
S M A R T

Workshop on Statistical and Machine Learning
approaches applied to Architectures and

Compilation

Workshop Proceedings

January 28, 2007

Sofitel, Ghent, Belgium

Tuning an Adaptive Compiler

Keith D. Cooper, Tim Harvey, and Jeff Sandoval

Rice University, Houston, TX, 77005, USA
{keith,harv,jasandov}@cs.rice.edu

1 Introduction

Adaptive compilation is a technique for feedback-driven selection of program-
specific or procedure-specific sequences of code optimizations [1]. Adaptive com-
pilers find effective compilation sequences using search, machine learning, genetic
algorithms, and limited enumeration [1–5]. A growing body of literature has es-
tablished that no single sequence works well for all codes.

Active research in this area focuses on a number of problems, including find-
ing better search techniques [4, 5], understanding the search spaces [1], and re-
ducing the cost of evaluating distinct sequences [2]. This paper examines how the
“best” sequences change when we add a new transformation to the search space.
Specifically, we added a loop unroller to our pool of optimizations; it changed
the “best” sequences and improved overall performance on a suite of benchmark
codes.

1.1 Background

Our adaptive compiler focuses on the application of “scalar” optimizations to a
low-level intermediate code [2]. Prior to this work, the compiler used 15 distinct
transformations. It had no loop unroller, but included a pass, peel, that peels
the first iteration out of each inner loop. This pass was intended to prepare the
code for loop unswitching.

In our experiments, we noticed that the compiler often chose to apply peel
repeatedly. For example, the five best sequences for the code adpcm coder each
use peel seven times; each ‘p’ indicates a use of peel.

ppppppczpc ppppppclpc ppppppclpd ppppppclpg ppppppclpm

Table 1. The five best sequences for adpcm coder without unrolling

Because peel eliminates overhead from the first iteration of a loop, it produces a
small improvement on each application. As Table 2 shows, peel is chosen quite
often. It accounts for 26% of the passes invoked in the best 1% of sequences for
our nine benchmark programs.

Where peeling reduces the overhead for the first iteration of the loop, un-
rolling reduces the overhead for the entire loop. Thus, a single application of
unroll achieves a larger improvement than a single application of peel, or even
several applications of peel. To see this effect, we added unroll to the fixed se-
quence against which we test the adaptive algorithms. With unrolling, we saw up
to an 8% speedup; unfortunately, on average, it slowed the code down by 5.5%.

2

Benchmark Loop-peel Frequency Benchmark Loop-peel Frequency

adpcm coder 42.8% adpcm decoder 21.8%
applu 40.0% matrix300 13.1%
rkf45 41.5% seval 15.3%
solve 30.5% svd 24.0%
tomcatv 4.8% average 26.0%

Table 2. Frequency of peel in top 1% of sequences, by benchmark.

The variability of results from unrolling make it an excellent candidate for
the adaptive compiler. Since a pass is only applied when profitable, we can add
the unroller and let the search algorithms discover when to use it. Adding an
unroller improved the quality of code that the compiler produced and changed
both the best sequences found and the distribution of passes in those sequences.

This paper chronicles our experience adding a loop unroller to our adaptive
compiler. We measured the compiler’s behavior with and without the unroller.
For sequences of 10 passes, the best sequences with unroll produce code that is
10% faster, on average, than those without unroll. Unroll often improves search
efficiency, even though it almost doubles the search space size. The compiler
usually finds a solution of a given quality more quickly with unroll than without
it.

1.2 Loop Unrolling

Loop unrolling clones the body of a loop some number of times (the unroll factor)
and adjusts the iteration count [6]. It reduces the number of induction-variable
updates and backward branches in the loop. While unrolling is straightforward
at the source-code level, our compiler uses an assembly-like intermediate code,
where loops are harder to recognize. In this setting, the implementation of un-
rolling is more complex. Though the details are beyond the scope of this paper,
our method combines cycle analysis in control-flow graphs [7] and induction-
variable detection [8] in static-single-assignment graphs [9].

