
SCC-Based Value Numbering

Keith Cooper

Taylor Simpson

CRPC-TR95636-S

October 1995

Center for Research on Parallel Computation

Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

SCC-Based Value Numbering

Keith D. Cooper

L. Taylor Simpson

Value numbering is an optimization that assigns numbers to values in such a way that two values are assigned the
same number if and only if the compiler can prove they are equal. When this optimization discovers two computations
that produce the same value, it can (under certain circumstances) eliminate one of them. There are two competing
techniques for proving equivalences: hashing and partitioning. The hashing techniques are easy to understand and
implement, and they can easily handle constant folding and algebraic identities (i.e., x+0 = x). Their prime drawback
is that they are not global techniques. The partitioning techniques are global, but they cannot easily handle constant
folding and algebraic identities. As a result of their shortcomings, both of these techniques can fail to discover some
crucial equivalences. In this paper, we describe a new technique for assigning value numbers that combines the
advantages of both techniques { it is easy to understand and implement; it can easily handle constant folding and
algebraic identities, and it is global. We refer to this new technique as SCC-based value numbering because it is
centered around the strongly connected components of the static single assignment graph. We will prove that our
technique always �nds at least as many equivalences as hashing or partitioning, and experimentally compare the
improvements made in the context of an optimizing compiler.

1 Introduction

Value numbering is a code optimization designed to discover and eliminate redundant computations from a

program. Although the name was originally applied to a method for improving single basic blocks, it is now

used to describe a collection of optimizations that vary in power and scope. The compiler can only assign

two expressions the same number if it can prove that they always produce equal values in their respective

contexts. Two techniques for proving this equivalence appear in the literature: hash-based methods and

partitioning methods. Both are described in Section 2.

Each of these techniques has both advantages and disadvantages. The hash-based approach is easy to

understand and implement, and it can easily handle constant folding and algebraic identities. The technique

can assign value numbers consistently over an entire routine, but is not global. This will be described in

detail in Section 2.1. The partitioning techniques have the advantage of being global, but they are more

di�cult to implement and they are di�cult to extend to handle constant folding and algebraic identities.

In this paper, we describe a new value numbering technique that combines the advantages of hash-based

and partitioning techniques. Because the algorithm is centered around the strongly connected components

(SCCs) of the routine's static single assignment (SSA) graph, we call it SCC-based value numbering. It is

a global technique that is easy to understand and implement, and handles constant folding and algebraic

simpli�cation.

2 Previous Work

2.1 Hash-Based Value Numbering

Cocke and Schwartz describe a local technique that uses hashing to discover redundant computations and

fold constants [7]. The algorithm was apparently discovered by Balke and his colleagues at CSC in the late

1960s. Each unique value is identi�ed by its value number. Two computations in a block have the same

value number if they are provably equal. This technique and its derivatives are called \value numbering."

Authors address: Rice University, 6100 South Main Street, Mail Stop 41, Houston, TX 77005. Address all correspondence to

Taylor Simpson, lts@cs.rice.edu

This research has been supported by ARPA and by IBM Corporation.

1

The algorithm is relatively simple. In practice, it is very fast. For each instruction in the block, it hashes

the operator and the value numbers of the operands to obtain the unique name that corresponds to its value.

If the value has already been computed in the block, it will already exist in the table. The recomputation

can be replaced with a reference to the earlier computation. Any operator with known-constant arguments is

evaluated and the resulting value used to replace any subsequent references. The algorithm is easily extended

to account for commutativity and simple algebraic identities without a�ecting its complexity.

