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Tuning an Adaptive Compiler

Keith D. Cooper, Tim Harvey, and Jeff Sandoval

Rice University, Houston, TX, 77005, USA
{keith,harv,jasandov}@cs.rice.edu

1 Introduction

Adaptive compilation is a technique for feedback-driven selection of program-
specific or procedure-specific sequences of code optimizations [1]. Adaptive com-
pilers find effective compilation sequences using search, machine learning, genetic
algorithms, and limited enumeration [1–5]. A growing body of literature has es-
tablished that no single sequence works well for all codes.

Active research in this area focuses on a number of problems, including find-
ing better search techniques [4, 5], understanding the search spaces [1], and re-
ducing the cost of evaluating distinct sequences [2]. This paper examines how the
“best” sequences change when we add a new transformation to the search space.
Specifically, we added a loop unroller to our pool of optimizations; it changed
the “best” sequences and improved overall performance on a suite of benchmark
codes.

1.1 Background

Our adaptive compiler focuses on the application of “scalar” optimizations to a
low-level intermediate code [2]. Prior to this work, the compiler used 15 distinct
transformations. It had no loop unroller, but included a pass, peel, that peels
the first iteration out of each inner loop. This pass was intended to prepare the
code for loop unswitching.

In our experiments, we noticed that the compiler often chose to apply peel
repeatedly. For example, the five best sequences for the code adpcm coder each
use peel seven times; each ‘p’ indicates a use of peel.

ppppppczpc ppppppclpc ppppppclpd ppppppclpg ppppppclpm

Table 1. The five best sequences for adpcm coder without unrolling

Because peel eliminates overhead from the first iteration of a loop, it produces a
small improvement on each application. As Table 2 shows, peel is chosen quite
often. It accounts for 26% of the passes invoked in the best 1% of sequences for
our nine benchmark programs.

Where peeling reduces the overhead for the first iteration of the loop, un-
rolling reduces the overhead for the entire loop. Thus, a single application of
unroll achieves a larger improvement than a single application of peel, or even
several applications of peel. To see this effect, we added unroll to the fixed se-
quence against which we test the adaptive algorithms. With unrolling, we saw up
to an 8% speedup; unfortunately, on average, it slowed the code down by 5.5%.
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Benchmark Loop-peel Frequency Benchmark Loop-peel Frequency

adpcm coder 42.8% adpcm decoder 21.8%
applu 40.0% matrix300 13.1%
rkf45 41.5% seval 15.3%
solve 30.5% svd 24.0%
tomcatv 4.8% average 26.0%

Table 2. Frequency of peel in top 1% of sequences, by benchmark.

The variability of results from unrolling make it an excellent candidate for
the adaptive compiler. Since a pass is only applied when profitable, we can add
the unroller and let the search algorithms discover when to use it. Adding an
unroller improved the quality of code that the compiler produced and changed
both the best sequences found and the distribution of passes in those sequences.

This paper chronicles our experience adding a loop unroller to our adaptive
compiler. We measured the compiler’s behavior with and without the unroller.
For sequences of 10 passes, the best sequences with unroll produce code that is
10% faster, on average, than those without unroll. Unroll often improves search
efficiency, even though it almost doubles the search space size. The compiler
usually finds a solution of a given quality more quickly with unroll than without
it.

1.2 Loop Unrolling

Loop unrolling clones the body of a loop some number of times (the unroll factor)
and adjusts the iteration count [6]. It reduces the number of induction-variable
updates and backward branches in the loop. While unrolling is straightforward
at the source-code level, our compiler uses an assembly-like intermediate code,
where loops are harder to recognize. In this setting, the implementation of un-
rolling is more complex. Though the details are beyond the scope of this paper,
our method combines cycle analysis in control-flow graphs [7] and induction-
variable detection [8] in static-single-assignment graphs [9].

Qasem et al. argue that a phase-ordering framework such as ours is a poor
place to choose transformation parameters like the unroll factor [3]. Selecting an
integer parameter for the unroller poses different challenges than does sequence
finding. Furthermore, a different unroll factor might make sense for each loop.
To handle this issue, we constrain the behavior of the unroller. When applied, it
unrolls every inner loop by a factor of four. The search can achieve larger unroll
factors by applying the pass multiple times.

1.3 Hill Climber Framework

We performed this work using the impatient hill climber in our adaptive frame-
work [2]. The hill climber starts at a randomly-selected sequence and examines
its Hamming-1 neighbors in random order. If it finds a neighbor that executes
fewer operations, it moves to that sequence and begins to examine its neighbors.
When it can find no improvement, it declares the sequence a local minimum.
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To limit search times, the hill climber is impatient; it examines a limited set of
neighbors. If none of those sequences is an improvement, it restarts from a new
sequence. Experience shows that the hill climber finds good sequences in five to
ten descents [2].

Our previous work used sequences of 10 transformations drawn from a set
of 15, a space of 1510 = 576, 650, 390, 625 points. Adding unroll enlarges the
space to 1610 = 1, 099, 511, 627, 776 points, nearly double the size. Though the
new space is a strict superset of the old one, it is difficult to predict the effects of
the change. We expected that, for programs with opportunities for unrolling, the
hill climber would find better sequences, since nearly half of the sequences in the
new space contain unroll. We also expected that the search would find “good” se-
quences faster, because unrolling takes better advantage of opportunities where
peel is profitable. On the other hand, programs for which unroll produces no
effect—or negative effects—may produce slower searches that return lower qual-
ity sequences if the hill climber wastes time evaluating unprofitable sequences.

2 Experimental Results

To determine how adding a transformation changes the system’s behavior, we
performed a series of experiments. All measurements show dynamic instruction
counts for a simulated virtual machine. Prior experience suggests that we will see
similar results with our SPARC and PowerPC backends. The simulator, however,
produces stable, easily measured behavior.

2.1 Unroll in a Fixed Sequence

Figure 1 summarizes the impact of adding unroll to our compiler. For each
benchmark, the leftmost bar shows the dynamic instruction count for code com-
piled with our standard fixed sequence [2]. The other measurements are normal-
ized to the performance of the standard sequence. The second bar indicates the
performance achieved by applying unroll before the standard sequence. Unroll
improves performance up to 8% on matrix300 and 2% to 6% on seval and
tomcatv. Unfortunately, it degrades performance up to 24% on applu, rkf45,
solve, and svd, mainly due to small iteration counts in many inner loops. Both
adpcm coder and adpcm decoder show no change due to a subtle naming issue
that prevents unroll from finding induction variables. Coalescing copies before
unrolling would fix the problem; however, the adaptive search automatically
finds the correct enabling transformations.

2.2 Unroll in an Adaptive Hill Climber

The two rightmost bars in Figure 1 show the best sequences found by the hill
climber without unroll and with unroll. The hill climber used 20 restarts and
examined at most 32 neighbors of each point. The hill climber performs well
in the larger search space. Each program, except solve, shows improvement of
1% to 25% from the addition of unroll. The average improvement from adding
unroll, including the degradation on solve, is 10%.
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Fig. 1. The effects of adding unroll to a fixed sequence and to the adaptive hill climber.
Standard refers to the standard fixed sequence and HC refers to the hill climber. The
U modifier indicates the inclusion of unroll for that experiment.

The amount of work required to find a good solution is also critical. We are
concerned with search efficiency: performance gain per unit work. Figure 2 shows
that the results depend on available opportunity. adpcm coder shows better
efficiency with unroll while solve shows the opposite result. rkf45 shows an
interesting curve; efficiency with unroll is worse until the search finds a context
where unroll pays off; then its efficiency with unroll is better than without it.

Finally, we examined the frequency of peel and unroll in the best sequences
from the larger space. Figure 3 displays the average pass frequency for the best
1% of the sequences for each benchmark. Peel is now selected less than half as
often as it was before we added unroll. Unroll is selected roughly 11% of the
time, showing that the hill climber finds effective uses for it.

3 Conclusion

We improved the performance of code produced by our adaptive compiler up
to 25% by addressing a deficiency in its transformation set. Despite the larger
search space, the hill climber is usually able to find better compilation sequences
with fewer evaluations. These results suggest that the effectiveness of adaptive
compilation relies heavily on the capabilities of the underlying optimizations.
This kind of evaluation may also lead to a fair basis for comparing transforma-
tions.
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An Effective Local Search Algorithm for an
Adaptive Compiler

Yi Guo, Devika Subramanian, and Keith D. Cooper

Rice University, Department of Computer Science,
Houston, Texas 77005 USA

{yguo,devika,keith}@rice.edu

Abstract. Most algorithms currently used to find good compilation se-
quences in an iterative adaptive compiler, such as genetic algorithms
and hill climbing, search in the space of sequences of fixed length. In
this paper, we argue that restricting the search to fixed-length sequences
limits the ability of search algorithms to find good sequences for some
benchmarks. We propose a new local search algorithm that uses greedy
construction and cleanup to effectively explore the neighborhood of a
start sequence by randomized insertion and deletion of transformations.
Preliminary experimental results show that the quality of the local min-
ima found by our local search algorithm are superior to those sequences
found by GAs and HCs, and are close to the best sequence we know.
Such local minima are found with significantly lower search effort than
GAs and HCs working with fixed-length sequences.

1 Introduction

Over the last several years, various groups [1, 6, 3] have studied the code trans-
formation selection and ordering problem in an iterative adaptive compiler. Sev-
eral search techniques for biased random sampling of the combinatorial space
of program-specific optimization sequences have been proposed. Genetic algo-
rithms (GAs) and hill climbing are two popular search algorithms implemented
in research iterative compilers. While the choice of specific parameters may vary,
these algorithms share one common characteristic: solutions are represented as
fixed-length sequences of code transformations and the length of the solution is
not varied during the search process. This fixed-length framework is dictated by
the use of standard genetic operators, i.e. 1-point crossover and mutation, used
in GAs to generate variations for the next generation, and the use of Hamming
distance to define neighbors in hill climbing.

Figure 1 presents evidence that current search algorithms based on the fixed-
length framework do not find the best solutions for some benchmarks. For
spline, even after 500 trials, our optimized genetic algorithm achieves less than
45% of the performance speedup of the best known sequence. We believe there
are two reasons for this: (1) the fundamental GA operations do not explore the
space of optimization sequences effectively. The mutation operator, which ran-
domly generates point variations of a sequence, makes local changes very slowly,
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Fig. 1. The percentage of potential improvement achieved by an optimized GA over
500 trials for four benchmarks.

since mutation rates are generally set low. The 1-point crossover operator in
GAs is quite destructive and does not generate semantically meaningful vari-
ations, and (2) The constraint of fixed-length sequences also limits the range
of performance gains that can be achieved. Some benchmarks need fairly short
compilation sequences. For those cases, a fixed-length GA spends valuable time
and resources learning no-op subsequences to pad the sequence to the full pre-
determined length. Other benchmarks need longer sequences, and the GA fails
to realize the full benefit of the range of optimizations available in the compiler.
Attempts to fix these two inherent weaknesses in exploration strategy by tun-
ing algorithm parameters such as the population size, as well as the size of the
fixed-length representation, yield little improvement in search performance for
several benchmarks.

In this paper, we show that if the neighbor set of a given sequence is explored
effectively, the local minima have quality competitive with the best sequences we
know. Instead of defining neighbors by Hamming distance, we define neighbors by
edit distance, and use greedy construction and cleanup to generate a richer set of
meaningful variations by insertion and deletion of transformations. Preliminary
experimental results for some benchmarks on the SPARC backend show that
the local search algorithm can significantly outperform GAs and hill climbers
working in the space of fixed-length sequences.

2 Related Work

Schielke’s 1999 paper [2] appears to be the first use of a GA to find compilation
sequences. He showed improvement in both code size and execution speed. The
framework of the GAs used in the paper is similar to those used in current re-
search iterative compilers. Several techniques have been proposed to improve the
GAs’ searching performance without changing its fixed-length framework. Kulka-
rni et al. [6] proposed techniques to speed up searches for compilation sequence
in genetic algorithms by detecting and removing redundant trials of equivalent
programs, and prohibiting certain dormant or disabled transformations.
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Statistical and machine learning techniques have been used to improve the
performance of searching. Agakov et al [1] selected a set of benchmarks and
learned an offline model for each benchmark. When given a new program, the
model of the benchmark that is most similar to the new program is used to focus
the search space.

In [3], Grosul describes and compares several variations in an adaptive com-
piler and found that GAs outperform hill climbing and other algorithms on a
budget of several hundreds to a few thousand compilations. In this paper, we use
the same experimental setup and compare our local search algorithm to the ge-
netic and hill climbing algorithm in [3]. We show that our local search algorithm
significantly outperforms GAs and hill climbing by finding better sequences with
far fewer compilations.

Several groups have worked on the problem of finding good parameter set-
tings for specific transformations. Triantafyllis et al. [7] demonstrated the promise
of using multiple compilation configurations in a practical compiler. Zhao et
al. [8] described an approach for modeling interactions in a predictive framework.
Kisuki et al. [5] have used various search algorithms to find good optimization
settings for loops in numerical kernels.

3 Neighbor Exploration: Finding Local Minima

The definition of neighbor is fundamental to search algorithms. In the fixed-
length framework, it is easy to define neighbors by Hamming distance: two se-
quences of the same length are considered neighbors if they differ in exactly one
character. The experiments in [3] show that the hill climbers using Hamming
distance do not deliver satisfactory results. Our local search algorithm defines
neighbors by edit distance, i.e., two sequences are considered neighbors if one
can be derived from another by inserting or removing one transformation.

Two procedures are used to find local minima in sequence space by exploring
the neighborhood of a starting sequence: cleanup and greedy construction. The
cleanup procedure removes transformations that are redundant or detrimental
to the quality of the given sequence. Such transformations can appear during
both greedy construction and random sequence generation. Greedy construc-
tion extends the base sequence one transformation at a time. At each step it
picks a transformation and inserts it into the position that delivers the most
improvement. If a transformation does not yield improvement, it is discarded.

Fig. 2. Neighbor Exploration
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Figure 2 shows an example of greedy construction and cleanup. Transforma-
tion v, o and d are inserted into sequence y, and transformation y is removed
by cleanup. Our algorithm starts the search from random sequences. Local min-
ima are found by iteratively running greedy construction and cleanup. Detailed
algorithm description can be found in our technical report [4].

4 Experiments

In this paper, we use 16 transformations, which are listed in Table 3.1 on page 17
of [3]. They are low-level code transformation based on ILOC, which is a RISC-
like assembly language. Our implementation ensures that each transformation
can take any valid ILOC program as input and producesa valid ILOC program
as output. This feature allows us to run the compilation transformations in
arbitrary order, which is critical for an adaptive compiler. When using the default
compilation sequence rvzcodtvzcod, the performance of the code generated by our
ILOC compiler is comparable to the GCC compiler using -O2 flag.

We compare our local search algorithm to GA and Hill Climbing (HC). The
parameter settings for GA and impatient hill climbing(HC-10) are described on
page 76 in [3]. For GA, we tried three length settings, 15, 20 and 25, and the
curve represents the best among the three. The sequence length for HC is fixed
at 15. Figure 3 shows the search performance for three algorithms within 1000
trials. The speedup of a sequence is normalized to 0-100% where the default
sequence rvzcodtvzcod is set to 0% and the best sequence is set to 100%.

According to Figure 3, our search algorithm excels other algorithms after
200 trials, and after 1000 trials, the quality of sequence we found is close to the
best. Table 4 shows the length of the best sequence we known and the best GA’s
length setting. The best length settings of GA is program-specific, and there is
no obvious relation to the length of the best sequence.