Qasem et al. argue that a phase-ordering framework such as ours is a poor
place to choose transformation parameters like the unroll factor [3]. Selecting an
integer parameter for the unroller poses different challenges than does sequence
finding. Furthermore, a different unroll factor might make sense for each loop.
To handle this issue, we constrain the behavior of the unroller. When applied, it
unrolls every inner loop by a factor of four. The search can achieve larger unroll
factors by applying the pass multiple times.

1.3 Hill Climber Framework

We performed this work using the impatient hill climber in our adaptive frame-
work [2]. The hill climber starts at a randomly-selected sequence and examines
its Hamming-1 neighbors in random order. If it finds a neighbor that executes
fewer operations, it moves to that sequence and begins to examine its neighbors.
When it can find no improvement, it declares the sequence a local minimum.

SMART'07

3

To limit search times, the hill climber is impatient; it examines a limited set of
neighbors. If none of those sequences is an improvement, it restarts from a new
sequence. Experience shows that the hill climber finds good sequences in five to
ten descents [2].

Our previous work used sequences of 10 transformations drawn from a set
of 15, a space of 1510 = 576, 650, 390, 625 points. Adding unroll enlarges the
space to 1610 = 1, 099, 511, 627, 776 points, nearly double the size. Though the
new space is a strict superset of the old one, it is difficult to predict the effects of
the change. We expected that, for programs with opportunities for unrolling, the
hill climber would find better sequences, since nearly half of the sequences in the
new space contain unroll. We also expected that the search would find “good” se-
quences faster, because unrolling takes better advantage of opportunities where
peel is profitable. On the other hand, programs for which unroll produces no
effect—or negative effects—may produce slower searches that return lower qual-
ity sequences if the hill climber wastes time evaluating unprofitable sequences.

2 Experimental Results

To determine how adding a transformation changes the system’s behavior, we
performed a series of experiments. All measurements show dynamic instruction
counts for a simulated virtual machine. Prior experience suggests that we will see
similar results with our SPARC and PowerPC backends. The simulator, however,
produces stable, easily measured behavior.

2.1 Unroll in a Fixed Sequence

Figure 1 summarizes the impact of adding unroll to our compiler. For each
benchmark, the leftmost bar shows the dynamic instruction count for code com-
piled with our standard fixed sequence [2]. The other measurements are normal-
ized to the performance of the standard sequence. The second bar indicates the
performance achieved by applying unroll before the standard sequence. Unroll
improves performance up to 8% on matrix300 and 2% to 6% on seval and
tomcatv. Unfortunately, it degrades performance up to 24% on applu, rkf45,
solve, and svd, mainly due to small iteration counts in many inner loops. Both
adpcm coder and adpcm decoder show no change due to a subtle naming issue
that prevents unroll from finding induction variables. Coalescing copies before
unrolling would fix the problem; however, the adaptive search automatically
finds the correct enabling transformations.

2.2 Unroll in an Adaptive Hill Climber

The two rightmost bars in Figure 1 show the best sequences found by the hill
climber without unroll and with unroll. The hill climber used 20 restarts and
examined at most 32 neighbors of each point. The hill climber performs well
in the larger search space. Each program, except solve, shows improvement of
1% to 25% from the addition of unroll. The average improvement from adding
unroll, including the degradation on solve, is 10%.

SMART'07

4

� � � � � � � � � � � � � 	
 � � � �
 �

�
� � �
� � �
� � �

� � �
�

� � �
� � �

� � �
� � �

� � � �
�

� � �
� � � � �

� � � �
�

� � �
�

� � ! � " # $
% %

� & ' (
)

* �
+ � �

* � � + � * + �
! � � � � ! +

� + �
� � , �- .

/0 1 2
304 5.

6 52
.07 8
9: ;04 <
90 5

=0 ;.
> ;1
>=

9?2
9.
39@

A B C D E C F E
G H A B C D E C F E
I J

G H I J

Fig. 1. The effects of adding unroll to a fixed sequence and to the adaptive hill climber.
Standard refers to the standard fixed sequence and HC refers to the hill climber. The
U modifier indicates the inclusion of unroll for that experiment.