As originally described, the technique works for single basic blocks. It can also be applied to larger scopes

within a routine [5]. The most powerful of these approaches operates on SSA form [8]. Blocks are processed

in reverse postorder to guarantee that all of a block's predecessors through non-back edges are processed

before the block itself. The algorithm analyzes the �-nodes in a block only if there are no incoming back

edges. A �-node can be eliminated if it is meaningless|all its parameters have the same value number|or if

it is redundant|it computes the same value number as another �-node in the block. At each instruction, the

method overwrites each SSA name with its value number. After processing a block, it visits each successor

block and updates any �-node inputs that come from the current block. This algorithm is e�cient, with

an expected running time of O(N), where N is the number of SSA names. Despite its simplicity and

e�ectiveness, this is not a global algorithm because it cannot handle values that travel through back edges

in the control-
ow graph (CFG).

2.2 Value Partitioning

Alpern, Wegman, and Zadeck presented a technique that uses a variation on Hopcroft's DFA-minimization

algorithm to partition values into congruence classes [3, 1]. It operates on the SSA form of the routine.

Two values are congruent if they are computed by the same opcode, and their corresponding operands are

congruent. For all legal expressions, two congruent values must be equal. Since the de�nition of congruence

is recursive, there will be routines where the solution is not unique. A trivial solution would be to set each

value in the routine to be congruent only to itself; however, the solution we seek is the maximal �xed point

{ the solution that contains the most congruent values.

Initially, the partition contains a congruence class for the values de�ned by each operator in the program.

The partition is iteratively re�ned by examining the uses of all members of a class and determining which

classes must be further subdivided. This process runs in O(E log2N) time, where N and E are the number

of nodes and edges in the SSA graph. After the partition stabilizes, the registers and �-nodes in the routine

are renumbered based on the congruence classes. Because the e�ects of partitioning and renumbering are

analogous to those of value numbering described in the previous section, we think of this technique as a form

of global (or intraprocedural) value numbering.

A X � Y

B Y �X

C A� B

D B �A

X0 1
Y0 1
while (: : :)

X1 �(X0; X2)
Y1 �(Y0; Y2)
X2 X1 + 1
Y2 Y1 + 1

Improved by Hash-Based Techniques Improved by Partitioning Techniques

Figure 1 Comparing the Techniques

2

Click presents an extension to value partitioning that includes constant folding, algebraic simpli�cation,

and unreachable code elimination [6]. He presents two versions of the algorithm. The straightforward version

runs in O(N2) time, and the complex version runs in O(E log2N) time, where N and E are the number of

nodes and edges in the routine's intermediate representation graph. His intermediate representation contains

the edges in the SSA graph plus some edges used for control dependences. The complex version can miss

some congruences between �-nodes that will be proven congruent by the straightforward algorithm. The

problem occurs when the operands of a �-node are assumed congruent and later proven not congruent. When

the class containing the operands is split into two pieces, the algorithm arbitrarily places the �-node in one

of the pieces. Thus, another �-node with the same operands might be placed in the other piece.

2.3 Comparing the Techniques

Assume that X and Y are known to be equal in the code fragment in the left column of Figure 1. Then

the partitioning algorithm will �nd A congruent to B and C congruent to D. More careful reasoning would

show that they are not just congruent by pairs, but also that they all have the value zero. Unfortunately,

partitioning cannot discover that fact. On the other hand, the hash-based approach will easily conclude that

if X = Y then A, B, C, and D are all zero.

The critical di�erence between the hashing and partitioning algorithms identi�ed by this example is their

notion of equivalence. The hash-based approach proves equivalences based on values, while the partitioning

technique considers only congruent computations to be equivalent. The code in this example hides the

redundancy behind an algebraic identity. Only the techniques based on value equivalence will discover the

common subexpression here.

Now consider the code fragment in the right column of Figure 1. If we apply any of the hash-based

approaches to this example, none of them will be able to prove that X1 is equal to Y1. This is because at the

time a value number must be assigned to X1 and Y1, none of these techniques have visited X2 or Y2. They

must therefore assign di�erent value numbers to X1 and Y1. However, the partitioning technique will prove

that X1 is congruent to Y1 (and thus X2 is congruent to Y2). The key feature of the partitioning algorithm

which makes this possible is its initial optimistic assumption that all values de�ned by the same operator

are congruent. It then proceeds to disprove the instances where the assumption is false. In contrast, the

hash-based approaches begin with the pessimistic assumption that no values are equal and proceeds to prove

as many equalities as possible.

