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Abstract. When we set out to compare the performance of two algo-
rithms against each other, the quality of the comparison is wholly de-
pendent on the quality of the two implementations. If an algorithm is
particularly difficult to implement correctly, if it is poorly understood or
documented, or if its performance is highly variable based on any number
of idiosyncratic settings, a comparison against another algorithm should
normally be suspect.

In our case, we wanted to compare a Chaitin-Briggs graph-coloring regis-
ter allocator against a Chow and Hennessy priority-based allocator, but
it seemed impossible to get a fair comparison. The Chaitin-Briggs allo-
cator is relatively well understood. It has been studied extensively. It has
few parameters to guide its behavior.

In contrast, Chow’s allocator, although often cited as a viable competitor
to the graph-coloring allocator, is none of these. It has been implemented
very few times. Its presence in the literature is more historic than an-
alytic. Worst of all, it not only includes a number of implementation
decisions that individually affect the quality of code, but these decisions
interact unpredictably.

Adaptivity suggests a solution to this problem. By allowing a search
technique to optimize an algorithm’s performance, we can make definitive
statements comparing two algorithms.

In this paper, we present an implementation of a priority-based register
allocator as described by Chow and Hennessy. We show how to imple-
ment the allocator in an adaptive framework, and we show that the
code produced consistently achieves the performance of a Chaitin-Briggs
graph-coloring register allocator.

The Chaitin-Briggs algorithm has received so much attention in the liter-
ature that we felt it would be fair to use a non-adaptive implementation
as a baseline to compare against.

Our results show that the two algorithms give similar performance, but
only when we use an adaptive search algorithm for the Chow allocator.
We believe that this is the first time these two algorithms have been
fairly tested side-by-side, and we argue that adaptivity is an effective
tool for experimental computer science.



1 Introduction

From the first compiler by Backus et al. [1] to compilers for modern-day multi-
core microarchitectures, there has been one overarching engineering goal: use
the compiler to efficiently manage the hardware resources to maximize perfor-
mance. Regardless of the architecture, managing the register set has been one
of the primary concerns of resource management. Even early architectures that
had zero-wait-state memory and memory-to-memory operations used registers
for calculations such as array indexing, and these were critical for overall perfor-
mance. Later, memory-to-memory operations were mostly phased out – the only
way to perform a calculation on a value was to first put that value in a register.

Into this architectural phase shift came Chaitin and his colleagues at IBM
who developed the first global register-allocation algorithm for RISC machines.
They abstracted the problem to that of graph coloring, where two nodes in a
graph cannot be colored the same if there is an edge between them. For program
values, the analogy to graph coloring is that if two values need to be alive at
the same time they cannot share the same register. Values are alive from the
point of their initial definition to their last use. We call each distinct value a
live range. Chaitin’s algorithm walks the code, building a graph where the nodes
are values and edges connect nodes if the values interfere – because they are
alive at the same time. With the graph in hand, the coloring algorithm uses
a simple heuristic to order the nodes for which to choose colors. When a node
cannot get a color – that is, a machine register – because the colors being used by
the node’s neighbors comprise the complete set of possible colors, that value is
spilled, meaning it is stored to memory and only loaded into a register for short
periods of time around each definition and use. Of course, this still requires a
register, so some shuffling has to occur, and Chaitin’s algorithm iterates until
no more spill code is added, at which time it has a legal coloring of the graph,
and, thus, an assignment of machine registers to program values.

Chaitin’s algorithm is probably the best known, most thoroughly studied, and
most widely used algorithm for register allocation – in truth, any new algorithm
introduced today would probably have to compare itself against an implementa-
tion of Chaitin’s algorithm before the compiler community will even consider it.
That said, the algorithm is not without weaknesses: it uses a “spill everywhere”
strategy for live ranges and is pessimistic in its attempts to color the interference
graph. Many people have published improvements to the algorithm, including
Briggs et al. [2], Callahan and Koblenz [3], Bergner [4], and Cooper and Simpson
[5]. We used the Chaitin-Briggs version of the algorithm in our comparison.

