache, memory, and network subsystems are modeled in detail. The data collected by the simulator include

overall execution time, cache miss rates, average miss latency, total prefetches issued, useless prefetches, and late

prefetches, among others.

5 Related work

Mowry, Lam, and Gupta's work provides a study of compiler-directed software prefetching for uniprocessors

and for DSM-style shared-memory multiprocessors [20, 21, 22]. The double pipelining we use for prefetching

coherence misses is to their strategy for prefetching references that use indirection arrays. Mowry's compiler

19

analysis is limited to individual loop nests, however, and it stops short of identifying speci�c sets of references

that are likely to cause coherence misses, which prevents the compiler from tailoring the prefetching strategy for

these references.

Our interval analysis framework was inspired by that of Granston and Veidenbaum [8], which in turn was

based on the framework of Gross and Steenkiste [9]. It di�ers from the work of Granston and Veidenbaum in

several important respects. Their work was geared towards a multiprocessor without hardware support for cache

coherence, whereas we speci�cally incorporate support to hardware cache coherence in our data-ow framework.

Their techniques were designed for software-controlled local memories and not caches; they have no mechanism

for taking into account cache replacement e�ects.

The data-ow analysis we use is also related to the techniques developed by Gupta, Schonberg, and Srinivasan for

optimizing communication placement for programs running on distributed-memory multiprocessors [11]. Com-

munications placement is a fairly di�erent problem, however and analyzes the ow of values within the program,

whereas our analysis focuses on the use of locations. Their framework also does not handle resource constraints

(such as cache size) or architectural features (such as hardware coherence protocols).

6 Conclusions

Applying software prefetching on DSM multiprocessors is more di�cult than on uniprocessor machines. Cache

miss latencies vary tremendously, and artifacts of the cache coherence protocol can result in miss latencies up to

many hundreds of cycles. Such factors cause problems for existing prefetching techniques, which were originally

developed for machines with uniform miss latencies.

In this paper we have presented a new tool for addressing these challenges, in the form of a novel data-ow

framework that provides accurate predictions of coherence activity within a parallel program. This framework is

the �rst to incorporate knowledge of both the program'smemory access patterns and the important characteristics

of the cache subsystem on the target machine. We demonstrate methods for using the resulting data-ow

information to improve the e�ciency of software prefetching, including better prefetching for coherence misses,

and handling of false-shared and heavily shared data.

Our methods are designed to work in concert with existing prefetching techniques; we use the same loop trans-

formation tools (i.e. loop pipelining, peeling, and unrolling), but our compiler achieves better prefetch scheduling

by identifying and handling long-latency cache misses. We have implemented our ideas in our research compiler,

and we are in the process of conducting a simulation study to measure the e�ectiveness of our techniques in

practice.

References

[1] A. Agarwal, R. Bianchini, D. Chiaken, K. Johnson, D. Kratz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and

D. Yeung. The MIT Alewife machine: Architecture and performance. In Proceedings of the 22th International

Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 1995.

20

[2] A. V. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading,

MA, second edition, 1986.

[3] V. Balasundaram. A mechanism for keeping useful internal information in parallel programming tools: The

data access descriptor. Journal of Parallel and Distributed Computing, 9(2):154{170, June 1990.

[4] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In Proceedings of the

SIGPLAN '86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.

[5] K. Cooper, K. Kennedy, and N. McIntosh. Cross-loop reuse analysis and its application to cache

optimizations. In Proceedings of the Ninth Workshop on Languages and Compilers for Parallel

Computing, San Jose, CA, August 1996. Springer-Verlag (Available on-line prior to publication at

ftp://cs.rice.edu/public/mcintosh/lcpc96paper.ps.gz).

[6] CONVEX Computer Corporation. Exemplar Architecture. CONVEX Press, Richardson, Texas, �rst edition,

1993.

[7] Sandhya Dwarkadas, John R. Jump, and James B. Sinclair. Execution-driven simulation of multiprocessors:

Address and timing analysis. In Journal of Transactions on Modeling and Computer Simulation, October

1994.

[8] E. Granston and A. Veidenbaum. Detecting redundant accesses to array data. In Proceedings of Supercom-

puting '91, Albuquerque, NM, November 1991.

[9] T. Gross and P. Steenkiste. Structured dataow analysis for arrays and its use in an optimizing compiler.

Software|Practice and Experience, 20(2):133{155, February 1990.

[10] M. Gupta and E. Schonberg. A framework for exploiting data availability to optimize communication. In

Proceedings of the Sixth Workshop on Languages and Compilers for Parallel Computing, Portland, OR,

August 1993.

[11] M. Gupta, E. Schonberg, and H. Srinivasan. A uni�ed data-ow framework for optimizing communication.

In Proceedings of the Seventh Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY,

August 1994.

[12] R. v. Hanxleden. Compiler Support for Machine-Independent Parallelization of Irregular Problems. PhD

thesis, Dept. of Computer Science, Rice University, December 1994.

[13] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. IEEE

Transactions on Parallel and Distributed Systems, 2(3):350{360, July 1991.

[14] High Performance Fortran Forum. High Performance Fortran language speci�cation. Scienti�c Programming,

2(1-2):1{170, 1993.

[15] K. Kennedy. A survey of data ow analysis techniques. In S. Muchnick and N. Jones, editors, Program Flow

Analysis, pages 5{54. Prentice-Hall, 1981.

21

[16] Kuck & Associates, Inc. KAP User's Guide. Champaign, IL 61820, 1988.

[17] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simon, K. Gharachorloo, J. Chapin, D. Nakahira, J. Bax-

ter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stanford FLASH multiprocessor. In

Proceedings of the 21th International Symposium on Computer Architecture, April 1994.

[18] Z. Li and P. Yew. E�cient interprocedural analysis for program restructuring for parallel programs. In

Proceedings of the ACM SIGPLAN Symposium on Parallel Programming: Experience with Applications,

Languages, and Systems (PPEALS), New Haven, CT, July 1988.

[19] E. Markatos and T. LeBlanc. Using processor a�nity in loop scheduling on shared-memory multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 5(4):379{400, April 1994.

[20] T. Mowry. Tolerating Latency Through Software Controlled Data Prefetching. PhD thesis, Dept. of Computer

Science, Stanford University, March 1994.

[21] T. Mowry and A. Gupta. Tolerating latency through software-controlled prefetching in shared-memory

multiprocessors. Journal of Parallel and Distributed Computing, 12(2):87{106, June 1991.

[22] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching. In

Proceedings of the Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-V), pages 62{73, Boston, MA, October 1992.

[23] M. Papamarcos and J. Patel. A Low Overhead Coherence Solution for Multiprocessors with Private Cache

Memories. In Proceedings of the 11th International Symposium on Computer Architecture, pages 340{347.

IEEE, 1984.

[24] D. Tullsen and S. Eggers. Limitations of cache prefetching on a bus-based multiprocessor. In Proceedings of

the 20th International Symposium on Computer Architecture, San Diego, CA, May 1993.

[25] J. Uniejewski. SPEC Benchmark Suite: Designed for today's advanced systems. SPEC Newsletter Volume

1, Issue 1, SPEC, Fall 1989.

22