3 SCC-Based Value Numbering

The above comparison suggests a need for a value numbering algorithm that combines the features of the

hash-based and the partitioning techniques. Such an algorithmwould combine the ability to perform constant

folding and algebraic simpli�cation with the ability to make optimistic assumptions and later disprove them.

SCC-based value numbering is simpler to implement than value partitioning, and it runs inO(N�D(SSA))

time, where N is the number of SSA names, and D(SSA) is the loop connectedness of the SSA graph. The

loop connectedness of a graph is the maximum number of back edges in any acyclic path. This number can

be as large as O(N); Knuth showed that, for control-
ow graphs of real Fortran programs, it is bounded, in

practice by three [13]. We are concerned with the loop-connectedness of the SSA graph; we also expect it to

be small. In our test suite, the maximum number of iterations required by the SCC algorithm is four.

We will �rst present a simpli�ed version, called the RPO algorithm, that is easier to reason about. We

will prove the correctness and time bounds for this algorithm, and then we will present SCC-based value

numbering as an extension with the same asymptotic complexity. In practice, it is more e�cient than the

RPO algorithm.

3

for all SSA names i
VN[i] >

repeat
done TRUE

for all blocks b in reverse postorder
for all de�nitions x in b

temp lookup(x:op;VN[x[1]];VN[x[2]]; x)
if VN[x] 6= temp

done FALSE

VN[x] temp
Remove all entries from the hash table

until done

Figure 2 The RPO Algorithm

3.1 The RPO Algorithm

The algorithm in Figure 2 is called the RPO algorithm because it operates on the routine in reverse postorder.

We will assume for simplicity that all de�nitions in the routine are of the form x y op z, where op can

be any operation in the intermediate representation or a �-node. Let x[i] represent the ith operand of the

expression de�ning x, and x:op represent the operator that de�nes x. Additionally, we say that x[i] is a back

edge if the value
ows along a back edge in the CFG. The VN array maps SSA names to value numbers.

Each value number represents a set of SSA names (i.e., those names with the same entry in the VN array).

Therefore, a value number is itself an SSA name. For clarity, we will surround an SSA name that represents

a value number with angle brackets (e.g., hxi). The lookup function searches a hash table for the expression

VN[x[1]] x:op VN[x[2]]. If the expression is found, it returns the name of the expression. Otherwise, it adds

the expression to the table with name hxi.

The RPO algorithm computes a sequence of equivalence relations, �=i, that partition the set of SSA names.

We say that x �=i y if and only if after the ith iteration of the RPO algorithm VN[x] = VN[y].

i = 0; x �=0 y 8x; y

i > 0; x �=i y i�

8><
>:

x:op = yop

x[e] �=i y[e]; 8x[e] that are non-back edges

x[e] �=i�1 y[e]; 8x[e] that are back edges

We refer to a partition by the equivalence relation that produces it. We say that one partition is a

re�nement of another (�=i � �=j) if and only if there are no congruences in �=i that are not in �=j (i.e.,

8x; y x �=i y) x �=j y). In other words, �=i can be derived from �=j by breaking congruences. Given the

partition �=i, the algorithm computes �=i+1 in expected running time O(N), where N is the number of SSA

names in the routine. The following theorem shows that each iteration re�nes the partition.

Theorem 1 x �=i y) x �=i�1 y

Proof. The proof is by induction on i.

Basis (i = 1) By de�nition, x �=0 y.

Induction step (i > 1) Suppose not { let x be the SSA name with the smallest RPO number such that the
assumption is false { x 6�=i�1 y and x �=i y. Consider the reasons why x 6�=i�1 y:

4

Case 1 (x:op 6= y:op) This implies that x 6�=i y, a contradiction.