In contrast, the priority-based allocator of Chow and Hennessy has received
relatively little attention. Although the paper on the implementation is heavily
cited, it turns out that those citations merely mention that it is a competing
algorithm; with the exception of Larus and Hilfinger [6], we were unable to find
any description of an implementation, and certainly no comparison with any
other register-allocation algorithm. The source code for the original allocator
was freely available, and people could use it for a reference if they wanted to
implement the allocator. We wanted to compare the two algorithms, and thought



that Chow and Hennessy’s priority-based allocator seemed a good candidate
for adaptation as its implementation is underspecified and its behavior can be
controlled through a variety of parameters.

Chow’s algorithm is similar to Chaitin’s graph-coloring allocation algorithm,
but it varies in four significant ways:

1. Chow’s machine model includes memory-to-memory operations; as a result,
Chow’s model is somewhat pessimistic: Chaitin optimistically assumes that
everything resides in a register until he proves that can’t be true, while
Chow assumes that everything starts out in memory, and promotes values
into registers.

2. Chow’s live ranges are imprecise; they are defined in terms of basic blocks,
rather than instructions. While Chaitin recognizes an interference between
two values that are both live at an instruction, two values interfere in Chow’s
algorithm if they are both live in the same block – if a value has its last use
before the definition of a different value in the same block, Chow will record
that as an interference.

3. Chow’s algorithm uses a different spill-cost metric than Chaitin’ algorithm;
instead of computing the cost of spilling a value, Chow computes the priority,
or benefit, of promoting a value from memory into a register. He assigns
colors to live ranges in descending order of priority, while Chaitin attempts
to assign colors to as many live ranges as possible.

4. Chow’s algorithm performs spilling by first trying to split a live range into
smaller pieces, some or all of which may get a register (although it was
unable to find a single register for the entire live range, it may be able to
keep different parts of the live range in different registers). Chaitin uses a
“spill everywhere” strategy that spills the entire live range when it can not
be assigned a color.

The details of the implementation include a number of interacting settings,
such as adjusting the length of the basic block (which changes the precision
of the live ranges – an innovation from Larus and Hilfinger [6]), adjusting the
number of registers reserved for local allocation, adjusting the coloring heuristic,
etc. These adjustments are historically the reason that a comparison between the
two algorithms has never before been done: popular wisdom has always been that
only an expert could find the best set of parameters for Chow’s algorithm, making
a fair comparison impossible. Further, the dominance of the RISC machine model
has meant that Chow’s algorithm needs adjusting before it can be compared to
Chaitin’s algorithm. Finally, twenty-five years of research aimed at improving
data-flow analysis and optimization – with static single assignment (SSA) form
being the most significant development – has been integrated into Chaitin’s
algorithm but not into Chow’s.

In this paper, we show how to parametrize Chow’s algorithm to provide a
large enough search space to allow the adapter to find good settings and produce
efficient code. We then use the adapted version to compare against the Chaitin
algorithm. We implemented several versions of the priority-based allocator to



perform our experiments: a classic version that follows the description by Chow
and Hennessy, an engineered version that adds some basic improvements and
uses a fixed set of parameters designed by our local “expert”, and an adapted
version that uses adaptive compilation to tune the algorithm’s parameters. The
result of comparing Chow’s algorithm to Chaitin’s were surprising. Although the
community has long considered the two algorithms to be similar in terms of the
quality of code they produced, we were unable to consistently get as good results
from the priority-based allocator as from Chaitin’s allocator. As we will show,
it was only by adapting Chow’s allocator for each routine individually that we
could rival the quality of code from Chaitin’s allocator.

In the next section, we will show the details of setting up the adaptive search
for Chow’s original algorithm.

2 Adaptive Compilation Framework

Grosul explored a variety of search algorithms for adaptive compilers, and found
random-restart impatient-hillclimbers to be an effective method for finding good
solutions [7]. We follow his lead and use a random-restart impatient-hillclimber
as the search mechanism in our adaptive compiler.

Our work varies from Grosul’s, because we found it necessary to change the
level of granularity from the program level to the procedure level. On Grosul’s
problem, a single parameter setting sufficed for all of the functions in a program,
but when we implemented our search at that level of granularity, we found that
most of the results showed very little improvement over not using the adapter.