The amount of work required to find a good solution is also critical. We are
concerned with search efficiency: performance gain per unit work. Figure 2 shows
that the results depend on available opportunity. adpcm coder shows better
efficiency with unroll while solve shows the opposite result. rkf45 shows an
interesting curve; efficiency with unroll is worse until the search finds a context
where unroll pays off; then its efficiency with unroll is better than without it.

Finally, we examined the frequency of peel and unroll in the best sequences
from the larger space. Figure 3 displays the average pass frequency for the best
1% of the sequences for each benchmark. Peel is now selected less than half as
often as it was before we added unroll. Unroll is selected roughly 11% of the
time, showing that the hill climber finds effective uses for it.

3 Conclusion

We improved the performance of code produced by our adaptive compiler up
to 25% by addressing a deficiency in its transformation set. Despite the larger
search space, the hill climber is usually able to find better compilation sequences
with fewer evaluations. These results suggest that the effectiveness of adaptive
compilation relies heavily on the capabilities of the underlying optimizations.
This kind of evaluation may also lead to a fair basis for comparing transforma-
tions.

adpcm_coder

Evaluations

In
st

ru
ct

io
n

C
ou

nt

1.
0

1.
5

2.
0

2.
5

0 100 200

solve

Evaluations

In
st

ru
ct

io
n

C
ou

nt

1.
0

1.
5

2.
0

2.
5

0 100 200

rkf45

Evaluations

In
st

ru
ct

io
n

C
ou

nt

1.
0

1.
5

2.
0

2.
5

0 100 200

Without Unrolling
With Unrolling

Fig. 2. Search efficiency: average instruction count (normalized against best sequence
found) as a function of sequences evaluated

SMART'07

5

U c d g l m n o p r s t u v x y z

Without Unrolling
With Unrolling

Average Pass Frequency in the Best 1% of the Sequences

Optimization Pass
F

re
qu

en
cy

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Fig. 3. Average pass frequency in the best 1% of the sequences; p is peel and U is
unroll

References

1. Grosul, A.: Adaptive Ordering of Code Transformations in an Optimizing Compiler.
PhD thesis, Rice University (2005)

2. Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S.W., Subramanian,
D., Torczon, L., Waterman, T.: Finding effective compilation sequences. In: LCTES
’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, New York, NY, USA, ACM Press (2004)
231–239

3. Qasem, A., Kennedy, K., Mellor-Crummey, J.: Automatic tuning of whole ap-
plications using direct search and a performance-based transformation system. In:
Proceedings of the Los Alamos Computer Science Institute 5th Annual Symposium.
(2004)

4. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M.F.P., Thom-
son, J., Toussaint, M., Williams, C.K.I.: Using machine learning to focus itera-
tive optimization. In: CGO ’06: Proceedings of the International Symposium on
Code Generation and Optimization, Washington, DC, USA, IEEE Computer Soci-
ety (2006) 295–305

5. Kulkarni, P., Hines, S., Hiser, J., Whalley, D., Davidson, J., Jones, D.: Fast searches
for effective optimization phase sequences. In: PLDI ’04: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and implementation,
New York, NY, USA, ACM Press (2004) 171–182

6. Allen, F.E., Cocke, J.: A catalogue of optimizing transformations. In Rustin, R.,
ed.: Design and Optimization of Compilers. Prentice-Hall, Englewood Cliffs, NJ,
USA (1972) 1–30

7. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: Identifying loops using dj graphs. ACM
Trans. Program. Lang. Syst. 18(6) (1996) 649–658

8. Cooper, K.D., Simpson, L.T., Vick, C.A.: Operator strength reduction. ACM Trans.
Program. Lang. Syst. 23(5) (2001) 603–625

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4) (1991) 451–490

SMART'07

6

	frontpage.pdf
	toc.pdf
	Table of Contents
	Track: Compilation
	Track: Computer Architecture

	tussen1.pdf
	Track: Compilation

	paper_8_6.pdf
	paper_8_10.pdf
	paper_8_12.pdf
	paper_8_13.pdf
	paper_8_15.pdf
	paper_8_19.pdf
	tussen2.pdf
	Track: Computer Architecture

	paper_9_1.pdf
	paper_9_9.pdf
	paper_9_16.pdf
	paper_9_17.pdf