Case 2 (x[e] 6�=i�1 y[e] for some non-back edge) Since x �=i y, x[e] �=i y[e] which means that x[e]
is a node where the assumption is false, and it has a smaller RPO number than x, a contradiction.

Case 3 (x[e] 6�=i�2 y[e] for some back edge) By the induction hypothesis, x[e] 6�=i�1 y[e], which im-
plies that x 6�=i y, a contradiction. 2

Corollary 1 The RPO algorithm must terminate, and it �nds the maximal �xed point of the congruence

relation computed by value partitioning.

Proof. Each step produces a re�nement of the partition, and re�nement cannot continue inde�nitely. Further,

value partitioning �nds the maximal �xed point of the following equivalence relation:

x �= y i�

(
x:op = yop

x[e] �= y[e]; 8e

Since the RPO algorithm begins with all SSA names congruent, we must converge to the same �xed point as

value partitioning. 2

To understand how quickly the algorithm terminates, we must understand how values are proven not to

be congruent. Since we process the blocks in reverse postorder, back edges play a key role in determining

the number of iterations required. The following lemma characterizes the iteration on which two SSA names

are determined not to be congruent.

Lemma 1 If x 6�=i y and x �=i�1 y, then there is a sequence of inputs (possibly empty):

e1; e2; : : : ; en

with bj = the number of back edges in e1; : : : ; ej and bn = i � 1 such that:

x 6�=i y

x[e1] 6�=i�b1 y[e1]

...

x[e1] : : : [en] 6�=i�bn y[e1] : : : [en]

Proof. The proof is by induction on i.

Basis (i = 1) Use the empty sequence.

Induction step (i > 1) Let p1; : : : ; pm be the sequence of pairs x; y with x 6�=i y and x �=i�1 y, ordered by
the minimumRPO number of the pair. We will proceed by induction on j, the index into this sequence.

Basis (j = 1) Consider the reasons why x 6�=i y:

Case 1 (x:op 6= y:op) This case cannot occur because we know that x �=i�1 y.

Case 2 (x[e] 6�=i y[e]) for some non-back edge) This case cannot occur because either x[e] will
have a smaller RPO number than x or y[e] will have a smaller RPO number than y.

Case 3 (x[e] 6�=i�1 y[e]) for some back edge) The sequence consists of e followed by the se-
quence for the pair x[e]; y[e], which we know exists by the induction hypothesis for i.

Induction step(j > 1) Consider the reasons why x 6�=i y:

Case 1 (x:op 6= y:op) This case cannot occur because we know that x �=i�1 y.

Case 2 (x[e] 6�=i y[e]) for some non-back edge) The sequence consists of e followed by the se-
quence for the pair x[e]; y[e], which we know exists by the induction hypothesis for j.

5

Case 3 (x[e] 6�=i�1 y[e]) for some back edge) The sequence consists of e followed by the se-
quence for the pair x[e]; y[e], which we know exists by the induction hypothesis for i. 2

Now we can prove the algorithm's running time. It terminates in D(SSA) + 2 iterations, where D(SSA) is

the loop connectedness (the maximum number of back edges on any acyclic path) of the SSA graph.

Theorem 2 x �=D(SSA)+1 y) x �=D(SSA)+2 y

Proof. Suppose not { let x be the SSA name with the smallest RPO number such that x �=D(SSA)+1 y and

x 6�=D(SSA)+2 y. According to Lemma 1, there is a sequence of inputs such that:

x 6�=D(SSA)+2 y

x[e1] 6�=D(SSA)+2�b1 y[e1]

...

x[e1] : : : [en] 6�=1 y[e1] : : : [en]

This sequence contains D(SSA) + 1 back edges, so it must contain a cycle. Since x has the smallest

RPO number, it must be included in a cycle. Therefore, x 6�=i y for some i < D(SSA) + 2. By Theorem 1,

x 6�=D(SSA)+1 y, a contradiction. 2

Corollary 2 The RPO algorithm terminates in at most D(SSA) + 2 passes.