Kulkarni et al. report a similar result using their set of optimizations: they
have to allow the adapter to find different parameter settings for each function
individually [8]. Our method has a slight improvement over Kulkarni’s VISTA
system: whereas their system isolates a single routine and finds the best compi-
lation sequence before moving on to the next routine in the program, our system
searches on each of a program’s functions concurrently and in lockstep. At each
iteration, we derive new parameter settings for each function and record sepa-
rate performance data for each function upon execution. We can do this because
our objective function uses the number of instructions executed by the program,
rather than the time the program takes to execute. If we find a local minima for
one of the functions, that function can start a new descent, while other functions
in the program may still be progressing downwards through the space. We stop
the search at a predetermined number of compilations, rather than, as Grosul
does, a set number of restarts.

We exposed a set of parameters in the allocator that can be configured
with command-line arguments. When a file is compiled, the allocator is passed
command-line flags corresponding to the combination of parameters currently
under examination. A set of specific parameter settings is defined as a point in the
search space. The neighborhood structure describes how the points in the space
are connected, and this further dictates the order that parameter combinations
are tried, since the search can only move to a point that is in its neighborhood.



We define the neighbor of a point to be all points that can be reached by
changing a single setting in a single parameter. Neighbors can be generated by
first selecting a parameter and then choosing a new setting. If we imagine that
a combination of parameters is represented as a string, where each setting of
a parameter is a unique character, then the neighbors of a point will be all
the strings that are a Hamming distance of one from the string representation
of that point. The number of neighbors is calculated by summing the number
of choices for each parameter that are different from the current setting. The
number of neighbors and the total size of the search space varies with the number
of registers used for allocation, because the domain of one of the parameters
grows as we increase the size of the register set. With 32 registers, each point has
434 neighbors and the search space has 182,927,360 elements. With 8 registers,
this decreases to 38 neighbors and 4,505,600 elements.

3 Finding Parameters for Adaptation

We wanted to expose as many choices as possible to the adaptive compiler with-
out unnecessarily increasing the size of the search space. We designed the al-
locator so that various aspects of its behavior can be controlled by command
line parameters. We used three criteria when choosing the aspects of the alloca-
tor to expose as parameters. First, we looked for places in the allocator where
we choose among several competing values and there is no obvious best choice.
Basic-block size and coloring heuristic are examples of this type of parameter.
The second case we looked for was choices that could sometimes hurt the al-
location and sometimes help the allocation, but the exact outcome is hard to
predict. Aggressive code motion of loads and stores is an example of this type
of parameter; it may hurt or help depending on the number of opportunities to
turn load/store pairs into copies. The third case of parameters are for behaviors
in the allocator that interact with each other. For example, global allocation of
local live ranges and the number of local registers should not be set in isolation
from each other. If we set the number of local registers very high, it would not
make sense to also allow local live ranges to be put in registers reserved for global
allocation.

To give maximal freedom to the adaptive compiler, we included as many
parameters as possible, subject to the three criteria stated above. The precise
parameters chosen are discussed below.

basic-block size The size of a basic block changes the number of interferences.
Reducing the block size increases the accuracy of the live ranges, but also
changes the priority for a live range, since it is normalized by the number of
blocks it spans. It also affects placement of the spill code that is inserted at
basic-block boundaries when a live range is split.

reserved local registers We can reserve a number of registers to use for allo-
cating local live ranges and spilled global live ranges. Reserving local registers
reduces the number of registers used for global allocation.



aggressive motion of loads and stores We try moving all loads and stores
onto edges in an attempt to turn a store in a predecessor block followed by
a load in the current block into a copy. Moving all loads and stores may
increase the number of control-flow operations because of the need to split
edges.

rematerialization Rematerialization attempts to recompute values rather than
spill them to memory. Live ranges are split into rematerializable sections be-
fore allocation. The splitting of live ranges may have a negative effect if they
should not have been split and cannot be joined back together.

live-range trimming Live-range trimming removes useless blocks from a live
range after it is split. Trimming a live range may remove an opportunity for
aggressive code motion to change a load/store pair into a copy by trimming
the block containing the memory operation.

coloring heuristics We use four different coloring heuristics.
1. Choose the first available color.
2. Find a neighbor in the interference graph with the largest number of

forbidden colors. Choose a color that is already in the forbidden set
of that live range. The goal is to keep the most constrained live-range
colorable for as long as possible.