Benchmark Source Suite Len. of the Best Seq. Best GA’s Len. Settings

spline fmm 13 20
si spec 24 20
bitcnts mibench 29 25
sha mibench 29 20

Table 1. Benchmark

5 Conclusion

This paper considered two hypotheses for the poor performance of GAs and HCs
on complex compilation sequence spaces for some benchmarks. The first is the
fixed-sequence length limitation and the second is the choice of genetic operators
for constructing variations to explore during search. We introduces a local search
algorithm with a richer neighborhood definition generating variable length se-
quences. We demonstrate that this new local search algorithm outperforms GAs
and HCs on a set of benchmarks, both on the quality of solutions and the search
effort needed to find them.
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Fig. 3. Average percentage of potential improvement achieved by our local search al-
gorithm, GA and HC on the SPARC backend for four benchmarks
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Abstract. Basic-block reordering is a compiler optimization technique which 
has the effect of reducing branch cost and I-Cache misses by rearranging code 
layout. In this paper, we present our basic-block reordering method which 
detects typical structures in the control-flow graph. It uses the 
architecture-specific branch cost model and execution possibilities of 
control-flow edges to estimate the possible layout costs of specific 
sub-structures. The layout with the minimal cost estimation would be chosen. 
We further investigate a new approach to use neural network to predict 
execution possibility for each edge. We choose a set of programs and record 
particular static information of the edges in the typical structures. These data 
includes the knowledge about the relationship between static program features 
and dynamic behavior, and is fed to train the neural network. In this paper, we 
adopted an improved back propagation neural network. The algorithm has been 
implemented based on a 5-stage pipeline UniCore architecture. The 
experiments show that it improves programs' performance well, and execution 
possibility of edges may be predicted using machine learning techniques. 

Keywords: neural network, basic-block reordering, program structure, profile 
guided optimization 

1 Introduction 

The control-flow information is usually represented by control-flow graph during 
compiler optimization. The binary or assembly is finally laid as one-dimension 
sequence in the memory, which brings a gap between two-dimension 
graph-represented program and sequential one. Compilers will arrange the layout of 
binaries at the end of the compilation process. In modern pipelined microprocessors 
with hierarchical memory system, the performance of a binary program will be 
affected by its code layout in most cases. Whether the branch will be taken and the 
branch target address cannot be known until the branch reaches a late pipeline stage. 
This often brings a performance loss, which is more obvious in deeper pipelines. For 
example, in Digital Alpha 21164, the target address is available at the sixth stage and 
the average performance loss per branch prediction miss is 11 cycles. Modern 
processors have introduced various branch prediction strategies to improve branch 
performance. If the layout of one binary matches the processor’s branch prediction 
strategy, the performance might be further improved. The layout of a binary may also 
affect instruction cache performance. The target of a branch might be laid 

12



un-continuously with itself. When a branch is taken, if the branch instruction and its 
target are not in the same cache line, there may be some un-useful instructions fetched 
into the cache lines but never executed. This leads to instruction cache efficiency 
decrease. Further more, if frequently-interacted code fragments are laid close to each 
other, the possibility of conflict in instruction cache will be reduced. 

Our algorithm analyzes the structures of the program and gives the optimal layout 
for each local sub-structure [23]. We combine structural analysis and machine 
learning techniques to guide the layout process. While achieving good experimental 
results, most of basic reordering methods are implemented based on profiling 
information of the program execution. One of the drawbacks of profile-based methods 
is the additional work of profile generation and selection. We attempted to find out if 
the profile information of one execution trace can be used to predict another execution 
trace of the program or the behavior of another program. Our method has two main 
phases. In the first phase the analyzer identifies various local structures from a set of 
programs and collects relevant profiling information. Then we use that to train a 
neural network mapping static features associated with each control-flow edge to an 
execution possibility prediction. In the second phase, we apply the trained neural 
network to predict the execution possibility for each control-flow edge, to feed our 
basic-block reordering algorithm based on local structural analysis. 

Basic-block reordering using machine learning methods has several advantages. 
First, compared with profile-based methods, it can save programmers’ work of 
producing and choosing proper profile information to guide compiler optimization. 
Second, traditional heuristic based methods require compiler writers to analyze many 
static features, so that to find out which set of features affects the execution of the 
programs most and how. Machine learning methods automatically select the 
information.  

The rest of this paper is organized as follows. In Section 2, we discuss some related 
works. In Section 3, we introduce our architectural branch cost model and basic-block 
layout cost model. We also describe the structural analysis based basic-block 
reordering algorithm. Our neural network used to learn the mapping static program 
features to execution possibilities is addressed is Section 4. Section 5 shows the 
experimental results and the conclusion is given in Section 6. 

2 Related Works 

There are a number of techniques reducing branch costs, both hardware-based and 
software-based. Most of them use past program behavior to predict its future actions. 
One of the most popular compiler optimization techniques is suggested in [1]. In that 
paper, Pattis and Hansen use profile information of execution frequency of each edge 
to arrange the code placement. Although it is a greedy algorithm and the optimal 
layout cannot be guaranteed, many compilers and basic-block reordering techniques 
are based on it [2][4][5][6][12][15]. The idea of taking the different branch costs of the 
specific architecture into consideration is described in [12]. In [2], the authors reduce a 
limited form of the reordering problem to the Directed Traveling Salesman Problem 
which is NP-hard. They also present experimental results using heuristic algorithms 
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from training and testing on different data sets, which shows only a little reduction of 
the benefits from the code placement algorithms.  

Compiler writers have crafted many heuristics over the years to approximately 
solve NP-hard problems efficiently [26]. Profile-based optimizations require effective 
profiles which are not deeply discussed in most of the works. The experimental 
results in [2] shows a possibility of using past program behavior to predict its future 
actions, like many hardware-based branch prediction techniques do. Meanwhile, the 
authors in [24] investigate an approach to uses a body of existing programs to predict 
the branch behavior in a new program at compile-time. In that paper, the authors use 
machine learning techniques and show their efficiency in predicting the branch 
behavior. Inding a heuristic that performs well on a broad range of applications is a 
tedious and difficult process. J.Cavazos induces heuristics in instruction scheduling 
[27], it also shows that inexpensive and static features can be successfully used in 
scheduling. 

In this paper, we investigate ways to combine our structural analysis based method 
and the machine learning techniques to guide the layout process, and intend to get 
some hints related to program structures and behaviors. 

3 Basic Block Reordering Using Structural Analysis 

In this section, we give a briefly description to our local structural analysis based 
basic-block reordering method. A more detailed one can be found in [23]. As 
mentioned before, greedy algorithms usually cannot get the optimal layout. Modern 
programs are well structured to be divided into typical structures usually. Our method 
first identifies all local structures of a program. For each structure, we use structure 
cost model and the execution frequencies of control-flow graph edges to calculate the 
cost of each possible layout and the one has the minimal cost is chosen. Experimental 
results show that our method can improve performance by 7% on average which is 
better than the common used greedy method [23]. 

3.1 Architecture-Specific Branch Cost Model 

In our model, branch cost is defined as the cycles needed to execute the branch/jump 
instruction (if needed) plus the cost caused by the branch or jump. We are mainly 
concerned with reducing branch/jump cost, and instruction cache performance may be 
improved as well. In this paper, we will call branch instruction or jump instruction all 
as branch for convenience. 

For a typical single-issued pipelined processor with branch prediction mechanism, 
the branch cost can be calculated as follows: Branch cost = Cost of branch × 
Numbers of branches + Cost of branch prediction miss × Numbers of branch 
prediction misses. Here the number of branches stands for the dynamic number of 
branches executed. 

Different processors may have different branch cost models due to architectural 
difference. We analyze and conclude the branch cost model for UniCore-I processors. 
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But the method isn’t limited to them and can be used on many other pipelined 
processors.  

UniCore-I is a single-issued RISC microprocessor with five pipeline stages. Its 
branch prediction mechanism is to assume the fall-through path is always executed 
[14]. Since whether a branch will be taken is not determined yet, it continues to fetch 
the following instructions in the fall-through path. If the branch is taken, these 
instructions in pipeline will be squashed, and re-fetch right instructions. This branch 
prediction strategy is very common to be seen in HP PA-RISC, Alpha AXP-21064 
and many other processors. In UniCore-I processor, a branch instruction itself will 
take 1 cycle in the pipeline. If the branch is taken, it will cost extra 2 cycles till branch 
target is calculated. Thus, a taken conditional branch will take 3 cycles in all and a 
not-taken conditional branch takes one. An unconditional jump will always take 3 
cycles. 

The branch cost is directly related to the edges in the control-flow graph. For a 
control-flow graph G, the branch cost of an edge e=head tail is defined as the cycles 
needed to go from head to tail, and is represented as Cost(e). Given an architecture, 
Cost(e) is related to the characteristics of basic-block Head and tail and their relative 
positions in the linear space. Figure 1 shows the possible situations: 

         

Fig. 1. Different Branch Cost of Different Edges in Control-Flow Graph 

In Figure 1-(a), basic-block A has only one successor and can go through to B 
directly with no branch instructions, so the cost of edge A→B is 0; In Figure 1-(b), A 
has only one successor B, but B is not laid just following A, thus there need be one 
jump instruction in the end of A, thus edge A→B costs 3 cycles; In Figure 1-(c), A 
has two successors with B just following it, thus there should be one conditional 
branch in the end of A and edge A→B costs 1 cycle while edge  A→C costs 3 
cycles; In Figure 1-(d), A also has two successors B and C, but neither of them is laid 
just following A, so there should be two branches at the end of A and edge A→B 
costs 3 cycles while edge A→C costs 4 cycles.  

In UniCore-I, for a control-flow edge e=A B, let Profit(e) be the profit of laying 
B directly following A. It is the cost of not laying B right following A minus the cost 
of laying B right following A, as shown in Table 1. 
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Table 1. The Profit(A B) in UniCore-I 

 Cost of not laying B 
directly following A 

Cost of laying B directly 
following A Profit(A B) 

A has only one 
successor 3 cycles 0 3 cycles 

A has more than one 
successors 3 or 4 cycles 1 cycle 2 or 3cycles 

 
The case that Cost(e)=4 is only when none of A’s successors is laid directly 

following A, which cannot be determined before the layout is finished, and is not very 
common. So we assume the Profit(A B) to be 2 when A has more than one 
successors. Thus in our model, according to the number of A’s successors, 
Profit(A B) is calculated as follows: 

3 , A 1
( )

2 ,
s u c c e s s o r

P r o f i t e
O th e r

⎧
= ⎨
⎩

 h a s   

The final profit-weight of the edge Key(e) is calculated as follow: Key(e)=Profit(e)
×Frequency(e). 

3.2 Local Structural analysis and Optimization 

PH algorithm use profile information of execution count of each edge to arrange the 
code placement. Pattis and Hansen describe two code placement algorithms. The 
bottom-up one begins with the edge with the highest execution frequency and tries to 
arrange the tail node of the edge immediately following the head node. It’s a greedy 
algorithm which cannot get the optimal layout in some cases. See Figure 2 as an 
example. Basic-block A, B and C construct an if-then structure, execution frequency 
of each edge is marked beside. Since Freq(A C) > Freq(A B) and  Profit(A C) = 
Profit(A B) = 2, Key(A C) > Key(A B). Thus the program layout will be A-C in 
PH algorithm, not including block B in the chain. The total branch cost will be 6500 + 
3500*3 + 3500*3 = 27500 (cycles). But if we lay them as A-B-C, the total branch 
cost will be 3500 + 6500*3 = 23000 (cycles). This would be better than the former. 

 

Fig. 2. Example of If-then Structure 

Modern programs always have good structures and their control-flow graph can be 
divided into typical structures. Most of these structures can be represented as nine 
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types [9]. Among these structures, the improper interval schema doesn’t always 
appear and has no fixed structure. The self-loop structure has only one basic-block, 
while case/switch structure are represented as jump tables in machine codes, so these 
structures aren’t concerned in our work. We define 7 typical structures and analyze 
their optimal layout given the execution frequencies of all edges, which are shown in 
Figure 3. 

 

Fig. 3. Seven Typical Structures in Control-flow Graph1 

We will take if-then structure as an example to introduce our algorithm getting the 
optimal local layout. Freq(e) represents the execution count of the edge e in profile. 
As shown in Figure 3-(b), in if-then structure, B1 has two successors, thus the 
possible layout includes: B1-B2-B3 or B1-B3 (B2 is set to be a separate node). For 
the former layout, the branch cost is:  

CostB1-B2-B3 =Freq(B1->B2) * Cost(B1->B2)+ Freq(B2->B3) * Cost(B2->B3) 
+ Freq(B1->B3) * Cost(B1->B3)   
= x+3y 

Similarly, for the latter layout, the branch cost is CostB1-B3=6x+y. So if B1-B2-B3 
is better, it demands CostB1-B2-B3 ≤CostB1-B3, that is y≤2.5x. Similarly, if the algorithm 
chooses B1-B3, then it demands y≥2.5x. If y=2.5x, the first layout is chosen for better 
instruction cache locality. The item of if-then in Table 2 shows the above results. 
Other structures’ optimal local layouts under different frequencies of edges are also 
listed in Table 2.  

Table 2. Optimal Local Layout for Each Structure under Different Conditions 

Structure Optimal Local Layout Condition 
Sequential Sequential N.A. 

B1-B2-B3 y ≤ 2.5x If-then 
B1-B3 y >2.5x 
B1-B2-B4 y ≤ x If-then-else 
B1-B3-B4 y > x 

                                                           
1 The weight beside each edge represents the execution counts of the edge according to the 

profile information 
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B2-B1-B3 y ≤ x The other predecessor of B1’s 
is laid directly before B1 B1-B3 y > x While-loop 

Other B2-B1-B3 N.A. 
Repeat-loop B1-B2-B3 N.A. 

B1-B3, B2-B4 y > x The other predecessor of B1 is 
laid directly before B1 B1-B2-B4 y ≤ x 

B1-B3, B2-B4 y > x  and  x1< x2 
B1-B2-B4 y ≤ x  and  y<2 x2 

Natural-loop 
Other 

B2-B1-B3 Other 
B1-B2-B4, B3-B5 x>y 
B1-B3-B4 x ≤y and 3x+2y2<2y1 Proper-break 
B1-B3-B5,B2-B4 Other 

   
Thus we can get the table of optimal local layout for each structure under different 

conditions. In this phase of the algorithm, local structural analysis and layout 
optimization is performed: The algorithm traverses the whole graph and searches for 
typical structures. Once a typical structure is identified, the algorithm will reorder the 
basic-blocks of it according to the above table and the particular execution 
frequencies of the edges. Let’s take the weighted control-flow graph in Figure 2 for 
example. In that case, Freq(A->B)=6500<2.5×3500=2.5×Freq(A->C), so the 
optimized layout is A-B-C.  