Proof. Since the partition �=D(SSA)+2 is the same as the partition �=D(SSA)+1, the done
ag will remain TRUE

throughout iteration D(SSA) + 2, and the algorithm will terminate. 2

3.2 Extensions

Since our algorithm uses hashing, we can easily extend it to include constant folding and algebraic simpli-

�cation. We do this by associating a value from the constant propagation lattice (f>;?g [Z) with each

SSA name [15]. This framework will discover at least as many congruences as hash-based value numbering

or value partitioning. Under this extended framework, an element can fall D(SSA) + 1 times with respect

to the value numbering lattice and twice with respect to the constant propagation lattice. Therefore, the

height of this aggregate lattice is 2D(SSA) + 2. However, since each element falls in both frameworks on

the �rst iteration, any element can fall at most 2D(SSA)+ 1 times. Therefore, the extended algorithm must

terminate in 2D(SSA) + 2 iterations.1

The example in Figure 3 requires 2D(SSA)+ 2 iterations for the algorithm to terminate. The back edges

are shown with bold arrows. After the �rst iteration, all nodes are believed to be constants; notice that

both i3 and j3 are assigned the constant 2. During the next iteration, i2, j2, i4, and j4 are determined not

to be constant, but we still assume that i2 �= j2 and i4 �= j4. During the third iteration, we prove that

i1, i3, j1, and j3 are not constant, and we prove that i4 6�= j4. On the fourth and �fth iteration, we prove

that i2 6�= j2 and i1 6�= j1, respectively. On the sixth iteration, the partition stabilizes and the algorithm

terminates. Intuitively, the algorithm takes D(SSA) passes to prove that i3 and j3 are not the constant 2,

and thus cannot be equal; then it takes another D(SSA) passes to propagate this fact.

1The �nal iteration checks the stability of the analysis.

6

��
��
1i0

��
��
�i1

6

�

	�
��
��
�i2

6

�

	�

��
��
inci3

� -

��
��
+i4

6

6

��
��
1j0

��
��
�j1

6

�

	�
��
��
�j2

6

�

	�

��
��
dblj3

� -

��
��
+j4

6

6

0 1 2 3 4 5 6

i0 > i0(1) i0(1) i0(1) i0(1) i0(1) i0(1)

i1 > i0(1) i0(1) i1 i1 i1 i1

i2 > i0(1) i2 i2 i2 i2 i2

i3 > i3(2) i3(2) i3 i3 i3 i3

i4 > i4(3) i4 i4 i4 i4 i4

j0 > i0(1) i0(1) i0(1) i0(1) i0(1) i0(1)

j1 > i0(1) i0(1) i1 i1 j1 j1

j2 > i0(1) i2 i2 j2 j2 j2

j3 > i3(2) i3(2) j3 j3 j3 j3

j4 > i4(3) i4 j4 j4 j4 j4

SSA graph Value numbers

Figure 3 Example requiring 2D(SSA) + 2 iterations

3.3 Discussion

We have shown that the RPO algorithm �nds at least as many congruences as hash-based value numbering

or value partitioning in O(N �D(SSA)) time. Kam and Ullman showed that the iterative data-
ow analysis

used for a large class of data-
ow frameworks requires D(CFG) passes over the CFG [11]. This number

can be as large as O(B) where B is the number of blocks in the CFG, but it is believed that, in practice,

this number is bounded by a small constant [13]. We expect that for most programs D(CFG) = D(SSA).

However, the program in Figure 4 is an example where this is not true. The back edges are shown with bold

arrows. Notice that D(CFG) = 2, but D(SSA) = 6. Further, we could make D(SSA) even larger by adding

variables in the same pattern as j and k. Despite this potential, the maximumnumber of iterations required

by SCC-based value numbering is four for any routine in our test suite.