3. Choose the color that is in the forbidden set of the most neighbors in
the interference graph. The goal is to minimize the number of live ranges
further constrained by the current assignment.

4. Choose the color from a live range that was created by splitting the
current live-range. The goal is to undo the detrimental effects of early
splitting in rematerialization. This is similar to biased coloring used in
the Chaitin-Briggs allocator [9].

splitting heuristic We use two different heuristics when deciding which blocks
to include in the new live range when splitting.
1. Split as originally described by Chow and Hennessy.
2. Include blocks in the new live range by searching both up and down

the control-flow graph. The published algorithm only looks down the
control-flow graph at the successors of the starting block.

global allocation of local live ranges We have a choice between removing
local live ranges from the interference graph and using local allocation, or
leaving them in the graph and treating all live ranges uniformly with the
global priority-based allocator.

optimistic simplification Optimistic simplification permanently removes live
ranges from the interference graph if they have fewer than k neighbors, where
k is the number of colors. The standard method leaves the live ranges in the
graph in case they later become constrained due to splitting.

allocate all unconstrained live ranges It is possible that some unconstrained
live ranges may have negative priority. This can happen if a large live range
is split into a smaller unconstrained live range which requires more loads and
stores at its boundaries than the number of uses and definitions in the live
range. However, not allocating these live ranges may remove an opportunity
for aggressive code motion.



enhanced register promotion Live ranges that are spilled are handled by
the local allocator so that repeated references in the same basic block do
not generate multiple loads. Enhanced register promotion tries to eliminate
a load at a live-range entry when the live range is in a temporary register at
the predecessor block by changing the load into a copy. It requires aggressive
code motion to be effective and that may degrade performance. In addition,
the opportunity for eliminating a load at a live-range entry depends on the
basic-block size, which dictates the live-range boundaries.

loop-depth weight The priority function weights each use, definition, and
memory operation in a live range with the loop-nesting depth of that oc-
currence. If the reference occurs at loop depth d, then it is weighted by 10d.
This parameter uses multiple bases for the loop-depth weight. We consider
weights of 1d, 5d, 10d, and 20d.

prefer spilling clean local values This parameter affects spilling decisions in
the local allocator. The standard local allocator spills the live range whose
next use is farthest in the future. This flag tells the local allocator to also
consider whether the live range has been written to when making spilling
decisions. If the live range has not been written to, then it does not need a
store when it is evicted from a temporary register.

priority function We make available five priority functions, all of which are
modifications of the basic priority function described by Chow and Hennessy.
1. Use the standard priority function.
2. Use the standard priority, but do not normalize based on live range size.

This function does not punish large live-ranges.
3. Take the log of the priority before normalizing by the live range length.

This was suggested by a similar priority function used in GCC [10].
4. Square the size of the live range before normalizing. This makes larger

live-ranges less desirable.
5. Combination of 3 and 4.

4 Experimental Results

We measured the allocation quality produced by the classic, engineered, and
adapted versions of the priority-based allocator. Allocation quality was mea-
sured by counting the dynamic number of instructions executed after initial
optimizations and register allocation. The priority-based register allocator was
implemented in the ILOC compiler, a machine-independent research compiler
at Rice University. ILOC is a low-level intermediate language for an abstract
RISC machine. The input program initially contains an arbitrary number of
pseudo-registers, which are mapped to a fixed number of machine registers by
the allocator. The number and type of machine registers can be varied to allow
experimentation with different machine configurations. Popular folklore has long
held that a low number of registers – say, 8 – favored Chow’s algorithm and that
a larger number of registers – on the order of 32 – would give an advantage to
Chaitin’s algorithm. Thus, our experiments were run with 8, 16, 24, and 32 ma-
chine registers with separate register files for integer and floating point values.



In addition, we assume that double values require two consecutive floating point
registers.

Allocation performance is measured by counting the number of dynamic in-
structions. After allocation, the ILOC program is translated into C and instru-
mented with performance counters. The C code is compiled and executed; a
global counter tracks the number of ILOC instructions executed. This number
is used to compare the performance of the different allocators. The dynamic in-
struction count has an advantage over execution time as a performance measure
because it is precise and exactly reproducible. This is important because we use
the performance measure to guide the adaptive compiler’s search.