We describe our algorithm in pseudo code as following: 
procedure reorder (N, E) 
begin 
sort_edge(E); //Sort all edges by Profit(e)  
for e in E do //visit all edges by order of Profit(e) and link them to chains 
begin 

if A.visit = false and B.visit = false; //A、B are both not visited 
B.visit := true; A.visit := true; 
A.next := B;  
B.isTail := true; A.isHead := true;  

else if B.visit = false and A.isTail = true // B is not visited, A is tail of a chain  
B.visit := true; A.next := B; 
A.isTail := false; B.isTail := true; // B becomes tail 

else if A.visit = false and B.isHead = true // A is not visited, ,B is head of a chain 
A.visit := true; A.next := B; 
A.isHead := true; B.isHead := false; // A becomes its head 

else if A.isTail = true and B.isHead = true; // A、B are both visited  
A.next := B; 
A.isTail := false; B.isHead := false; //form these 2 chains 

end 
structural_analysis(N,E); //scan all chains, optimize according table 2 via 

structural analysis 
connect_chains(); //link all chains to form the binary 
end 
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procedure structural_analysis (N,E) 
begin 
for B in N（Deep-First-Order）do 
begin 

// if-then structure? 
if Succ(B)={ V1 ,V2} 

if Pred(V1)={B} &&Pred(V2)={B} &&Succ(V1)={V2} &&Profit (B→V1) + 
Profit(V1→V2)>Profit (B→V2) 

B.next := V1; V1.next := V2; V1.visit := true;  
if Pred(V1)={B} &&Pred(V2)={B} &&Succ(V2)={V1} &&Profit (B→V2) + 

Profit(V2→V1)>Profit (B→V1) 
B.next := V2; V2.next := V1; V2.visit := true;  

 
//test whether basic-block B and its succeeds is a typical structure, select optimal 

layout according to Table2 
…… 
 

end 
end 

4. Predictions with Artificial Neural Network 

In this section, we use artificial neural network to predict the execution probability of 
edges in typical structures given above. Our idea is generally described as follows. A 
set of programs are gathered and particular static information about edges in the 
typical structures is recorded. Relevant dynamic behavior is associated with each edge 
while profiling. We have accumulated a dataset about the relationship between static 
program features and dynamic behaviors. This dataset is used to train the neural 
network to predict the behaviors of edges. In the dataset, the edges with similar static 
features may exist in programs not in the training set or the programs with different 
inputs. 

This section contains two main parts. First, we introduce the static feature set 
extracted for the training process. Second, we describe the artificial neural network 
used in our prediction. 

4.1 Static Feature Set for Prediction 

To apply the neural network to our problem, the static feature set as input of neural 
network is firstly determined. We record the static features for each edge that are used 
in the algorithm above in each typical structure (see Table 3). Some features are used 
to identify typical structures and the edges constructing them, others are some 
properties related to the edges.  
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Table 3. Selected Static Features for Edges 

No. Feature name Feature description 
1 SS_No. Unique number to identify typical structure.  
2 Edge_No. Unique number to identify edges. 

3 I_last_of_head The operation code of the last instruction in the basic-block of 
edge's head. 

4 Br_direction Branch direction. 

5 I_pre_last The operation code of the instruction before the last 
instruction in the edge's head 

6 Is_bl Whether the last instruction in the edge's head is a 
7 Is_swi Whether the last instruction in the edge's head is SWI. 
 

B. Calder [24] brings neural network and static features of program in their 
evidence-based static branch prediction (ESP). We’ve referred these suggestions to 
choose these features. The most important difference is that, [24] considered every 
single branch in a program, while we are concerning edges in an identified typical 
structure. A lot of static information, such as whether the edge is a part of a loop, etc, 
has already been contained in the type of a typical structure.  

We choose the feature set in Table 3 based on several criteria. First, we adopt 
information which would be likely predictive of behavior. This information includes 
two parts. One is a unique number for each typical structure. The other unique 
number is for edges. Second, we use encode some information related to a given edge 
according to classical static branch prediction methods, such as the operation code of 
the last instruction in the edge's head basic-block, branch direction and etc. 

We profile the programs to collect information on execution counts of edges and 
its head basic-blocks. Since the execution counts of edge varies with programs, we 
normalized it by its head basic-block execution counts, that is, execution probability 
of edge is execution_counts_of_the_edge / head_basic-block_execution_counts. 
Finally, we associate the static features of each edge with the corresponding execution 
probability. 

4.2 Artificial Neural Network Building 

Our goal is to build a tool that can effectively predict the edge's execution probability 
based on static program features. It should accurately predict not only for the 
programs it studied, but also for other programs it is never acquainted with. 

We use an improved back propagation neural network, which is not fully 
connected and has shortcut connections [20]. A cascade model is used to train it. The 
cascade training model differs from the ordinary ones in the sense that it starts with an 
empty neural network and then adds neurons incrementally. The basic idea of this 
model is that some neurons are trained separately, and the most promising candidate 
is inserted. Then the output connections are trained and new candidate neurons is 
prepared. The candidate neurons are created as shortcut connected neurons in a new 
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hidden layer, which means that the final network will consist of a number of hidden 
layers with one connect neuron in each. We choose RPROP algorithm as its internal 
training algorithm of this model [20]. And the candidate neurons' activation functions 
may be one of the followings. 

The neural network we adopted has only one hidden layer. Thus, the structure is 
7-X-1. Here X is the number of neurons in the hidden layer, which is determined in 
the learning phase. The activation function for the candidate neuron may be one of the 
following: 
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Here x is the biased linear combination of the outputs of the hidden candidate 
neurons. The learning criterion is to minimizing the Mean Square Error. More details 
and discussions about the neural network are available in the next section. 

5. Experimental Results and Analysis 

In this section we present our experimental results. We have implemented the method 
described above as a post pass of GNU toolchain (gcc 3.2.1). We use integer 
benchmarks in SPEC2000 as our neural network training data and use several 
programs from MediaBench[14] as our final benchmark test data. Each program is 
compiled with GCC “–O2” level of optimization. The performances are measured 
using sim-pipeline: a cycle-accurate five-stage pipeline UniCore simulator modified 
from sim-outorder in simplescalar[16]. The main configuration for UniCore-I 
processor simulator is listed in Table 4, and the benchmark programs are briefly 
described in Table 5. 

Table 4. Simulation Parameters of UniCore-I Processor 

Branch Prediction Scheme Not taken 
Level 1 I-Cache  
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  Capacity 8K 
  Associativity 2 
  Block Size 32 Bytes 
Replace Scheme Round-Robin 
Level 1 D-Cache  
  Capacity 8K 
  Associativity 4 
  Block Size 32 Bytes 
Other Schemes Round-Robin, Write back, Write allocate 
Memory Access Latency  
  First Chunk 20 Cycles 
  Inter Chunk 2 Cycles 

Table 5. Benchmark Description 

Name Description 

adpcm Adaptive differential pulse code modulation, one of the simplest and 
oldest forms of audio coding (encode / decode) 

epic An experimental image compression utility (epic / unepic) 
pegwit Public key encryption and authentication (encode / decode) 

jpeg Standardized compression method for full-color and gray-scale images 
(encode / decode) 

mesa A 3-D graphics library clone of OpenGL (mipmap / osdemo / texgen) 
mpeg2 A standard for high quality digital video transmission (encode / decode) 

 Experimental Results 

Experimental results are shown in Figure 4-6 (ORI means original program. 
PROFILE means using profiling optimization directly. ANN means using artificial 
neural network built above). 

While applying the cost model mentioned in Section 3 on UniCore-I architecture, 
the branch_inst_cost is 1 cycle and branch_miss_cost is 2 cycles, so that the branch 
cost of UniCore-I is calculated as branch instruction counts + 2* branch prediction 
misses. As shown in Figure 4, ANN can get an average branch cost reduction of 25%, 
which is surprisingly close results compared with PROFILE (28%).  
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Fig. 4. Normalized Branch Cost 

The influence of instruction cache misses is compared and shown in Figure 5. 
Generally speaking, both the PROFILE and ANN methods achieve a considerable 
improvement on I-Cache efficiency. However, sometimes ANN wins PROFILE. One 
possible reason might be that our basic-block reordering algorithm is not specially 
tuned for I-Cache and the optimal layout is only inside single structures. ANN brings 
some random factor into the algorithm and gets good result sometimes. 
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Fig. 5. Normalized Instruction Cache Misses 

The comparisons on the whole performance is shown in Figure 6. On this aspect, 
PROFILE and ANN make similar improvement, 9% and 8% separately.  
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Fig. 6. Normalized Cycle Counts 

As we can see above, the result of using artificial neural network to predict edge 
execution probability for the algorithm is sometimes even better than using profile 
information and sometimes worse. And on average, they are very close. The result is 
better than our primal assumption, especially in the situation that the training of the 
neural network uses different set of programs from the testing benchmarks. Future 
analysis is still needed in order to get further understanding.  

6. Conclusions and Future Work 

In this paper, we described our basic-block reordering method which combines 
program structural analysis and the neural network technique to give a proper layout 
for each typical structure. Experiments show that this method can improve program 
performance and structural analysis based feature extraction can be effective on static 
prediction of branch possibility. Program structural analysis can provide detailed 
information about the control flow structures, thus it may also provide a set of 
important and effective static features for other optimizations based on machine 
learning. Computer architecture and compiler optimization are related to many 
concrete applied fields. As the computer systems are becoming more and more 
complex, it is also harder for researchers to derive conclusions from so many factors 
and details. We believe applying machine learning and other techniques which are 
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commonly used in computer application fields upon the researches on computer 
system itself can further help researchers understand and optimize the system.  
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Abstract. Modern compilers present a large number of optimization
options covering the many alternatives to achieving high performance for
different kinds of applications and workloads. Selecting the optimal set of
optimization options for a given application and workload becomes a real
issue since optimization options do not necessarily improve performance
when combined with other options. The ESTO framework described here
searches the option set space using various types of genetic algorithms,
ultimately determining the option set that maximizes the performance
of the given application and workload. ESTO regards the compiler as
a black box, specified by its external-visible optimization options. For
the IBM XLC compiler, with some 60 optimization options, we achieved
+13% gain over an aggresive base, using 60 iterations on average. We
studied a number of search policies given a fixed iterations budget, and
showed that exponentially decreasing the width of the search beam gives
the best results.

1 Introduction

In modern compilers and optimizers, the set of possible optimizations is usually
very large. In general, for a given application and workload, optimization op-
tions do not accrue toward ultimate performance. To avoid selection complexity,
users tend to use standard combination options, such as -O, which provide sta-
ble, high performance for the “average” application. In general, however, these
standard options are not the optimal set for a specific application executing its
representative workload.

Genetic algorithms (GA) [17, 3] present an attractive solution to this prob-
lem of selecting an optimal set of options. The problem is easily mapped to the
original problem of gene optimization. The extended time required to reach to
a preferred solution is justified by the much longer life of the optimized pro-
gram. Past related works (e.g. [12], [15]) dealt with tuning specific compilation
heuristics. The Expert System for Tuning Optimization (ESTO) was developed
to study this GA solution to the general compiler options optimization. The pro-
gram first computes an initial result using the best-known optimization set, e.g.,
-O3, and forms an initial generation; randomly, or using some initial knowledge.
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Then, at each iteration, the group of organisms (i.e., option sets) that comprise
the generation is evaluated on the input workload. The results are sorted and
pass through a breeding and mutation stage to form the next generation. This
process continues until a termination condition is reached, where the genera-
tion results show some kind of stability (by themselves, and/or with respect to
previous generations).

Since the option optimization problem exists regardless of the compiler, op-
erating system, or application, we designed ESTO to be fully configurable along
all these axes, so that a given compiler can be approached as a black box using
solely its user-visible optimization options. Using this reconfigurability, we held
studies on two compilers, GCC, and XLC, as well as on the post-link optimizer
FDPR-Pro [10]. Each of these optimizers has between 40 to 60 optimization op-
tions, some of which have additional parameters. Measuring the SPEC2000/INT
suite, we achieved an average gain of +22% over -O1 for GCC, +13% over -O3
for XLC, and +6% over -O3 for FDPR-Pro. The configurability also allows test-
ing various search policies and parallel execution modes. These are described in
the body of the paper.

The paper’s main contribution is in the application of GA for the problem of
selecting an optimal option set for a specific application and workload. Secondly,
an adaptive GA is proposed to improve search potential in multi-optima spaces.
Finally, we propose a number of decreasing search beam policies to meet a fixed
iterations budget.

The paper is organized as follows. Section 2 discusses related work. Section 3
is the core of the paper, presenting the main problem of option selection, and the
details of ESTO’s genetic algorithm with its different policies. Section 4 explains
the configurability aspects of the framework. Experimental results are examined
in Sect. 5, and Sect. 6 concludes the paper.

2 Related work

The general approach for tuning compiler optimization for a given application
and workload, is by iterative compilation, measuring the performance and using
it to direct successive iterations. Some researchers propose tuning specific com-
piler functions or their order. Stephenson et al. [15] use genetic programming
to optimize the specific heuristic associated with compiler optimization work.
Cooper et al. [5] use a genetic algorithm to find the preferred order of optimiza-
tion phases that generates smaller code in an embedded system environment.
Kulkarni et al. [11] describe a solution for making an exhaustive search of the op-
timization phase order space. Bodin et al. propose a special iterative compilation
system [4], which efficiently explores a large transformation space consisting of
small number of optimization options (3), where each option is associated with a
numerical parameter. Instead of exploring available optimization options, Frank
et al., [6], suggests to have the iterative stochastic search explore the space of
source-level transformation, thereby overcome the limitations imposed by fixed
set of optimization options.
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The large number of evaluations inherent in the iterative approaches is ad-
dressed by Agakov et al.[2]. Using trained predictive models their system is able
to reduce number of iterations to as few as two. Fursin et al. [7] address this prob-
lem by exploiting stable program phases to test different versions of functions,
instead of dedicating full runs for that.

For users of traditional compilation systems such as GCC, who have no con-
trol over phase order nor any knowledge of compiler internals, the above works
do not provide a relevant solution. In this context, the only control the user has
is over the set of optimization options. Not many works are available here, apart
from the commercial applications [1], and PathOpt tuning tool of EKOPath
[13]. Pinkers et al. [14] use orthogonal arrays (OA) to iteratively trim down the
number of actual optimization options used. Though the number of iterations
is small, the number of total compilations can be quite large. Nisbet [12] uses
a genetic algorithm to select loop restructuring transformations in Fortran pro-
grams. This work come closest to our work with its approach to selection of
optimization options. There are many differences, however, in the details of the
algorithms, as discussed in Sect. 3.

3 Iterative Optimization and Tuning

3.1 The Problem

In modern compilers and optimizers, the set of possible optimizations is usually
very large. Some of the options require an additional parameter, which makes
the selection process even more complex. Selecting the optimal set for a given
application is complex because optimization options do not necessarily add to
performance when combined with other options, and/or when used for certain
application and a certain workload. As a result of this complexity, users tend
to use standard combination options, such as -O, -O2, and -O3. These combi-
nations select a subset of the optimization options that are available to provide
stable, high performance for a large number of applications. Thus, in general,
these options are not the optimal set for a specific application executing its
representative workload.

Table 1. Estimated Amounts of Optimization Options

Optimizer Binary Parameterized Effective

FDPR-Pro 22 12 58

GCC 55 5 70

XLC 52 1 (see note) 55

Table 1 gives an estimate for the number of options in different optimizers.
The exact assessment for GCC and especially for XLC is difficult, because some
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options have complex multilevel syntaxes and dependencies (Note: for that rea-
son only one one parametrized option was configured for XLC). Generally, we can
see that the problem is highly multidimensional, with many binary and multi-
value/continuous parameter dimensions. To estimate the effective search space,
we assume parameterized options have eight discrete possible values (which is
conservative, see typical cases in [4]). Now the total number of option combi-
nations becomes 2B · 8P = 2B+3P = 2E , where B and P are the number of
binary and parameterized options respectively, and E = B + 3P the number of
effective binary options. Study of such problems [4] shows that the performance
landscape in this highly multidimensional space is nonlinear with many local op-
tima. The ability of genetic algorithms to search efficiently in such an irregular
multi-dimensional space makes them a preferred choice.