3.4 The SCC Algorithm

To make the algorithm more e�cient in practice, we operate on the SSA graph instead of the control-
ow

graph. We refer to the improved algorithm as the SCC algorithm because it concentrates on the strongly

connected components of the SSA graph. The algorithm works in conjunction with Tarjan's depth-�rst

algorithm for �nding SCCs [14]. The algorithm uses a stack to determine which nodes are in the same SCC;

nodes not contained in any cycle are popped singly, while all the nodes in the same SCC are popped together.

Tarjan's algorithm has an interesting property: when a collection of nodes (possibly containing only a single

node) is popped from the stack, all of the operands that are outside the collection have already been popped.

Therefore, we assign value numbers as nodes are popped from the stack. When a single node is popped from

the stack, we know that we have assigned value numbers to the operands of the corresponding expression.

Thus, we can examine the expression and assign a value number to this node. When a collection of nodes

representing an SCC is popped, we know that we have assigned value numbers to any operands outside the

SCC. The members of the SCC require special handling in order to perform value numbering.

We assign value numbers to the nodes of an SCC by iterating over the SCC in reverse postorder (with

7

i0 0
j0 0
k0 0

?
i1 �(i0; i2)
j1 �(j0; j2)
k1 �(k0; k2)

?
i2 �(i1; i3)
j2 �(j1; j3)
k2 �(k1; k3)

?
i3 inc i2
j3 j2 + i1
k3 k2 + j1

?�

� �
?

�

� �
?

��
��
0i0

��
��
�i1

6

�

	�
��
��
�i2

6

�

	�
��
��
inci3

6

��
��
0j0

��
��
�j1

6

�

	�
��
��
�j2

6

�

	�
��
��
+j3

6

��

��
��
0k0

��
��
�k1

6

�

	�
��
��
�k2

6

�

	�
��
��
+k3

6

��

Control-
ow graph SSA graph

Figure 4 Example with D(CFG) 6= D(SSA)

respect to the CFG). Initially, the value number for each member of the SCC is >. A value number of >

indicates that this value has not yet been examined. Since we cannot remove the entries from the hash

table after each pass as the RPO algorithm does, we will use two hash tables. The iterative phase uses an

optimistic table. Once the value numbers in the SCC stabilize, entries are added to the valid table. The

value numbering of single values only uses the valid table.

3.5 Example

To further clarify the algorithm, consider how it would proceed if given the examples in Figure 1. Since none

of the values in the code fragment in the left column are contained in a cycle, the straightforward hash-based

value numbering will be applied to determine that A, B, C, and D are all equal to zero.

If the algorithm is applied to the code fragment in the right column, the values X0 and Y0 are not

contained in any cycle, so they will be assigned value numbers before either of the SCCs. Assume they are

each given the value number hX0i and that the SCC containing X1 and X2 is processed next. During the

�rst pass over the SCC, the �-node �(hX0i;>) will be simpli�ed (optimistically) to hX0i, and X1 will be

given value number hX0i.2 Then, the expression de�ning X2, hX0i + 1, can be simpli�ed to 2. An entry

mapping the constant 2 to value number hX2i will be added to the optimistic table. During the second pass,

the expression �(hX0i; hX2i) cannot be simpli�ed, so an entry mapping the expression to hX1i is added to

2Remember that expressions are formed from an operator and the value numbers of the operands, not the operands themselves.

8

the optimistic table. Next, an entry mapping hX1i + 1 to hX2i will be added to the optimistic table. At

this point the value numbers have stabilized, so we add entries mapping �(hX0i; hX2i) to hX1i and mapping

hX1i+ 1 to hX2i to the valid table. Notice that the optimistic entry mapping 2 to hX2i is not added to the

valid table - this assumption has been disproven.