4.1 Setup

We use a variety for FORTRAN programs as benchmarks. The programs include
entries from SPEC 92, SPEC 95, and several kernels from a numerical analysis
book by Forsyth, Malcolm, and Moler [11–13]. These programs include a total
of 121 distinct routines. Due to a limitation of our intermediate representation,
not all files can be compiled for each register setting. The files that cannot be
compiled with fewer registers are excluded in the results reported for that specific
number of registers.

Each routine in a benchmark was allocated separately; no inter-procedural
information was used during allocation. Prior to allocation, each routine passes
through a standard set of optimizations. After allocation, the code is passed
through two optimizations for clean up: dead code elimination and empty basic-
block removal. These passes are needed because several of the techniques used in
the engineered version of the allocator expect a post-pass that removes useless
code.

4.2 Results

We added the priority-based allocator to our adaptive compilation framework as
described in Sect.2. The results in this section were gathered using two runs of
the adaptive compiler for each benchmark. Based on previous experience, we use
a patience of 20% for the hillclimber and limit each run to 1000 evaluations [7,
14] . Our success in finding good parameter combinations indicates these values
also work well when searching for priority-based allocation parameters.

We compare the performance of the allocators on a function-by-function ba-
sis. The instruction counts for each allocator are normalized by the corresponding
instruction count of the Chaitin-Briggs allocator. Aggregate numbers are calcu-
lated by taking the geometric mean of the performance ratio for each function.
The main results are shown in Fig.1. This figure compares the results of the
adapted version of the allocator with the classic and engineered versions. For
the classic and engineered versions of the priority-based algorithm, basic blocks
are limited to a single instruction. The results show that adaptive compilation
was effective in closing the performance gap between the Chaitin-Briggs and
priority-based allocators. The adapted version of the allocator performs slightly



better than the Chaitin-Briggs allocator, regardless of the number of registers
used for allocation. This result contrasts with using a fixed set of parameters in
the engineered version, where performance approaches the Chaitin-Briggs allo-
cator when using 32 or 24 registers but deteriorates with fewer registers.
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Fig. 1. Performance of the priority-based allocator after tuning with the adaptive com-
piler.

4.3 The Impact of Adaptivity on This Experiment

What evidence do we have that adaptivity was an efficacious way to approach
this experiment?

As shown in Fig.1, the engineered version of the priority-based allocator does
progressively poorer as the number of registers decreases. This degradation is
largely due to the engineered version including local live ranges in the global
allocation, rather than leaving them for a separate local allocation pass. It has
more of a negative effect with fewer registers, because the allocator tends to
spend its few global registers to allocate local values, spilling possibly more
important global live ranges. The local live ranges get assigned a higher priority
because they are only live in one block. The parameter settings were designed
with 32 registers in mind, and they perform well in this case. Adapting the code
gives us a dynamic algorithm against which to compare and helps keep small
errors from muddying our results.

Another question to answer when considering an adaptive compilation scheme
is: does the adapter find a single, better set of parameters for the compiler,
or does it find idiosyncratic sets of parameters for likewise idiosyncratic input
codes? If the former, we need only run the adapter offline on a representative
sample of inputs. On the other hand, if we see that the adaptive compiler finds
significantly different sets of parameters for each input we give it, then this ar-
gues strongly that an adaptive scheme is required to get the best results from
the algorithm.



As we show in Table 1, no single parameter setting dominated. The table
lists the frequency with which various parameters were selected by the adaptive
compiler. The observed frequencies produce both expected results and a few
surprises. We see that the most frequently selected block size is one instruction,
which confirms our intuition that more precise live-ranges allow for a better
allocation. Also, the most frequently selected coloring heuristic is to choose the
color that maximizes the number of neighbors for which it is already forbidden.
This was our hand-picked heuristic for the engineered version. It is interesting to
note that our hand-selected block size and coloring heuristic were selected by the
adaptive compiler less than 30% of the time. Even though they were the most
frequently selected settings, the other values were chosen a significant number of
times. The biggest surprise from the frequency numbers is the priority function.
The most frequently selected priority function ignores the size of the live range
when computing priority. Our intuition was that the priority function described
by Chow and Hennessy was quite good, but we found that an alternate priority
function was selected more often by the adaptive compiler. This result can be
interpreted in two ways: either it is more important to ensure that a live range
with many uses and definitions is allocated a register regardless of it size, or
that some combination of parameters enables the alternate priority function to
work better. These alternate explanations point to the difficulty in trying to
statically understand the interaction of the allocation parameters and the need
for an adaptive method to correctly set their values.