3.2 Genetic Algorithm

Algorithm 1 ESTO specific GA implementation
configure optimizer options, GA parameters and init organism
create population of randomized organisms and one init
evaluate fitness of init organism
for generation = 1 to generation.limit do

evaluate fitness of all organisms
sort all organisms by fitness
print all organisms with gain relative to init
if generation.best.result has improved then

no.improvement.counter ⇐ 0
else

no.improvement.counter ⇐ no.improvement.counter + 1
if no.improvement.counter = no.improvement.limit then

terminate
end if

end if
if variable.population.size then

reduce population.size
if population.size = 1 then

terminate
end if

end if
replace lower population half by upper population half {natural selection}
randomly blend 1st quarter organisms into 4th, and 2nd into 3rd {crossover}
randomly mutate lower 3/4 of population with option.mutation.rate
if adaptive.policy then

fully re-randomize all organisms worse than init
end if

end for
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Genetic Algorithm (GA) [17, 3] is a search technique inspired by evolutionary
biology concepts such as inheritance, mutation, selection, and crossover (recom-
bination). Optimization parameters are encoded as genes of separate individuals.
Each individual’s combination of parameters represents a possible candidate so-
lution to the optimization problem. A population of individuals evolves during
multiple generations toward better solutions. The evolution usually starts with a
population of randomly generated individuals. In each generation, the fitness of
every individual in the population is evaluated, multiple individuals are selected
based on their fitness, then mutated and recombined to form a new population.
This process repeats until a termination condition is reached.

In our specific GA implementation, each gene represents an optimizer option,
either binary (on/off), or with a parameter in a certain range of type int, float,
power2, and enum. These options are assembled into option sets that correspond
to the optimizer invocation arguments, typically specified in a single command
line. Each option set is encapsulated in an organism, i.e., a GA individual. A
number of organisms constitute a population, which evolves for a limited number
of generations (see Algorithm 1). The evolution stops when there is no improve-
ment of the best result for a few generations, or when the generation limit is
exhausted, or when the population is reduced to a single organism (see Sect. 3.4
on population size alterations).

The crossover of genes and the natural selection are done by cross-breeding
corresponding organisms from the upper two quarters of the population, and
replacing the lower two quarters with the resulting “children”. (Cross-breeding
means that each option is separately inherited from either parent, with a given
crossover rate probability for the lower parent. For an option with a parameter,
its value is randomly dealt between the parents’ values.) Then, the upper quarter
is left untouched (elitist selection), and the lower three quarters are mutated with
a given option-wide mutation rate, i.e., mutation probability for each option.
(Mutation means dealing a new value to the option, irrespective of the old value.)

In our implementation, the initial random population is complemented by a
pre-configured “initial” individual, which can reflect either the composition of a
known-good combination like -O3, or a “zero” option set, or a previous search
result, or some arbitrary user choice. This init organism serves as a kind of pivot
for further comparisons and intermediate gain computations.

3.3 Efficient Use of Search Budget

As shown in Sect. 5, GA experimental results are quite good, but they are
achieved by large number of optimization + measurement cycles, typically above
one hundred per application. This could be a time-consuming investment of re-
sources, especially with large real-life applications whose representative work-
loads might run for a long time. It is therefore important to maximize the effi-
ciency of the GA search by using the given fixed search budget to reach the best
possible performance gain (see [9]).
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3.4 Search Beam Width

One way to use a given test budget more efficiently is by shaping GA population
size as a function of the generation number. Basic GA keeps the number of
individuals constant throughout the whole run. Our intuition is that extending
the random coverage in the beginning, and focusing on convergence in the end,
improves the cost/performance efficiency. To this extent, we can use the term
search beam width, analogous to the typical searchlight operation, where in the
beginning we use a wide searchlight beam to choose among many potential target
areas, and then narrow it to focus on a specific promising area. The implemented
searchlight width policies (i.e., population size alterations) appear in Fig. 1 and
are described below. Note that the areas below each policy graph (i.e., total
amounts of tests) are roughly same, corresponding to the budget limit mentioned
in the title of this paper.

Fig. 1. Search beam width policies

Random – Pure random search, a single generation of 126 organisms + init. A
trivial algorithm which serves as a sanity check for the proposed algorithms.

Constant – Like the above GA implementation with 12 generations of 12 or-
ganisms (total 144 tests), but without the ‘”reduce population − size” step.
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Adaptive – Like Constant, but fully randomizes any organism with fitness be-
low init. We regard this as search beam width policy, because “underperformers”
from any generation are re-randomized, which likens them to individuals in the
first generation and thus effectively reshapes the population size over genera-
tions. This technique was proved advantageous for the result gain and is used in
the following methods.

Linear 2, 16 – Like Adaptive, but with linearly decreasing number of organisms
in generations, either by 2: 24, 22, ... 2 (total 156), or by 16: 60, 44, 28, 12 (total
144). The dependence between the population size N and the generation number
g is:

N(g + 1) = N(g) − gradient (1)

L-shaped – Like Adaptive, but with 72 organisms in the first generation and
12 organisms in the remaining 5 generations (total 132 tests).

Exponential – Like Adaptive, but with 6 generations containing exponentially
decreasing numbers of organisms: 64, 32 ... 2 (total 126 tests). The dependence
between the population size N and the generation number g is:

N(g + 1) = N(g)/2 (2)

Note that this can be expressed in absolute (rather than iterative) terms,
using the generation limit L:

N(g) = 2L−g+1 (3)

Our hypothesis is that the Exponential policy is the most efficient one. It
should have the best cost/performance ratio and thus utilize the budget limit in
the best possible way. The rational behind this hypothesis is the following: Each
passing generation decreases the uncertainty that we indeed found the optimum.
It seems plausible that this decrease is roughly the same as that of the previous
generation, so that the uncertainty decreases exponentially as function of the
generation number. Thus, we can reduce the population size exponentially as
well, without harming the above uncertainty decrease rate, akin to the per-
generation convergence rate.

4 Configurability

ESTO can be used for a wide variety of optimization tools. It has already been
applied successfully to GCC and XLC, as well as to FDPR-Pro, IBM feedback-
directed post-link optimization tool [10]. It was adapted to Linux, AIX, and
various embedded board setups, as well as to a number of benchmark configu-
rations: direct application invocation, SPEC2000, and UMT2K [16].
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Much of ESTO flexibility is due to its configuration file. The file consists of
two sections: algorithm control and option specification (see Sects. 4.1 and 4.2).
The latter section enables ESTO to regard the optimizing compiler as a black
box, controlled solely through its user-visible optimization options.

4.1 Search Algorithm

The concrete search algorithm modification to use is specified in a configura-
tion file line, and can be any of those described in Sect. 3.4, plus a few special
investigative modifications. The algorithm can be configured with its own ar-
guments, like L-shaped sizes, Linear gradients, and Exponential bases, and also
these common GA parameters (defaults in parentheses): mutation rate (0.01),
crossing rate (0.5), initial population size (12), generation limit (12), and no
improvement limit (4).

4.2 Application

By the term application, we mean the whole range from the option set to the
reported time, typically including the invocation of an optimizer on some target
program, and measuring the resulting performance in an environment-specific
fashion.

Optimizer Options – This configuration section specifies the set of options
from which the optimal set should be selected. Each option line specifies its name,
whether switched on in the init organism, and the probability of switching on
upon mutation (e.g., can be set to the option occurrence rate in the historic
ESTO results, to speed up convergence).

Two kinds of options can be specified: binary and range (parameterized).
The latter, in turn, has a few types: int, float, power2, and enum. Each type
should specify low and high boundaries of parameter value variations, an initial
parameter value, and a parameter step, i.e., the natural or artificial parameter
value alignment.

Application and Workload – The behavior of the default application and its
workload is controlled by a few default scripts that can be provided by the user
according to defined command interfaces. Alternatively, the user can extend and
re-implement the application class interface.

Most importantly, the application script runs the user application with its
required parameters, including an option set whose fitness has to be measured,
and transit arguments, passed directly and transparently from ESTO command
line invocation. There are a couple of other default command interfaces for error
handling and synchronization.

As it runs, ESTO prints to standard output the performance results of each
organism, and the sorted summary of each generation. Finally, it outputs the
result line, which lists the chosen option set, its reported time, and the gain
percentage.
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4.3 Multiplexor

The multiplexor interface implements scattering of the application trials, gath-
ering of their results, and synchronization as requested by the algorithm. ESTO
supports single-threaded mode and a parent/workers style multiprocessing (de-
fault). Other multitasking implementations are possible: multithreading, grid or
blade architecture, clusters, etc. The interface is also responsible for fault tol-
erance: identifying, getting rid of, and recovering from failing runs. The task
is particularly important here because arbitrary selecting of options may bring
compilers to untested regions and possible failures.

5 Experimental Results

5.1 Metric

Typically, maximizing an application’s performance means either reducing its
running time on a predefined workload, or performing more operations (process-
ing larger workload) during a given time. We use running times, so our fitness
metric is descending – the shorter is the running time, the better is the perfor-
mance.

All of our experiments were done with SPEC2000 benchmark suite (train
workloads) on Linux machines with Power architecture. ESTO invokes the user
application script as mentioned in Sect. 4.2. That script typically invokes runspec
as part of its operation, and then extracts results from the reported time fields
of the raw result files. These results are then piped back to ESTO for comparison
inside GA. Detected failures are considered as FLT MAX.

5.2 Comparison of Results for Different Optimizers

Although relatively inefficient, the Constant policy allows us to compare ESTO
achievements for different optimizers relative to various starting points. This is
due to the abundance of available historic results on machines of same type:
4-processor 1.5GHz Power5 running SUSE Linux Enterprise Server 9 operating
system. The GA parameters were also identical: mutation rate 0.02, crossover
rate 0.45, population size 12, generation limit 12, no-improvement limit 4.

GCC – ESTO-on-GCC setup includes GCC-specific SPEC2000 configuration
and GCC optimization options configuration for ESTO (see Sect. 4.2). The init
seed organism corresponds to the composition of -O1 combination. On most
benchmarks ESTO obtains high gains over -O1 starting point. Even relative to
-O3 these are reasonably good gains in half of the cases. If we would start from
-O3 seed, ESTO results would not go below the -O3 result. See Fig. 2.
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Fig. 2. ESTO gain over GCC -O1 and -O3

XLC – ESTO-on-XLC setup includes XLC-specific SPEC2000 configuration
and XLC optimization options configuration for ESTO. The init seed organism
has all options switched off (zero organism). On most benchmarks ESTO ob-
tains high gains over -O3, with average of 13%. We compared also to the peak
option set results reported1 to SPEC for XLC on Power5 with SLES9. Most of
these reports include XLC profile-driven feedback facility, so we extended ESTO
application setup to run profiling phases, which prolongs optimization times sig-
nificantly. As can be seen in Fig. 3, in some cases ESTO gains even over these,
certifiably the best reported, results.

Fig. 3. ESTO gain over XLC -O3 and over peak option sets per benchmark

1 www.spec.org/osg/cpu2000/results/res2004q4/cpu2000-20041018-03448.html
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FDPR-Pro – ESTO-on-FDPR-Pro setup includes FDPR-Pro-specific SPEC2000
configuration with feedback-directed optimization stages and FDPR-Pro opti-
mization options configuration for ESTO, which includes relatively large number
of parameterized options. The init seed organism corresponds to the composition
of -O3 combination. On most benchmarks ESTO obtains high gains over -O3
starting point, see Fig. 4. One interesting question in SPEC context is whether
the option sets found by ESTO on the train workload can benefit the ref work-
load (the formal reference workload of SPEC) . In Fig. 4 the left set of bars
contains ESTO gains over FDPR-Pro -O3 on train workload, and the right set
depicts ref gains over -O3 with the option set found on train. In most cases there
seems to be a significant correlation between the two, so train could be used as
a predictor for ref. The practical significance of this finding stems from the fact
that train runs some order of magnitude faster than ref. For the ref workload
the above hundred tests, required by ESTO’s, might be prohibitively slow, but
can complete in reasonable time on train.

Fig. 4. ESTO gain over FDPR-Pro -O3 found on train workload, and ref workload
gain with same option set

Figure 5 depicts the typical course of ESTO run on an example: mesa train.
The upper line shows how the best gain in generation approximates the final
result. The vertical range bars denote the distribution range of the upper half of
that generation’s individuals, in line with our GA natural selection implementa-
tion. We clearly see the reverse-exponential decrease of both the result approxi-
mation and the distribution range. This provides visual experimental support to
our hypothesis that the uncertainty of the result decreases exponentially, with a
constant ratio (convergence rate) between two successive generations.

Convergence Comparison – To assess the rate of convergence, we use the
following convergence criterion: Two thirds of the population reached gain within
5% of their mean. Using this criterion on the accumulated ESTO logs of the
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Fig. 5. ESTO best gain % and distribution range in each generation

above experiments, we measured the following average number of test iterations
required for optimizers to converge:

– GCC – 119
– XLC – 59
– FDPR-Pro – 94

GCC’s comparatively slow rate can be attributed to its large amount of options
(see Table 1) with performance benefits more evenly spread between option
combinations (wide distribution). XLC’s fast convergence seems to be caused
by a few very dominant option combinations which greatly affect performance,
while others barely matter (narrow distribution). Thus the effective amount of
options is quite smaller than Table 1 suggests. FDPR-Pro is somewhere in the
middle in both senses – convergence rate and options benefits distribution.

5.3 Comparison of Population Size Policies

ESTO GA policy comparative study was conducted on a single-core Power970
2.2GHz blade machine with SUSE Linux operating system. The study compares
the policies discussed in Sec. 3.4: Random, Constant, Adaptive, Linear 2/16, L-
shaped, and Exponential. Fig. 6 shows the results of this study: ESTO total and
per-iteration gains over FDPR-Pro -O3 when using different policies.

Total Gain – Represented by wide bars in Fig. 6.
There is a big jump from Constant to Adaptive, probably due to a better

search space coverage created by re-randomizing of many “underperformers”.
Both Linear policies seem to interfere with this consideration by artificially
reducing that coverage. L-shaped and Exponential are obviously less affected,
perhaps because both rapidly get rid of those “underperformers” anyway. We
see that L-shaped and Exponential policies reach maximum total performance
gain.
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Fig. 6. ESTO total and per-iteration gain over FDPR-Pro -O3 with different policies

The superiority of Random over Constant can be explained by Constant ’s ap-
parent “wasting” of the budget. In each generation, Constant ’s iterations above
Exponential (with same size of generation 1) – are redundant according to our
hypothesis. Random, on the other hand, does not “waste” budget, it just does
not “complete” the exponential tail befittingly with its only generation 1. See
also [8].

Gain per Iteration – Represented by narrow bars in Fig. 6.
Notably, we see the gain rate steadily rising as the policy shape approaches

the decreasing exponential curve. This algorithm efficiency indicator culminates
when using the Exponential policy, as suggested by our hypothesis in Sect. 3.4.

5.4 Parallelization Study

Reduction of ESTO running time is an important technical challenge, because
it improves response time and makes more efficient use of resources. ESTO total
processing task for each SPEC2000 benchmark consists of multiple iterations of
FDPR-Pro optimization and train workload measurement. The total duration
of sequential ESTO runs on all benchmarks in the suite reached some 5-6 days
on a 1.5GHz Power5 machine. Durations of the iterations’ stages vary widely
between benchmarks, from 16 seconds optimization for parser and 3 seconds
measurement for gcc, to as much as 12 minutes optimization for perlbmk and
1.5 minute measurement for ammp. Overall, when train workload is used for
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measurements (25 seconds on average), the optimization stages consume 3/4 of
the iteration time (1.5 minutes on average). Of course, ref workload would have
reversed this situation.