The next step is to process the SCC containing Y1 and Y2. During the �rst pass, the expression �(hX0i;>)

will be simpli�ed to hX0i, and Y1 will be given the value number hX0i. Next, the expression hX0i + 1 can

be simpli�ed to 2; it will be found in the optimistic table with value number hX2i. During the second pass,

the expression �(hX0i; hX2i) will be found in the optimistic table with value number hX1i, and hX1i+1 will

be found with value number hX2i. At this point the value numbers have stabilized, so we process the SCC

using the valid table. Since entries already exist mapping �(hX0i; hX2i) to hX1i and hX1i + 1 to hX2i, no

new entries will be added to the valid table. Thus, the algorithm has determined that X1
�= Y1 and X2

�= Y2.

The contents of the optimistic and valid tables is an important issue that merits further discussion. The

primary function of the optimistic table is to hold assumptions that may later be disproven. In contrast, the

valid table represents only those facts that are proven. Notice that in processing the example in the right

column of Figure 1, entries for hX1i and hX2i were added to both the optimistic and valid tables. On the

other hand, the entry mapping the constant 2 to hX2i was only added to the optimistic table. This entry

represents an optimistic assumption that was disproven. It remains in the table because it is needed for the

analysis of the second SCC { the one containing Y1 and Y2. In some sense, that entry \marks the trail"

that the analysis must take in order to prove that the two SCCs are equivalent. It is also possible that the

constant 2 appears somewhere else in the routine. If so, we cannot give it the name hX2i; instead we add

an entry to the valid table mapping 2 to a di�erent name.

Recall that after the iteration stabilizes, we make one additional pass over the SCC using the valid table.

The need to place expressions in both tables arises from constant folding and algebraic simpli�cation. These

transformations eliminate edges from the SSA graph. Thus, an SCC can be transformed into a collection of

nodes that is no longer strongly connected. If this happens, we want to test the nodes in this new collection

for congruence with other nodes that were processed using the valid table.

0

0.2

0.4

0.6

0.8

1

svd spline decomp solve seval rkf45

partitioning

hash-based

SCC-based

Figure 5 Comparison of value numbering techniques { FMM benchmark

9

4 Experimental Results

Even though we can prove that SCC-based value numbering is never worse than hash-based value numbering

or value partitioning, an equally important question is how much this theoretical distinction matters in

practice. To assess the real impact of these techniques, we have implemented all of the optimizations in our

experimental Fortran compiler. Comparisons were made using routines from a suite of benchmarks consisting

of over 50 routines drawn from the SPEC benchmark suite and from Forsythe, Malcolm, and Moler's book

on numerical methods [10].

Our optimizer is composed of a sequence of passes that operate on ILOC { our intermediate language.

ILOC is a pseudo-assembly language for a RISC machine with an arbitrary number of symbolic registers. The

back end generates code that is capable of counting the number of ILOC operations executed. Routines are

optimized using the sequence of global reassociation [4], value numbering (the type is indicated in the legend),

lazy code motion [12, 9], global constant propagation [15], operator strength reduction [2], value numbering,

global constant propagation, global peephole optimization, dead code elimination [8, Section 7.1], copy

coalescing, and a pass to eliminate empty basic blocks. We repeat the global constant propagation and value

numbering passes to clean up after operator strength reduction. Figures 6 and 5 show only those routines

where there was variation in the number of ILOC operations executed. Each column represents dynamic

counts of ILOC operations, normalized against value partitioning.

We should point out that eliminating more redundancies does not necessarily result in reduced execution

time. This is due to the way di�erent optimizations interact. In our experiment, removing more redundancies

had a negative impact on only three routines: bilsla, ihbtr, and orgpar. In these routines, propagating

more constants created more opportunities for operator strength reduction. Since we are measuring the

number of instructions executed rather than actual execution times, this e�ect may be deceptive.

We also compared the time required by each of the techniques for some of the larger routines in the test

suite. These results are shown in Table 1. The number of blocks, SSA names, and operations are given to

indicate the size of the routine being optimized. The SCC technique is signi�cantly faster than partitioning;

it is competitive with hashing until a routine has enough SCCs to make iteration its dominant behavior.