Table 1. Frequency of various parameter settings (column S) occurring in the top com-
bination found by the adaptive compiler. The most frequent value for each parameter
and the best value for each register is displayed in bold face. The strategy and priority
function settings correspond to the descriptions given in Sect.2.

S freq (per num regs) S freq (per num regs) S freq (per num regs)

32 24 16 8 Tot(%) 32 24 16 8 Tot(%) 32 24 16 8 Tot(%)

block size color strategy priority function

0 11 13 14 6 44(11%) 1 22 23 26 19 90(22%) 1 21 26 31 23 101(24%)
1 31 28 26 16 101(24%) 2 25 30 20 21 96(23%) 2 36 44 34 27 141(34%)
2 16 15 18 13 62(15%) 3 32 40 32 17 121(29%) 3 26 19 18 11 74(18%)
3 8 8 7 8 31(7%) 4 39 23 28 17 107(26%) 4 18 18 14 8 58(14%)
4 9 7 8 7 31(7%) 5 17 9 9 5 40(10%)

5 10 8 8 4 30(7%) split strategy rematerialization

6 8 6 1 5 20(5%) 1 61 70 44 32 207(50%) T 25 27 30 40 122(29%)
7 4 6 2 4 16(4%) 2 57 46 62 42 207(50%) F 93 89 76 34 292(71%)

8 4 2 4 3 13(3%) live-range trimming globally allocate locals

9 8 14 10 6 38(9%) T 52 59 58 37 206(50%) T 51 37 28 22 138(33%)
15 9 9 8 2 28(7%) F 66 57 48 37 208(50%) F 67 79 78 52 267(67%)

allocate all unconstrained enhanced promotion aggressive code motion

T 47 61 28 24 160(39%) T 61 67 61 40 229(55%) T 66 58 52 42 218(53%)
F 71 55 78 50 254(61%) F 57 49 45 34 185(45%) F 52 58 54 32 196(47%)



4.4 Search Efficiency

Previous work on adaptive compilation has focused on the efficiency of the search,
the measure of how quickly the adaptive compiler finds a good solution [7, 8].
Although our work focuses on using adaptation in experimentation, our new
search technique raises the question of efficiency because we change the level of
granularity of the search from the whole program to individual files.

Figure 2 shows the search progress for the applu benchmark. Each line indi-
cates the individual progress of the adaptive search for a particular function in
the benchmark. The graph shows that all files are within 1% of the best result
after 200 iterations. The files which have not yet reached the best value con-
tinue to approach it as the iterations go towards 1000. This is not shown in the
graph to give a better view of the first 200 iterations. This graph demonstrates
the benefit of our search algorithm, where we can run a search for each file in
parallel, but incur the same cost for compiling and running the program as if we
only were searching for a single set of parameters across the entire benchmark.
This graphic provides a nice visualization of the file searches progressing in par-
allel and shows that the adaptive compiler tends to find good values early in the
search. Compiling this data seems a necessary step in evaluating the effectiveness
of using adaptation in experimental algorithm analysis.
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5 Related Work

This work is a synthesis of two different research areas: register allocation and
adaptive compilation. Register allocation has been studied extensively in the
literature, while adaptive compilation is a relatively new area. This paper is one



of few works that uses prior research in both areas to tackle the problem of
register allocation.

5.1 Register Allocation

Register allocation has been an important optimization since the earliest com-
pilers. Many techniques have been proposed for register allocation, but it was
Chaitin et al. who described the first graph-coloring register allocator for mod-
ern RISC architectures [15]. They mapped the register allocation problem to
finding a k coloring of a graph, where k is then number of machine registers.
This abstraction has proven itself to be powerful, and much work has been done
to improve the initial design.

Two years after Chaitin described his graph coloring allocator, Chow and
Hennessy proposed the priority-based approach to register allocation that is the
focus of this work [16]. Larus and Hilfinger describe their implementation of the
priority-based allocator in the SPUR Lisp compiler [6]. They were the first to
propose limiting the basic-block size to obtain a more precise interference graph.
They report achieving a good allocation, but do not provide any comparison
with other global techniques.