Superficially, we may want to evaluate the organisms of a generation in par-
allel. An important constraint here is that the measurement stages generally
should not run in parallel on the same machine, because of the shared L2/L3
cache. The approach taken is then to perform the optimization stages of a gen-
eration in parallel, while the measurement stages are done serially. This allowed
to reduce the above running time by half, using the machine’s 4 cores (2 HW
threads/core, i.e. 8 “logical” CPU).

We then studied the effect on measurement accuracy when this phase is
done in parallel. The machine used was 1.5GHz Power5 system with 8 cores (2
HW threads/core, i.e. 16 “logical” CPU). The assumption was that for single-
threaded medium-size applications, like the SPEC2000 suite, with one process
per core (to avoid interference between HW threads of the same core), measure-
ments will not interfere with each other. This was verified as shown in Fig. 7. Up
to N parallel measurements on an N -core machine (N = 8) practically do not
interfere, and above N there is a linear degradation with gradient about 1/2N
per process addition.

Fig. 7. Slowdown of SPEC2000 measurements (median) when parallel processes run
the same benchmark

In our case, running ESTO on all benchmarks using 6 cores (12 logical CPU)
out of the available 8 (16), while parallelizing both optimizations and measure-
ments – completed in 16 hours only. In practical terms, this means that instead of
waiting for the ESTO result for a working week, one can get the result overnight,
thus greatly increasing the tool’s usability.

Such technique can be used for single-threaded applications only. Parallelizing
the tuning of multitasking applications calls for distribution of GA organisms
between different machines.
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6 Conclusions and Future Work

We show the feasibility of using the genetic algorithm for selecting preferred
optimization options for a variety of compilers and workload, dealing with more
then more then 60 effective options, and converging to the preferred result in
around 100 iterations, depending on the option space. While we do not have for-
mal proof, the stability of the results, when starting from an arbitrary organism,
show that the preferred results are close to the optimum. This is comparable or
better to the other alternatives discussed in this paper. The convergence speed,
in gain/iteration, is a critical factor in iterative compilation. We studied a num-
ber of search beam policies and showed that an exponentially decreasing beam
gives the best result.

The database of past results associates a specific workload to recommended
option sets. We plan to exploit this database by using automatic feature selection
and clustering to acquire quick prediction of the recommended option set for a
given workload, or a recommended starting point for the GA search.
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Abstract. In recent years, a number of strategies have emerged for em-
pirically tuning applications to different architectures. Although quite
successful for certain domains, empirical tuning is yet to gain wide ac-
ceptance as a viable strategy in high-performance computing. The prin-
cipal bottleneck in this regard is the prohibitively large search space that
needs to be explored in order to discover the best program variants for
different architectures. Although there have been some efforts at using
cache models in pruning the search space for kernels, the optimization
search space of whole applications still remains mostly intractable. In
this paper, we propose a novel search space pruning strategy. Our ap-
proach is to identify architecture-dependent parameters within compiler
cost models and search for the best values of those parameters. We have
implemented this strategy for exploring the search space of loop fusion
and tiling for whole applications. Preliminary experiments suggest that
this approach of tuning for architecture-dependent model parameters is
highly effective in reducing the size of the optimization search space while
incurring only a small performance penalty.

1 Introduction

Over the last several decades we have witnessed tremendous change in the land-
scape of computer architecture. New architectures have emerged at a rapid pace
and at the same time, the complexity of microprocessor architecture has grown
consistently. The changing nature of the processor architecture and its ever in-
creasing complexity, has made retargeting of applications a major concern for
high-performance computing. The advent of each new architecture and even a
new model of a given architecture has required retargeting and retuning of appli-
cations at considerable cost. To address this issue, many strategies for automatic
tuning have been proposed [9, 4, 5, 8]. Although the empirical approach has been
quite successful in generating highly-tuned domain specific libraries, its applica-
tion in tuning general scientific programs has been limited. The chief obstacle

⋆ This material is based on work supported by the Department of Energy under Con-
tract Nos. 03891-001-99-4G, 74837-001-03 49, 86192-001-04 49, and/or 12783-001-05
49 from the Los Alamos National Laboratory.
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in this regard is the prohibitively large search space that needs to be explored
to find optimal transformation parameters. For example, Zhao et al. [13] show
that the search space for fusing n statements into m loops without any reorder-
ing can be as large as

(

n−1

m−1

)

. Clearly, exploring such a large space is infeasible
for a general-purpose compiler. Recent papers advocate model-guided tuning as
a means of pruning this enormous search space [11, 6, 3]. In the model-guided
approach, analytical models are used to restrict the search space to regions that
are likely to contain mostly good values.

In this paper, we propose a new approach to pruning the optimization search
space. In our strategy, we move away from the search space of parameterized
transformations and instead focus on the search space of architecture-dependent
parameters embedded within the cost models. As we know, the profitability of
many program transformations are sensitive to certain machine parameters. For
example, tile sizes are constrained by the capacity of the target cache. Compiler
cost models use these architectural parameters as a means for picking the best
transformation parameters. However, in most cases these parameters are diffi-
cult to determine accurately. For example, the fraction of cache we can exploit
depends on the size and associativity of the cache, the number of different arrays
we access in the program and also the size of each of those arrays. A static model
that attempts to capture all these parameters is unlikely to be totally accurate
for all architectures. The goal of our tuning strategy is to correct for these in-
accuracies in the cost model. We use empirical search to find the best estimates
of the machine parameters which in turn deliver the best set of transformation
parameters.

Our pruning strategy reduces the size of the search space in two ways. Firstly,
we can use a single parameter to capture the effects of multiple transformations
which reduces search space dimensionality. For example, we can use the estimate
of the cache size parameter to tune both loop fusion and tiling parameters.
Secondly, for transformations that can have different parameters for different
loops (i.e. tiling), we can again use just a single parameter to tune each of the
loops in the program. Thus, the search space we explore does not grow with
program size. For large applications with many loop nests, this property can be
very effective in limiting the size of the search space.

2 Related Work

In recent years, there has been a flurry of work in empirical tuning that aim
to improve the tuning process using machine learning, statistical methods and
heuristic search strategies. However, relatively few of these have addressed the
issue of using compiler models in pruning the optimization search space.

Knijnenburg et al. [6] introduced the notion of search space pruning using
compiler models in the context of iterative compilation. In their work, they ex-
amine the effects of cache models on empirically tuning tiling and unroll factors.
They use static models in combination with a cache simulator to filter out bad
candidates with high cache miss rates from the parameter search space. Their
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results show that the use of cache models can indeed speedup the tuning pro-
cess significantly without a high sacrifice in performance. An interesting and
important aspect of this work is the use of slack factors to estimate the capacity
of set-associative caches. These slack factors are determined experimentally and
then used as a fixed value during the tuning process. In our work, it is these slack

factors that form the basis of our search space. As we show in Section 3, having
the slack factors integrated into the tuning process can significantly reduce the
optimization search space.

Yotov et al. [11] show that analytic modeling alone can deliver performance
that is comparable to that of ATLAS. In subsequent work, they have shown
that modeling, combined with local search and model refinement is highly ef-
fective in generating optimized code for BLAS on different architectures [12].
Chen et al. [3] combines analytical models with empirical search to automatically
tune dense matrix computations to two different architectures. They use static
models to generate a parameter search space that is likely to contain the opti-
mal parameter value. By combining their cache-conscious models with empirical
search, they are able to achieve performance comparable to that of ATLAS on
the matrix multiply kernel. The search process is about 2-4 times faster than
that of ATLAS. Most recently, Agakov et al. [1] have used predictive modeling
techniques to focus search strategies to more profitable regions within the search
space. Their approach was highly effective in reducing the tuning time for a large
search space of 8220 points.

Our approach to search space pruning is distinct from previous work men-
tioned in this section, in that we aim to tune architectural parameters integrated
in our cost model rather than the space of transformation parameters.

3 Approach

Our approach to defining and pruning the optimization search space is best
described as a three-step process. In this section, we describe each step in some
detail.

Step 1: Identify architectural resources that affect profitability.

Most transformations - particularly those worth tuning for - are considered
to be architecture sensitive; that is, their profitability depends on certain pa-
rameters of the target architecture. In most cases, the architectural parameters
will impose constraints on the transformation parameters. For example, the prof-
itability of unroll-and-jam is constrained by the register pressure of the unrolled
loop [2]. The literature on code-improvement transformations is replete with
many such examples. The first step in our tuning process is to identify key archi-
tectural resources that affect the profitability of the transformations in question
and then determine the relationship between the architectural parameters and
the transformation parameters.

Step 2: Construct parameterized models to estimate available re-

sources.
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Once the architectural resources have been identified, we need a mechanism
to estimate the amount of resource that is available to the program. The amount
of resource that can be exploited by a program is determined by a host of fac-
tors. For example, the fraction of cache we can exploit depends on the size and
associativity of the cache, the number of different arrays we access in the pro-
gram and also the size of each of those arrays. Hence, the second step in our
tuning process is to construct models that estimate the amount of resource that
is available. For each resource R, we construct a function that computes the
effective size of R.

R′ = EffectiveSize(r1, r2, ..., rn) s.t. R′ ≤ R

where r1, r2...rn are parameters that determine the effective size of R.
Again, there is published work describing many such models. However, the

key issue in using these models is finding a suitable parameterization, so that we
can expose the relevant parameters for tuning through empirical search. We ac-
complish this by introducing the notion of a tolerance term. We derive tolerance
terms for each of the machine parameter estimates such that there is a linear
relationship between the tolerance term and the architectural resource. For ex-
ample, we use the cache miss rate of the program as tolerance for estimating the
effective cache capacity.

L′

k = EffectiveCacheSize(sk, ak, T )

where L′

k is the effective size of the cache at level k, sk and ak refer to the size
and associativity of the cache and T is a tolerance term that corresponds to the
miss rate at Lk.

Step 3: Search for best estimates using tolerance values.

Our search space is the Cartesian product of the sets of tolerance values used
in estimating each architectural parameter. As such, any multidimensional search
strategy used to explore the search space of transformation parameters can be
effective in exploring the search space. However, a natural choice for exploring
this search space turns out to be a sequential search. For each tuning parameter
in the search space, we start off conservatively with a low tolerance value and
increase the tolerance at each subsequent iteration. We stop the iterative process
either when performance degrades or when we have reached the availability
threshold of a particular resource. The rationale behind choosing a sequential
search is the following: since at each step we allow the program to consume
more of a particular resource, at some iteration we will reach a threshold value
where the program will have consumed too much of that resource. From that
point on consuming more of that particular resource will only further degrade
performance. As we shall see in the experimental results in Section 5, this simple
search strategy works fairly well for tuning loop fusion and tiling parameters.

4 An Example

In this section, we demonstrate the effectiveness of our strategy using a simple
example. For this example, we only consider fusion of innermost loops and tuning
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of the effective register set parameter. We first explain the fusion parameter
search space, then the search space for the effective register set and then present
results from an experiment comparing the two search spaces.

If reordering of loops is not allowed, the number of different ways to fuse k

loops is 2k−1. Thus, the number of points in the fusion search space of k loops
is 2k−1. We can represent the search space of different fusion configurations
using Gray Code ordering. In a Gray Code ordering a fusion configuration is
represented using a bit pattern where each bit corresponds to an edge between
two fusible loops. A bit is set if the corresponding adjacent loops are fused.
For example, if we have eight fusible loops then we need bit strings of length
seven where bit string 0000000 corresponds to no loops being fused and 1111111

corresponds to all loops being fused.

A key consideration for fusing loops at the innermost level is the register
pressure of the fused loop. If the number of registers required to execute the
fused loop is more than the number of available registers then fusion is unlikely
to be profitable because of register spills. For this reason, a compiler cost model
for fusion will usually impose the following constraint for fusing loops:

Register Pressure(Loopfused) < Effective Register Set

where Register Pressure is the number of registers required to execute the fused
loop and Effective Register Set is the number of physical registers available to
the loop at runtime.

Although there are several algorithms that can estimate the register pressure
of a loop nest, the actual number of physical registers available at runtime is
usually much more difficult to determine accurately. Clearly, the above constraint
in the cost model will be ineffective if we do not have an accurate estimate of
the effective register set. Conversely, the constraint will produce the best results
when we have the best estimate for the effective register set. Hence, in our
empirical tuning framework, we search for the best estimate of the effective
register set with the assumption that the best estimate will generate the best
fusion configuration.

The number of available registers at runtime is a subset of the actual number
of physical registers in the program. Hence, we estimate the effective register set
using the following formula:

Effective Register Set = ⌈T × Register Set Size⌉, 0 < T ≤ 1

Here, T is the tolerance term that determines the fraction of the physical
register set that is available to us at runtime. Thus, at each step in our search
process we generate and evaluate a fusion configuration where the register pres-
sure of each fused loop is less than the effective register set for some value of T .
For example, if T = 0.5 and the number of physical registers is 64 then we will
generate a fusion configuration where the register pressure of each fused loop is
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less than 32.1 Thus, the search space for tuning the register set parameter is a
set of tolerance values. The number of points in the search space is determined
by how finely we wish to tune the parameter. For example, if we increase our
tolerance by 0.05 at each step then we will have just 20 points in the search
space. Note, that if increasing our tolerance does not result in a larger effective
register set or a different fusion configuration then that point in the search space
does not need to be evaluated. Thus, the number of points in the search space
is bounded above by the size of the register set of the target platform and in
practice, the number of points that need to be evaluated is likely to be much
smaller than this upper bound.
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Fig. 1. Performance curve for fusion configuration search space on Opteron
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Fig. 2. Performance curve for effective register set search space on Opteron

To compare the two different search spaces we perform a simple experiment
with the advect3d kernel from the NCOMMAS [10] weather-modeling appli-
cation. The advect3d kernel has a total of 24 loops divided into eight loop

1 Note, for any given tolerance term there can be multiple fusion configurations. Our
static cost model determines which of those configurations will be picked for evalu-
ation.
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Fig. 3. Performance curve for fusion configuration search space on Pentium 4
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Fig. 4. Performance curve for effective register set search space on Pentium 4

nests which are perfectly nested. All loop nests are fully fusible. For this exper-
iment, we consider fusing only the innermost loops without any reordering. As
explained previously, the fusion search space for advect3d contains 28−1 = 128
points. The size of the search space of the register set parameter is dependent
on the tolerance value increments and the number of physical registers in the
target platform. We present performance results for these two search spaces on
two platforms: a 2 GHz Opteron with 32 floating-point registers and a 2.4 GHz

Pentium 4 with 8 floating-point registers. For both platforms, we increase toler-
ance by 5% at each step. Hence, for both platforms, the register set search space
contains 20 points. However, since the number of registers on Pentium 4 is less
than 20, the number of points that result in different fusion configurations is
bounded above by the number of physical registers.

The performance of all possible fusion configurations on the Opteron is shown
in Fig. 1. As expected, the performance line is very jagged with many peaks and
valleys. The performance curve for the effective register set search space on the
same platform is shown in Fig. 2. As explained earlier, this search space is much
smaller than the search space of fusion configurations. However, the important
thing to note here is that the performance line for this search space is relatively
smooth. Not only that, the performance line follows a specific pattern. Initially,
when we increase the tolerance from very low values (i.e. 10%) performance keeps
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increasing. Then, when T = 35%, there is a big drop in performance. According
to our search heuristic, T = 35% represents the threshold point and no further
exploration of the search space is necessary. Indeed, we observe that none of the
points beyond this threshold produce better performance. Hence, we could stop
our search after evaluating just seven points in this search space. Another issue
to note, is the leveling-off of the tail-end of the performance curve. This happens
because all eight loops in advect3d are fused at the 55% tolerance level and
the fusion configuration does not change for any value of T beyond that point.
Hence, even if we were doing an exhaustive search we would not need to evaluate
this portion of the search space.