5 Conclusion

We have presented a new value numbering algorithm that is centered around the strongly connected com-

ponents of the SSA graph. It discovers at least as many equalities as previously known techniques because

it is a global algorithm that includes constant folding and algebraic simpli�cation. The algorithm is easy to

understand and implement, and it runs in O(N �D) time, where N is the number of nodes in the SSA graph

and D is the loop connectedness of the SSA graph. We experimentally compared the improvements made

by our technique over existing ones when applied to real programs in the context of an optimizing compiler.

routine blocks SSA names operations hash-based SCC-based partitioning

tomcatv 131 2212 2663 0.03 0.05 0.13
ddeflu 109 5494 4502 0.04 0.35 1.81
debflu 116 5856 3951 0.05 0.41 2.17
deseco 251 13164 11771 0.17 0.65 4.11
twldrv 266 23486 15615 0.30 2.82 13.49
fpppp 2 18127 22462 0.51 0.49 1.60

Table 1 Running times of value numbering techniques

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tomcatv twldrv gamgen deseco debflu fpppp pastem prophy paroi

partitioning

hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

1.4

debico bilan repvid inithx sgemm sgemv inideb cardeb ddeflu

partitioning

hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

1.4

saxpy ihbtr fmtset drepvi efill heat fmtgen si dcoera

partitioning

hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

1.4

orgpar colbur drigl coeray lissag sortie bilsla dyeh hmoy

partitioning

hash-based

SCC-based

Figure 6 Comparison of value numbering techniques { SPEC benchmark

11

6 Acknowledgements

Our colleagues in the Massively Scalar Compiler Project at Rice have played a large role in this work.

Without their implementation e�orts, we could not have completed this work. We are especially grateful

to Tim Harvey and Linda Torczon who acted as sounding boards during the development of the algorithm.

David Spott and DavidWallace of Sun Microsystems have also shown a great deal of interest in this work. We

would also like to thank Vivek Sarkar and IBM for supporting Taylor Simpson through the IBM Cooperative

Fellowship.

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[2] Frances E. Allen, John Cocke, and Ken Kennedy. Reduction of operator strength. In Steven S. Muchnick
and Neil D. Jones, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

[3] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in pro-
grams. In Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 1{11, San Diego, California, January 1988.

[4] Preston Briggs and Keith D. Cooper. E�ective partial redundancy elimination. SIGPLAN Notices,
29(6):159{170, June 1994. Proceedings of the ACM SIGPLAN '94 Conference on Programming Language
Design and Implementation.

[5] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering. Technical Report CRPC-
TR95517-S, Center for Research on Parallel Computation, Rice University, November 1994. Submitted
to Software { Practice and Experience.

[6] Cli� Click. Combining Analyses, Combining Optimizations. PhD thesis, Rice University, 1995.

[7] John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Preliminary notes.
Technical report, Courant Institute of Mathematical Sciences, New York University, 1970.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. E�ciently
computing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451{490, October 1991.

[9] Karl-Heinz Drechsler and Manfred P. Stadel. A variation of Knoop, R�uthing, and Ste�en's \lazy code
motion". SIGPLAN Notices, 28(5):29{38, May 1993.

[10] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical
Computations. Prentice-Hall, Englewood Cli�s, New Jersey, 1977.

[11] John B. Kam and Je�rey D. Ullman. Global data
ow analysis and iterative algorithms. Journal of the
ACM, 23(1):158{171, January 1976.

[12] Jens Knoop, Oliver R�uthing, and Bernhard Ste�en. Lazy code motion. SIGPLAN Notices, 27(7):224{
234, July 1992. Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design
and Implementation.

[13] Donald E. Knuth. An empirical study of Fortran programs. Software { Practice and Experience, 1:105{
133, 1971.

[14] Robert E. Tarjan. Depth �rst search and linear graph algorithms. SIAM Journal on Computing,
1(2):146{160, June 1972.

[15] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(2):181{210, April 1991.

12