Limited information has been published about how to improve the standard
priority-based allocator. Chow shows how to extend the priority-based allocator
to perform inter-procedural allocation [17]. Sorkin makes some suggestions for
changing the priority-based allocator [18], but implementing his changes would
fundamentally change the allocator. Kim et al. show how to adapt the priority-
based allocator for architectures with predicated execution [19]. They modify the
priority function to account for predicted usage and also show that increasing
the granularity of the interference graph improves the quality of allocation.

In contrast to the priority-based allocator, numerous improvements have been
suggested for the standard Chaitin allocator. Briggs et al. gave several improve-
ments, including optimistic coloring [20], and rematerialization [9]. Bergner et al.
describe a method for reducing spill code by only spilling a live range over parts
of the code, rather than the global method used by Chaitin [4]. Cooper and Simp-
son give a method for reducing spill code using live-range splitting [5]. Callahan
and Koblenz describe an enhancement to the Chaitin allocator that takes the
structure of the program into account when making spilling decisions [3].

5.2 Adaptive Compilation

Adaptive compilation, also known as iterative compilation or feedback directed
optimization, is a general method that uses repeated compilation and informa-
tion feedback to optimize code for some desired metric. We survey two uses
of adaptive compilation: tuning a specific compiler optimization, and finding a
good order for compiler optimizations (the phase-ordering problem).

Stephenson et al. use machine learning techniques to fine tune various com-
piler heuristics [21]. They use genetic algorithms to improve heuristics in a vari-
ety of optimizations, including: hyperblock formation for predicated execution,



register allocation, and data prefetching. Their work in register allocation is
particularly interesting because they tune the priority function from Chow and
Hennessy’s priority-based allocator. They report a mean speedup of 8% obtained
by searching for a specific priority function for each benchmark.

Cavazos, Moss, and O’Boyle apply machine learning to register allocation in
the Jikes RVM [22]. They present the notion of Hybrid Optimizations, where the
compiler uses a heuristic to select between two different algorithms for register
allocation. They identify a set of features from the input code and then use
machine learning to build a heuristic based on those features.

Waterman [23] and Cavazos and O’Boyle [24] independently experimented
with using adaptive compilation to improve procedure inlining. Both researchers
report a reduction in execution time due to improved inlining decisions.

Other researchers use adaptive compilation to find a good order for compiler
optimization passes. Kulkarni et al. describe VISTA, an interactive compilation
system that uses search to find good sequences of compiler optimizations [25, 8].
They use genetic algorithms as their method of search. VISTA is able to search
for a different sequence for each function in a benchmark and they found that
each function often needed significantly different optimization sequences. They
later extended their work to exhaustively explore the search space of compiler
optimization passes [26, 27].

Cooper et al. describe their experience exploring the search space of compi-
lation sequences [28, 29]. They give results for exhaustively enumerating several
search spaces of sequences of length 10 chosen from 5 transformations. They show
that the search spaces have many local minimum, which makes them amenable
to search by a random-restart hillclimber.

Agakov et al. use machine learning techniques to focus the search of an
adaptive compiler [30]. They use the learned models to bias the search towards
good sequences. They report that using the models to guide the search helps
to find good sequences quickly, with an average speedup of 22% after only two
iterations of search.

6 Conclusion

In this paper, we used adaptivity to control the settings of Chow and Hennessy’s
priority-based register allocator so that we could compare that algorithm’s per-
formance against a Chaitin-Briggs register allocator. We believe that the com-
parison could not have been done without adaptivity because Chow’s algorithm
has many settings that significantly impact its performance, especially as the un-
derlying architectural model changes. Our results showed significant differences
between a naive implementation, an engineered version, and the adapted version.
The quality of the code produced was heavily dependent on changing parameter
settings for each individual function and for each architectural specification. This
makes a strong argument that similarly adjustable algorithms should follow the
model we present.



In the question of Chow and Hennessy vs. Chaitin-Briggs, the analysis strongly
suggests that the priority-based allocator does not produce code as good as the
Chaitin-Briggs allocator.
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