The performance curves for advect3d on Pentium 4 are presented in Figs. 3
and 4. We notice very similar results on this platform as well. A jagged perfor-
mance line for the fusion configuration search space and a smooth line for the
search space of the effective register set parameter. Since Pentium 4 has so few
floating-point registers, only a single pair of loops is fused when we increase our
tolerance to a 100%. This explains the long flat segment at the beginning of the
performance line in Fig. 4. Our search heuristic does not evaluate points beyond
the 100% threshold. Hence, the search on this platform stops at T = 100% after
fusing just one pair of loops. To verify that this conservative approach is indeed
the right one, on this platform, we forced the search strategy to evaluate points
beyond T = 100%. As the results in Fig. 4 show, going beyond the maximum
threshold and trying to fuse more loops makes the performance worse. Thus, for
this platform it is best to stop at T = 100%.

5 Experimental Results

We have implemented our search space pruning strategy for two transforma-
tions: loop fusion and tiling [7]. Our search space consists of tolerance values
of two architecture-sensitive model parameters: Effective Register Set and Effec-

tive Cache Capacity. Our testing platform is a MIPS Origin r12000. We select
four programs that exhibit opportunities for loop fusion and tiling: advect3d,
an advection kernel for weather modeling, erle, a differential equation solver,
liv18, a hydrodynamics kernel from Livermore loops, and mgrid, a multi-grid
solver from SPEC 2000. For each program we run two sets of experiments: one
using a sequential search on the pruned search space (model-based) and another
using a multi-dimensional direct search strategy on the un-pruned search space
(direct).

Performance results from four applications on the MIPS are presented in
Fig. 5. The results show that model-based is able to find values that are very
close to the values found by direct. The performance gap is never more than
5%. On the other hand, in terms of tuning time we pay a high premium when
we apply direct search. Fig. 6 shows that on average direct requires about four
times as many program evaluations as model-based. In the context of empirical
tuning, where number of program evaluations is the principal bottleneck, this
savings in tuning time will be significant for any decent-sized application. In such
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cases, the savings in tuning cost will make the small sacrifice in performance
worthwhile.

1.0

1.1

1.2

1.3

1.4

1.5

advect3d erle liv18 mgrid

S
p
e
e
d
u
p
o
v
e
r
b
a
s
e
li
n
e

model-based direct
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Fig. 6. Tuning time comparison: model-based vs direct

6 Conclusions

In this paper, we have presented a method of pruning the optimization search
space by searching for architecture-dependent model parameters. Preliminary
experimental results suggest that this approach can be highly effective in re-
ducing the size of the search space while incurring only a small performance
penalty.

Acknowledgement. We would like to thank the anonymous reviewers for their
constructive comments and helpful suggestions in improving the quality of this
paper.

SMART'07

51



References

1. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thom-
son, M. Toussaint, and C. Williams. Using machine learning to focus iterative
optimization. In International Symposium on Code Generation and Optimization,
2006. (CGO 2006)., New York, NY, 2006.

2. S. Carr. Memory-Hierarchy Management. PhD thesis, Dept. of Computer Science,
Rice University, Sept. 1992.

3. C. Chen, J. Chame, and M. Hall. Combining models and guided empirical search to
optimize for multiple levels of the memory hierarchy. In International Symposium
on Code Generation and Optimization, San Jose, CA, 2005.

4. K. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for
the 21st century. In Proceedings of the Los Alamos Computer Science Institute
Second Annual Symposium, Santa Fe, NM, Oct. 2001.

5. G.G.Fursin, M.F.P.O’Boyle, and P.M.W.Knijnenburg. Evaluating iterative compi-
lation. In Proceedings of the Fifteenth International Workshop on Languages and
Compilers for Parallel Computing, College Park, Maryland, July 2002.

6. P. Knijnenburg, T. Kisuki, K. Gallivan, and M.F.P.O’Boyle. The effect of cache
models on iterative compilation for combined tiling and unrolling. Concurrency
and Computation: Practice and Experience, 16:247–270, 2004.

7. A. Qasem and K. Kennedy. Profitable loop fusion and tiling using model-driven
empirical search. In Proceedings of the 20th ACM International Conference on
Supercomputing, June 2006.

8. S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August. Compiler
optimization-space exploration. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization, San
Fransisco, CA, 2003.

9. C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In
Proceedings of SC’98: High Performance Networking and Computing, Orlando, FL,
Nov. 1998.

10. L. J. Wicker. NSSL collaborative model for atmospheric simulation (NCOMMAS).
http://www.nssl.noaa.gov/~wicker/commas.html.

11. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pin-
gali, P. Stodghill, and P. Wu. A comparison of empirical and model-driven opti-
mization. In Proceedings of the SIGPLAN ’03 Conference on Programming Lan-
guage Design and Implementation, San Diego, CA, June 2003.

12. K. Yotov, K. Pingali, and P. Stodghill. Think globally, search locally. In Proceedings
of the 19th annual international conference on Supercomputing (ICS06), 2005.

13. Y. Zhao, Q. Yi, K. Kennedy, D. Quinlan, and R. Vuduc. Parameterizing loop fusion
for automated empirical tuning. Technical report, Lawrence Livermore National
Laboratory, Dec. 2005.

SMART'07

52



Building a Practical Iterative Interactive Compiler

Grigori Fursin and Albert Cohen

ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University, France
{grigori.fursin,albert.cohen}@inria.fr

Abstract. Current compilers fail to deliver satisfactory levels of performance
on modern processors, due to rapidly evolving hardware, fixed and black-box
optimization heuristics, simplistic hardware models, inability to fine-tune the ap-
plication of transformations, and highly dynamic behavior of the system. This
analysis suggests to revisit the structure and interactions of optimizing compil-
ers. Building on the empirical knowledge accumulated from previous iterative
optimization prototypes, we propose to open the compiler, exposing its control
and decision mechanisms to external optimization heuristics. We suggest a sim-
ple, practical, and non-intrusive way to modify current compilers, allowing an
external tool to access and modify all compiler optimization decisions.
To avoid the pitfall of revealing all the compiler intermediate representation and
libraries to a point where it would rigidify the whole internals and stiffen further
evolution, we choose to control the decision process itself, granting access to the
only high-level features needed to effectively take a decision. This restriction is
compatible with our fine-tuning and fine-grained interaction, and allows to tune
programs for best performance, code size, power consumption; we also believe
it allows for joint architecture-compiler design-space exploration.By exposing
only the decisions that arise from the opportunities suggested by the program
syntax and semantics and only when the associated legality checks are satisfied,
we dramatically reduce the transformation search space.
We developed an Interactive Compilation Interface (ICI) with different external
optimization drivers for the commercial open-source PathScale EKOPath Com-
piler (derived from Open64); this interface is being ported to the GCC. This
toolset led to strong performance improvements on large applications (rather
than just kernels) through the iterative, fine-grain customization of compilation
strategies at the loop or instruction-level; it also enabled continuous (dynamic)
optimization research. We expect that iterative interactive compilers will replace
the current multiplicity of non-portable, rigid transformation frameworks with
unnecessary duplications of compiler internals. Furthermore, unifying the inter-
face with compiler passes simplifies future compiler developments, where the
best optimization strategy is learned automatically and continuously for a given
platform, objective function, program or application domain, using statistical or
machine learning techniques. It enables life-long, whole-program compilation
research, without the overhead of breaking-up the compiler into a set of well-
defined compilation components (communicating through persistent intermedi-
ate languages), even if such an evolution could be desirable at some point (but
much more intrusive). It also opens optimization heuristics to a wide area of iter-
ative search, decision and adaptation schemes and allows optimization knowledge
reuse among different programs and architectures for collective optimizations.
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1 Introduction
Iterative compilation is a popular approach for optimizing programs for different objec-
tive functions on architectures with ever growing complexity, when traditional compil-
ers fails to deliver the best possible performance. Bodin et al. [7] and Kisuki et al. [24]
have initially demonstrated that exhaustively searching an optimization parameter space
for small kernels can deliver considerable performance improvements in comparison
with state-of-the-art, single-run compilers. Cooper et al. [11, 12, 10] and later Kulka-
rni et al. [25] demonstrated that finding optimal optimization order can also consider-
ably improve code quality and performance. We demonstrated hill-climbing and ran-
dom iterative search techniques to optimize large applications on a loop-level in [18].
Later Triantafyllis et al. [37, 36] suggested a pruning technique to considerably speed-
up optimization heuristic on a fine-grain level inside a compiler. Heydemann et al. [22]
used iterative compilation to find trade-off between code size and performance improve-
ment when using loop unrolling and code compression.

Iterative optimization has also been employed in well-known library generators in
such systems as ATLAS [38], FFTW [26] and SPIRAL [32] which tune parameters of
various transformations to get best performance on a targeted platform. Yotov et al. [39]
and Epshteyn [13] use analytical model-based approaches to optimize BLAS libraries.

Many recent results address the iterative tuning of compiler flags, targeting per-
formance or code size for a variety of applications [31, 20, 28–30, 14, 21]. Some of
these techniques are already used by companies internally to tune the final settings
of their compilers or even available to end-users such as PathOpt tool from the Path-
Scale EKOPath compiler suite [2] that is available since 2004 and allows to find the
best combination of flags iteratively using exhaustive, random, one of and all but one
search methods.

Machine-learning has been also investigated to predict good s transformations and
improve hand-tuned compiler heuristics [27, 35, 34, 9, 40, 6]. These works use genetic
programming, supervised learning, decision trees, predictive modeling and other similar
techniques to tune compiler heuristics usually for one or a few specific transformations.

In our research, we investigate practical aspects of iterative optimizations such
as fine-grain tuning of large applications [18, 15], predicting when to stop iterative
search [19], run-time optimizations and program low-overhead adaptation at fine-grain
level (procedure or loop) for different behaviors [17], investigating the influence of dif-
ferent datasets on iterative search and program performance [16], using machine learn-
ing to speed-up optimization process [6] or to speed-up performance prediction for the
effective architecture design space exploration [8].

Many interesting transformation and optimization tools have been developed for
the purpose of iterative and adaptive compilation. However, most of them are incom-
patible with each other and not easily portable across architectures. Moreover, using
source-to-source optimizations and pragmas can result in heavy, unreadable and non-
portable programs that can perform worse on new architectures, so that additional de-
optimization/re-optimization techniques may be needed [23]. What makes things worse
is an additional, often unpredictable and unquantifiable interference of the tools with
hidden/black-box internal compiler optimizations. The most important motivation for
our proposed framework is that current tools tend to rewrite and duplicate parts that
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are currently available inside most compilers, simply because compilers themselves are
often seen as untouchable: they rely on intricate transformation engines, undocumented
and multi-purpose heuristics, pass orderings and intermediate representations fragile
to any modification, providing no support for external tuning and on-demand applica-
tion of specific transformations. We would like to discrown these myths in this paper
and show that current compilers can be used as powerful, flexible yet stable iterative
interaction transformation toolsets, their existing heuristics being initially treated as
black-boxes, i.e. the inputs and outputs are known but the internal behavior is not, and
progressively learned to adapt to a give program on a given architecture.

We developed an Interactive Compilation Interface (ICI) for the commercial Path-
Scale EKOPath Compiler to bias all internal optimization decisions and their param-
eters externally. It is a non-intrusive, stable and flexible way to tune programs at a
function, loop or instruction level for best performance, code size, power consumption
and any other objective function supported by existing heuristics and an external driver.
Current version of the ICI works in the informative and reactive mode, when external
tools rather than querying a compiler to apply some specific transformation on a given
part of the program, first obtain information from an interactive compiler about all pos-
sible legal transformations and their parameters for a specific part of the code and later
respond to the compiler to either keep compiler decisions or change them based on
statistical and machine learning techniques. This can considerably reduce optimization
search space since there is no need to attempt to traverse through illegal or not supported
transformations. Still, reactive nature of our method allows external tools to select and
parameterize any possible legal sequences of transformations.

We extend the current ICI to support GCC, whose recent versions feature a large
number of advanced transformations but with ineffective heuristics. We plan to add
support for the reordering of the optimization passes in the GCC to our ICI on a func-
tion or loop level, since it already has a relatively clean description of such passes on
a global program level. We suggest to substitute current multiple transformation tools
with such iterative interactive compilers and use external tools to fine-tune their op-
timization heuristics. Tools that achieve best results can later be easily and transpar-
ently added to the compiler, all the users being immediately able to take advantage of
this improvement. Moreover, using unified ICI allows optimization knowledge reuse
among different programs and architectures with statistical and machine learning tech-
niques. It also simplifies future compiler development when adding new transforma-
tions: e.g., their optimization heuristic can be automatically and continuously learned
with machine-learning techniques in the external driver.

2 Motivation
To motivate our research on an open iterative research compiler, we decided to consider
some current optimization techniques for mgrid application from SPEC CPU2000FP
benchmark suite [33]. From [18] we know that source-to-source loop tiling(blocking)
and unrolling on mgrid from SPEC CPU95FP can reduce its execution time. We used
the same source-to-source transformation tool from [18] and hill-climbing search to it-
eratively find best tiling and unrolling factors for two most-time consuming loops from
procedures resid and psinv for this benchmark on a recent AMD Athlon 64 3700+ plat-
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Program version: Loop from procedure/ source-to-source internal speedup:
transformation: transformation factor: transformation factor:

Best variant resid/loop tiling not-found 15 and 182 1.13
found with resid/loop unrolling 8 2

source-to-source psinv/loop tiling not-found 18 and 204
transformer psinv/loop unrolling 8 2
Best variant resid/loop tiling not-needed 60 1.17
found with resid/loop unrolling not-needed 13
interactive psinv/loop tiling not-needed 9
iterative psinv/loop unrolling not-needed 14
compiler

Table 1. Comparison of best factors found for mgrid benchmark when using source-to-source
transformation tool and interactive iterative compiler

form. Later, we applied the same hill-climbing search but using our iterative interactive
PathScale EKOPath Compiler.

The results presented in table 1 show that though we reduced execution time using
our older source-to-source transformer but interference with internal compiler transfor-
mations diminished the result. Previously, we often had to reduce the optimization level
of the compiler to remove such ambiguities and sometimes could even improve results,
but supporting less transformations than the compiler we could miss some important
optimizations. Using interactive iterative compiler, we both avoid this problem and ob-
tain much better result. Moreover, performing optimizations only inside compiler, we
reduce and simplify the optimization space since compiler suggests only legal transfor-
mations. In addition, many transformations currently applied by the compiler are not
profitable (as noticed in [36]) which can also improve the precision of machine learn-
ing techniques that we currently use to improve compiler heuristics, quickly find best
optimizations or predict best performance, for example (extension of [6, 8]).

Since we bias compiler optimization decision instead of querying it to apply some
specific transformation at a particular place in the program, we naturally force com-
piler to apply aggressively all possible transformations and later de-select unnecessary
transformations or change parameters to apply sequences of transformations. Similar
method has been used in PathOpt optimization tool (all but one search strategy) and
later in [29, 30]. The optimization target in these tools are global/procedure-level com-
piler flags and the main goal is to speed-up the search. However, we noticed, that when
optimizing program at fine-grain level in a complex optimization space, turning on all
optimizations and later de-selecting some of them would not speed-up the search since
multiple ambiguous interactions of various transformations could often considerably
degrade the performance. Hence, we use this method to naturally bias compiler op-
timization decisions externally and we use machine learning techniques to find best
optimizations in large optimization spaces quickly (as in [6]) and run-time versioning
to further speed-up the search and to adapt to different program behaviors at run-time
(as in [17]). We should also note, that some of the source-to-source automatic or manual
transformations are still needed since they may be syntactic and difficult to implement
inside a compiler. We are currently implementing an ICI for an open-source GCC and
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Fig. 1. Internals of (a) current compilers and (b) interactive compilers

plan to gradually add more transformations to this compiler while learning their heuris-
tics automatically.

3 Compiler Framework
Based on our previous experience on iterative optimizations [18, 15, 17, 6, 16], the prac-
tical open iterative interactive compiler should have the following features:

– allows simple and unified mechanism to obtain information about all compiler de-
cisions externally and bias them;

– reuses all the compiler program analysis routines to avoid duplications in external
optimization tools;

– transparent to user - no project modifications needed;
– removes unnecessary interactions between source-to-source optimizers, compiler

and back-end binary-to-binary translators;
– narrows down the optimization search space by using only legal transformations

for a given application;
– allows fine-grain (function, loop or instruction level) tuning to get better quality

code;
– simplifies compiler development and tuning for new architectures;
– allows reuse of information among different programs and architectures;
– allows modular pluggable third-party transformations and optimization tools.
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To address these issues, we suggest the structure of a practical iterative compiler
with an Interactive Compilation Interface as shown in Figure 1. This figure depicts an
abstract representation of current compilers with hardwired and often ineffective opti-
mization heuristics (Figure 1a) and of the suggested interactive compiler (Figure 1b)).
Whenever compiler optimization heuristic makes a potentially ineffective decision to
apply some transformation, compiler has to “push out” all the analysis information pre-
ceded this decision and provide a user an ability to modify this decision and parameters
of this transformation externally through an ICI. We can still treat compiler heuristic
as a black box, i.e. where only inputs (compiler decisions) and desired output (perfor-
mance metrics or other objective function) are known without knowledge about internal
structure and transformation interactions, but exposing all decisions at all possible lev-
els (global, function, loop, instruction) allows external tools to automatically learn this
behavior and adapt to specific programs and architectures.

The pitfall would be to reveal the compiler intermediate representation and libraries,
to a point where it would rigidify the whole internals and stiffen further evolution. To
avoid this pitfall, we choose to control the decision process itself, granting access the
only high-level features needed to effectively take a decision. This restriction is com-
patible with our fine-tuning and fine-grained interaction, and allows to tune programs
for best performance, code size, power consumption; we also believe it allows for joint
architecture-compiler design-space exploration. By exposing only the decisions that
arise from the opportunities suggested by the program syntax and semantics (e.g., de-
tecting that two loops are candidates for tiling), and only when the associated legality
checks are satisfied (e.g., checking dependence properties), we dramatically reduce the
combinatorial space of program transformation sequences that is searched by external
optimization drivers. In fact, we only provide the external optimizer with the combi-
nations currently suggested by the opportunity and legality analyses triggered on the
compilation unit, granting it access to the only program features embedded into the
compiler’s specific optimization passes. We believe that this approach of interacting
with a compiler will simplify the tuning process of new optimization heuristics and
will eventually simplify the whole compiler design where compiler heuristics will be
learned automatically, continuously and transparently for a user using statistical and
machine learning techniques.

We are developing several communication methods with an interactive compiler -
through external file/database, as a client/server connection and through internal calls
with a tightly coupled external tool. As a first step, we decided to use external file
tor communicate with a compiler similar to common feedback-directed compilation
as shown in figure 2. In a write mode simply invoked by setting environment vari-
able PATHSCALE ICI W to 1, compiler generates an external XML transformation
file that contains information about all applied transformations, their parameters and
available analysis information. This communication method allows transparent opti-
mizations without any modifications of the source code or project files. An external
tool can parse this file with any standard XML parser and modify parameters of ex-
isting transformations or disable them. This file is later feeded back to the compiler in
the read mode by setting environment variable PATHSCALE ICI R to 1. In this mode
compiler reads and parses modified XML transformation file while optimizing program
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Fig. 2. Communication with external tools through transformation file

and substitutes its heuristic decisions and parameters with the matched ones from the
transformation file. A sample transformation output for swim is shown in figure 3.

When applying transformations that may change loop ordering such as loop inter-
change, fusion/fission, tiling and others, the subsequent optimization decisions of the
compiler can change and will not be matching with the optimization order in the exter-
nal transformation file. This may result in skipping some externally modified decisions
that can cause inconsistencies for external tools when automatically learning the behav-
ior of the program. In such cases, iterative recompilation is required, when interactive
compiler and external tool iteratively process the transformation file, refine optimiza-
tion decisions occurred at each iteration and recompile the program until the the desired
sequence of decisions is achieved. To enable such recompilation a read/write mode of
the interactive compiler is used (when both environment variables PATHSCALE ICI W
and PATHSCALE ICI R are set to 1). In such mode, compiler reads and matches the
transformation file with internal optimization decisions, and at the same time produces
a new transformation file that contains both modified and unmatched optimization de-
cisions. The iterative recompilation algorithm is shown in figure 4. Naturally, this mode
is also used to apply any legal sequences of transformations, thus demonstrating how a
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<?xml version="1.0"?> 
<compiler_ici> 
 <file_name="swim.f"> 
 
  <transformation name="unroll_and_peel"> 
   <function>calc1</function> 
   <loop_number>4</loop_number> 
   <depth>1</depth> 
   <decision>4</decision> 
   <factor>7</factor> 
  </transformation> 
 
  <transformation name="unroll_and_peel"> 
   <function>calc1</function> 
   <loop_number>3</loop_number> 
   <depth>1</depth> 
   <decision>4</decision> 
   <factor>7</factor> 
  </transformation> 
  … 
 
</file_name> 
</compiler_ici> 

Fig. 3. Example of the transformation XML
file for swim

 clear transformation_file_out.xml 
 set PATHSCALE_ICI_W to 1         
 compile program 
 (write transformation_file_out.xml) 
 set PATHSCALE_ICI_R to 1 
_label_recompile: 
 copy transformation_file_out.xml to  
        transformation_file_in.xml 
 modify transformation_file_in.xml if needed 
 compile program 
 (read transformation_file_in.xml,  
 write transformation_file_out.xml) 
 if transformation_file_in.xml not the same 
 as transformation_file_out.xml 
 go to _label_recompile 

Fig. 4. Iterative recompilation algorithm to
apply sequences of transformations

compiler with a hardwired heuristic can become a flexible transformation tool with our
Interactive Compilation Interface. However, for some large applications, using external
file and read/write compiler mode for interaction with external tools may require several
recompilation and can be time consuming. This motivated us to develop a prototype of
a client/server communication method where decisions can be modified during during
compilation time and therefore no further recompilation is needed.

Currently, we added support to modify internal PathScale EKOPath compiler opti-
mization decisions for the following transformations:

inlining, array padding (global/local), loop fusion/fission,
loop interchange, loop blocking, loop unrolling, register tiling,
prefetching.

4 Tools and Experiments
We expect to substitute multiple often non-portable and non-compatible transformation
tools with our iterative interactive compiler as shown in figure 5. In this case, optimiza-
tions will be performed continuously and transparently to user, i.e. it will not require
any modifications of a source code or project files. All information about best found
optimizations on a given architecture is saved in a Program Transformation Database
kept along with a program. This simplify application development, optimization and
portability since no information about optimizations is now hardwired in the source
code of the program and there is no dependence on multiple external tools that may
not be available on some architectures. Moreover, Program Transformation Database
keeps information about all best possible optimizations for different program behaviors
on different architectures (as described in [17]). Therefore, whenever program is ported
to a new platform, the optimization process can start from already found best configu-
rations from multiple programs thus reusing optimization knowledge among different
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Fig. 5. Iterative optimization scenario using iterative interactive compiler

programs and architectures, behaving as a collective compilation system and consider-
ably narrowing down the optimization search space.

Since 2004, we and our colleagues actively used our iterative interactive compiler
in different projects and developed or prototyped the following support tools and opti-
mization drivers.

– Continuous iterative optimization driver with run-time adaptation at function, loop-
level or instruction level using low-overhead phase detection technique (as de-
scribed in [17]. We use exhaustive, random and hill-climbing search strategies (as
in [7, 18, 15]). We also use a all but one search strategy on a fine-grain level similar
to the one implemented in the PathOpt tool from the original PathScale EKOPath
compiler distribution where global compiler flags are turned all on at the first step
and later turned off one by one.

– Driver to continuously collect all possible optimization parameters. This driver is
useful when compiler optimization heuristics is treated as a black box and its be-
havior is learned automatically to collect all varieties of optimization decisions and
parameters automatically and transparently to a user, instead of listing them sepa-
rately and keeping them up-to-date.

– Driver to automatically and continuously rebuild compiler optimization heuristic,
and adapt to a specific architecture using statistical methods and collective opti-
mization knowledge reuse among different programs and architectures.
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Fig. 6. Speedups of several SPEC CPU2000 applications in comparison with -Ofast optimization
level when using interactive PathScale EKOPath compiler with hill-climbing search

– Prototype framework to replace a model-based compiler heuristic with automati-
cally learned one. We use our iterative interactive compiler together with the WEKA tool [3],
which is an open-source machine learning software package. Our preliminary re-
sults target loop interchange; we will revisit the main optimizations for which ma-
chine learning techniques have been proposed so far, as well as experiment with
more challenging ones.

We developed multiple support tools and external optimization drivers for our iter-
ative interactive compiler. We already created various tools to support our ICI-enabled
compiler and we developed several external optimization tools that uses iterative search
to find best transformations and their parameters to minimize execution time of pro-
grams. We use exhaustive, random and hill-climbing search (as in [7, 18, 15]), all but
one of search (implemented in the PathOpt tool from the original PathScale EKOPath
compiler suite [2] when all compiler flags are turned on and later turned-off one by one).
We also use this interactive compiler with program optimizations at fine-grain level for
run-time program adaptation described in [17].

Since the purpose of this article is mainly to describe the building of an interactive
iterative compiler, we decided to leave complex iterative optimization schemes for the
journal version of the paper and selected a relatively simple hill-climbing optimization
scheme as described in [18, 15]. We performed all experiments on AMD Athlon 64
3700+ at 2.4GHz, with an L1 cache of 64KB and an L2 cache of 1MB, and 3GB of
memory; the O/S is Mandriva Linux 2006. We instrumented the open-source commer-
cial PathScale EKOPath Compiler 2.x [2] to enable Interactive Compilation Interface
to allow external tuning of its optimization heuristic. It has a mature but ambiguous
optimizer with many transformations available, based on the ORC compiler, and is
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specifically tuned to AMD processors. We selected several programs from the SPEC
2000 suite [33] and ran our search tool continuously and transparently to user until all
transformations and their parameters have been analyzed. Whenever possible, we used
run-time versioning scheme from [17] to considerably speed-up iterative search and
allow further run-time adaptation. We needed from around 500 to 5000 runs (with 16
versions of examined functions during one run) per program to finish optimizations.
The speedups shown in figure 6 in comparison with the best -Ofast optimization level
of the EKOPath compiler demonstrate that it is possible to beat the state-of-the-art com-
piler even on large programs with the most aggressive optimization level enabled using
simple Interactive Compilation Interface and external iterative optimization drivers. We
will describe all other optimization scenarios in more detail in the journal version of the
paper and will make all the software, source codes and data publicly available at [4].

5 Conclusions and Future Work
In this article we demonstrated a simple, practical and non-intrusive way to turn cur-
rent rigid compilers into powerful interactive transformation toolset with an Interactive
Compilation Interface that allows to bias compiler optimization decisions externally.
We show how to avoid the pitfalls of rigidifying the compiler internals, while granting
access to rich-enough features to take performance-critical decisions. We assist the ex-
ternal optimization tools in considerably reducing the size of the optimization search
space by analyzing only possible transformations, and in continuously collecting the
most interesting sets of transformation parameters. We developed an ICI for the com-
mercial open-source PathScale EKOPath Compiler and, within last 2 years, developed
different support tools to optimize programs at loop or instruction level continuously
and transparently to a user. We use it to automatically optimize programs for the best
performance, code size, power consumption and hardware designs. We plan to make all
the software publicly available at [4].

Based on this work, we are currently developing a unified extensible and portable
ICI in the latest version of GCC [5] with a support from IBM, Philips (NXP), STMicro,
ARC and multiple universities within HiPEAC network of excellence [1]. We enable
an access to the most influential compiler transformations (including OpenMP direc-
tives) with ineffective optimization heuristics and enable optimization pass reordering
at a function or loop level. We are working on the optimization naming conventions
to enable portability and automatic knowledge reuse using machine learning between
different compilers and their versions. We plan to add ICI to the JIT-compilers (Jikes,
.NET compilers) to unify the run-time optimizations as well. One of the most advan-
tages of a unified ICI is that it enables life-long, whole-program compilation research
with collective reuse of the knowledge (program features, analysis results and transfor-
mation decisions) across different programs and architectures without the overhead of
breaking-up the compiler into a set of well-defined compilation components (commu-
nicating through persistent intermediate languages), even if such an evolution could be
desirable at some point (but much more intrusive).

We are using our toolset in the EU-funded MilePost, SARC and GGCC projects.
Within MilePost, we aim at dramatically changing and simplifying the design of future
compilers on rapidly evolving hardware by automatically and continuously learning
the best optimization settings for a given program, context, platform and any given set
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of compiler transformations. Within SARC, we facilitate collective optimization-space
exploration of the architecture and compiler, on a heterogeneous chip multi-processor.
Within GGCC, we contribute to the emergence of a production-quality standard for
whole-program analysis and optimization. We believe this is a major research and de-
velopment direction towards a practical and general-purpose development toolset based
on integrative compilation.
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Abstract. When designing embedded systems, one needs to make decisions con-
cerning the different components that will be included in a microprocessor. An
important issue is the chip area vs. performance trade-off. In this paper we in-
vestigate the relationship between chip area and performance for superscalar mi-
croprocessors. We investigate the feasability to obtain a suitable configuration by
searching. We show that our approach gives a good configuration after 100 to
150 iterations using a simple random search algorithm. This shows the feasibil-
ity of our approach, in particular when more sophisticated search algorithms are
employed as we plan in future work.

1 Introduction

Current embedded systems require high performance. Therefore, several current and
many future embedded processors are out-of-order or even simultaneous multithreaded [9].
A drawback of these types of processor is that they consume much silicon area because
of the complicated control structures required to support out-of-order execution [7].
This may be problematic for embedded systems where silicon area is expensive. There-
fore, it is important to tune the architecture in such a way that maximum performance is
achieved using a minimal amount of resources. Obviously, this is very difficult for gen-
eral purpose processors, but in the case of embedded processors that only run a limited
set applications, it may be possible to select a restricted set of resources in such a way
that high performance still is achieved. For in-order processors there exist many ap-
proaches to explore the design space [5]. For example, PICO is an automatic system to
explore application specific VLIW processors [8]. In the Artemis project [13] two dif-
ferent frameworks for the simulation phase are adopted: Spade [10] provides a model
for rapid high level architecture performance simulations, and Sesame [14], provides a
method for evaluating designs at multiple abstraction levels.

Recently, Eyerman et al. have proposed methods to explore the design space of out-
of-order processors [4] focussing mainly on energy. In this paper, we study the feasabil-
ity to automatically search for good out-of-order processors configurations for specific
applications, paying attention to both performance and area. That is, we want to find a
processor configuration that is small but powerful enough for specific applications.
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We use the SimpleScalar toolset as the design space to explore [1]. SimpleScalar
allows us to set many architectural parameters. Each component has a different effect
on the final performance. Furthermore, there exist dependencies between the several
components. For example, increasing the number of arithmetical units will not increase
performance, unless multiple instructions can be executed in parallel. It requires quite
some analysis to find all dependencies between the various components and the list of
dependencies quickly becomes complex. As we show in Section 2, even with a rela-
tively small amount of possible design options (from now on referred to as tuning pa-
rameters), the search space is huge. Therefore, we employ a random search algorithm
to explore only a fraction of this space. We show that in this way, using only about
100 to 150 configurations, we can find a high performance architecture that is much
smaller than a general purpose architecture. This shows the feasibility of our approach,
particularly when more sophisticated search algorithms would be developed as we plan
in future work.

This paper is structured as follows. In Section 2, we describe the experiments we
have performed with this new approach, and Section 3 contains the results of these ex-
periments and we also give a short discussion. In Section 4, we mention some possible
directions for future work. Section 5 summarizes this paper.

2 Experimental Setup

In this section, we discuss how we generate configurations, how performance is mea-
sured, the parameters of our experiments and the area model that is being used.

The search algorithm we use in our experiments is the most basic one available:
we randomly generate a set of 1000 configurations (without duplicates) using different
tuning parameters and then measure the performance and calculate the area of each
configuration.

To evaluate the performance of each configuration, we use the SimpleScalar Tool
Set [1]. The SimpleScalar simulator supports several instruction set architectures. We
use the PISA architecture.

We use two applications for our experiments, ijpeg and mpeg2dec. Both of these
programs rely heavily on integer calculations and scarcely on floating point operations.
Therefore, we keep the number of floating point arithmetical units constant throughout
the experiments. The ijpeg-simulation accounts for a total of about 1.1× 109 instruc-
tions. The mpeg2dec-simulation results in about 1.3×108 instructions.

We have selected the following tuning parameters. In an iteration a value from the
matching parameter value set is assigned to each parameter.

– Data cache size: number of bytes of the first level direct mapped data cache, block-
size of 32 bytes. We use 6 values: { 1024, 2048, 4096, 8192, 16384, 32768

}
– Instruction cache size: number of bytes of the direct mapped instruction cache,

blocksize of 32 bytes. We use 6 values: { 1024, 2048, 4096, 8192, 16384,

32768 }
– GShare branch predictor size: A GShare branch predictor consists of a w bits

wide shift register (the global history register, containing the history of the w most
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recently executed branches) and a table containing 2w bimodal counters [11]. We
use 5 values: { 512, 1024, 2048, 4096, 8192 }

– Branch Target Buffer (BTB) size: the maximum number of entries in the BTB.
We use 6 values: { 1, 64, 128, 256, 512, 1024 }

– Register Update Unit (RUU) size: the number of slots available in the RUU, the
unit that controls the out-of-order execution. We use 7 values: { 2, 4, 8, 16,

32, 64, 128 }
– Number of integer ALUs: the number of integer Arithmetic Logic Units available.

We use 5 values: { 1, 2, 3, 4, 5 }
– Number of memory ports: the number of ports available to the CPU to access the

first level cache. We use 4 values: { 1, 2, 3, 4 }
– Instruction fetch queue size: the maximum number of instructions that can be

stored in the fetch queue. We use 5 values: { 1, 2, 4, 8, 16 }
– Instruction issue width: the maximum number of instructions that can be issued

per cycle. We use 3 values: { 2, 4, 8 }
– Load/Store Queue (LSQ) size: The LSQ handles the actual memory communica-

tion and contains a mechanism that avoids data hazards. We use 4 values: { 2, 4,

8, 16 }

All other possible architecture parameters remain constant throughout the experiment
and are set at the SimpleScalar default values. With this set of parameters, more than
nine million different configurations are possible.

To obtain an estimate of the area of a particular processor configuration, we use a
slightly extended version of the model proposed by Steinhaus et al. [15]. This model
provides an area estimate for a superscalar microprocessor design, specified using a
SimpleScalar configuration, using analytical and empirical models. Chip area is ex-
pressed in λ2 in order to get a quantity that is independent of the technology used to
manufacture the microprocessor. Here, λ is defined as half of the minimum feature size
which is the size of the smallest transistor, interconnect, etc. that can be produced by
using a certain manufacturing process.

3 Results

In this section, we first show performance versus area for 1000 randomly picked pa-
rameter settings for two benchmarks, namely ijpeg and mpeg2dec. Next, we show how
much performance we obtain when we have area constraints.

3.1 Simulation Results

After running 1000 performance simulations for ijpeg and mpeg2dec, we produced
the plots in Figures 1 and 2. The x-axis represents the area correspronding to a single
configuration and the y-axis shows the performance, which is calculated by:

performance =
1

number of cycles
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We have normalized the results to the SimpleScalar default configuration, given in Ta-
ble 2. We also executed four additional simulations for each benchmark, which are
plotted using horizontal lines. First, we determined the performance for the minimum
and maximum configuration, by selecting the smallest and largest values, respectively,
for each tuning parameter in our search space discussed in section 2. These are called
“reachable minimum” and “reachable maximum”, respectively, in Figures 1 and 2.
Next, we determined the absolute lower bound allowed by SimpleScalar by selecting
the minimum value for each tuning parameter allowed by the SimpleScalar simulator.
Finally, we determined an estimate of the upper bound by selecting very large values for
each tuning parameter as listed in Table 1. The sizes of these configurations are listed
in Table 3.

Register Update Unit size 2048 slots
Data cache size 16 Megabytes
Instruction cache size 16 Megabytes
GShare branch predictor size 524288 entries
Branch target buffer size 524288 entries
Number of integer ALUs 8 (maximum)
Number of memory ports 8 (maximum)
Instruction issue width 64 instructions per cycle
Instruction fetch queue size 64 instructions
Load/Store Queue size 1024 entries

Table 1: Parameter settings for the configuration that is our estimated upper bound.

Register Update Unit size 16 slots
Data cache size 4 Megabytes
Instruction cache size 16 Megabytes
GShare branch predictor size 2048 entries
Branch target buffer size 512 entries
Number of integer ALUs 4
Number of memory ports 2
Instruction issue width 4 instructions per cycle
Instruction fetch queue size 4 instructions
Load/Store Queue size 8 entries

Table 2: Parameter settings for the SimpleScalar default configuration

Figures1 and 2 show that there is a difference in performance between the minimum
reachable and maximum reachable configurations of about a factor of five. Compared
to this, the difference between the reachable minimum and the SimpleScalar minimum
is quite small. The same applies to the difference between the reachable maximum and
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Configuration Area (Mλ2)
Speedup

ijpeg mpeg2

Reachable minimum 11250 1.0 1.0
Reachable maximum 44539 6.4 7.5
Minimal configuration 11168 0.6 0.7
Huge configuration 13764139 7.2 8.5

Table 3: Area and Speedup wrt minimum configuration of reference configurations.

the large SimpleScalar configuration. Thus, the value sets we have chosen for the tuning
parameters cover a broad range of the search space.

One immediately notices the four clusters that appear in both plots. These turn out
to be caused by the “number of memory ports” parameter: each value for this parameter
corresponds to a cluster. Since this parameter has a huge impact on the total area of a
configuration, it clearly separates the different classes. This is caused by the amount
of additional wiring and logic needed for each memory port. For example, when the
number of memory ports is increased by one, the load/store queue requires at least one
additional read and write port for each of its SRAM cells. This is because the LSQ must
be able to serve an additional read or write operation during a single cycle. The area
of several other components, like the register file, TLB and cache, is influenced in a
similar manner. However, it seems there is not much to gain anymore when the number
of memory ports is higher than 2.

We observe that the majority of the configurations is located below two times the
performance of the reachable minimum. However, there are some differences when
looking at certain individual configurations. Some have a high performance for the
ijpeg benchmark while that same configuration does not perform as well as in the
mpeg2dec simulation, although the performance still lies above the average. Interest-
ingly, this hardly holds conversely: configurations that perform well for the mpeg2dec
benchmark are also among the best performing configurations of ijpeg.

3.2 Improvement under Area Restrictions

In this section, we study how fast the random search algorithm finds a good configura-
tion when we impose a limit on the allowable area. Such a limit is important in practice
when a system needs to be fit on a given amount of silicon. The measure of “goodness”
we employ in this paper is speedup over the reachable minimum configuration. For a
configuration x, speedup(x) is given by:

speedup(x) =
per f ormance(x)

per f ormance(min config.)

Speedups of the reference configurations are shown in Table 3. We use area restrictions
ranging from 12,000 to 30,000 Mλ2. The resulting plots, shown in Figures 3 to 8, are
produced by iterating over the set of 1000 configurations. The performance of each
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configuration that satisfies the area restriction is plotted. The two different lines in a
figure indicate the best configuration encountered so far for both benchmarks.

In Figure 3 we pose a limit that is only slightly larger than the minimum area shown
in Table 3. We still produce a configuration that is almost twice as fast as this minimal
one. This shows that carefully selecting a few extra resources can be highly effective.

Limits of 13,000 to 15,000 Mλ2 produce better configurations with speedups of
around 4. For ijpeg these limits deliver the same configurations, as shown in Table 4.
For mpeg2dec, a larger value for the limit is used for a larger instruction cache, as
shown in Table 4. This indeed gives a higher performance, as shown in Figures 5 and 6.

When the limit allows more than 1 memory port, 2 memory ports are chosen, as
shown in Table 3. Figures 7 and 8 show that this gives more performance than 1 port.
However, when the limit is 30,000 Mλ2, 3 ports could be accomodated. However, this
value is not chosen, indicating that such extra port does not give extra performance
compared to 2 ports.

Finally, we note that we only need around 100 simulations to find good candidates,
irrespective of the limit we impose on the area. This shows that our simple approach of
using a random search algorithm is already reasonably effective.

Combining the configurations in Table 4 and the speedups from Figures 3 to 8, it
is clear that both caches do not need to be that large for the ijpeg benchmark. A data
cache of 2048 bytes and an instruction cache of 4096 bytes should be sufficient. The
reason that data caches can be small lies in the algorithms used in this benchmark: many
computations are in essence “local” because discrete transforms are applied to small 8×
8 blocks. Also, the compute intensive loops are small so that for ijpeg small Icaches
can be sufficient. For the mpeg2dec benchmark, the same holds for the data cache, but
the preferred instruction cache size turns out to be 32 kilobytes. This stresses that one
should be careful when evaluating simulation data: the microprocessor configurations
that are returned by our approach depend greatly on the benchmark applications used
in the simulation step. It shows how important it is to chose the right benchmark suite
when designing a microprocessor.

In general, the RUU size needs to be at least 32 and the BTB size at least 64. In the
best performing configurations, the branch predictor size varies between the lowest and
highest possible values. So it seems this parameter (or the value set we have chosen for
it) does not have a big influence on the performance in our experiments. For the ijpeg
benchmark, the average branch predictor accuracy is about 89%. For the mpeg2dec

benchmark, the average accuracy is about 97%. In general, the accuracy doesn’t deviate
more than 1% from the average for both benchmarks. The minimum number of integer
ALUs that need to be included turns out to be three for both benchmark applications.
The fetch queue size, issue width and load/store queue size tend to the higher values of
the parameter set for a good performance result (≥ 4, ≥ 4, ≥ 8 respectively). The only
thing in which both benchmarks significantly differ is the fetch queue size: in general
the mpeg2dec benchmark performs slightly better when the fetch queue size equals
eight or sixteen, compared to configurations that have a smaller fetch queue size.

SMART'07

74



data instr. branch BTB RUU #ALUs #memports FQsize Issue LSQ
cache cache pred. width

ijpeg

area ≤ 12000 Mλ2

2048 16384 512 512 16 1 1 2 2 4

area ≤ 13000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 14000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 15000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 20000 Mλ2

8192 32768 4096 64 64 3 2 8 4 16

area ≤ 30000 Mλ2

8192 16384 1024 256 128 4 2 4 8 16

mpeg

area ≤ 12000 Mλ2

1024 2048 512 512 8 5 1 2 2 16

area ≤ 13000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 14000 Mλ2

2048 32768 1024 128 64 3 1 4 4 8

area ≤ 15000 Mλ2

2048 32768 1024 128 64 3 1 4 4 8

area ≤ 20000 Mλ2

8192 32768 4096 64 64 3 2 8 4 16

area ≤ 30000 Mλ2

2048 32768 2048 256 128 5 2 8 4 16

Table 4: Best Configurations found by random search when applying size constraints
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4 Future Work

In this paper, we have used a very simple random search algorithm. The results of the
simulations are not used for any feedback. Doing so could improve the search. For
example, genetic algorithms can be used. Another direction is by applying data min-
ing techniques on the obtained data, which consists of the configurations together with
their estimated area and computed performance to create heuristics in order to decrease
the size of the search space. An example heuristic can restrict the number of ALUs to
the number of instructions that can be fetched simultaneously. Another heuristic can
prevent a configuration from having more LSQ slots than RUU slots. Furthermore, one
could try to improve the performance simulation step. A possible way to do this, is to
use small, but representative inputs for the benchmark applications used in the simula-
tions [3]. Another approach could use statistical simulation [12,2]. We can also apply
Pareto-Front Arithmetics [6] to minimize the part of the design space to be evaluated.

5 Conclusion

In this paper we have demonstrated the feasibility of an iterative approach to the prob-
lem of finding suitable microprocessor configurations: we can find a a high performance
configuration that satisfies a given area restriction using a simple search algorithm and a
limited number of iterations. We have shown that even a small increase in the resources
compared to a minimal configuration can give a speedup of 2.5, which implies that tun-
ing a processor can be highly effective. Our results suggest that around 100 evaluations
could be sufficient. However, this can still be too time consuming, in particular when
several applications need to accommodated. Therefore, in future work, we focus on re-
ducing this number by designing more sophisticated search algorithms than the random
search from this paper.
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Abstract

The ability to provide diagnostic information for workload performance is of great value in the performance tuning
process. Not only can it orient the tuning process by identifying key performance issues, it can also be used to estimate the
severity of each performance issue and the potential gain from addressing it.

This work investigates the ability of some of the most popular machine learning regression algorithms to provide this
diagnostic information. Five regression algorithms are trained using real performance data collected on an Intel R© CoreTM2
Duo processor desktop machine. The algorithms are compared along two axes, prediction quality and usefulness of output,
in order to gain key insights into the causes and severity of performance issues.

Although several techniques are found to demonstrate good prediction quality, our study shows that the model-tree-based
technique (M5’) gives superior interpretability. This class of algorithm produces models that can be used, not only to predict
performance, but also to indicate the sources of potential performance improvement and to quantify the potential performance
gain. This information can be used to direct performance optimization efforts by prioritizing performance problems.

1 Introduction

Workload performance analysis is used to tune applications to achieve the best possible performance (e.g., shortest exe-
cution time) on a given architecture. It can also be used to compare different implementation alternatives during the design
and implementation of new applications. Traditionally, performance analysis is conducted by counting the number of oc-
currences of micro-architectural events, such as cache misses and branch mispredicts, to assess the presence and severity of
various performance issues. A fixed penalty (latency cycles) is assigned for each type of event. This methodology ignores
the interaction between various events and the ability of modern microprocessors to hide latency using techniques such as
out-of-order execution, pre-fetching and speculative execution. This results in micro-architectural performance events having
varying penalty depending on the amount of latency that can be hidden, which in turn depends on the characteristics of the
workload (e.g., instruction mix and present level of parallelism) and the interaction with other performance events (e.g., the
presence or absence of other performance events).

This paper considers two important performance analysis questions:

• The “what” question: This question tries to identify the main performance issues or sources of potential performance
improvements. This is important, as it can orient the effort of the performance analyst to optimize for specific perfor-
mance issues (e.g., reduction of cache misses).

∗The authors would like to thank the following people for their help with this work: Seth Abraham, Antonio C. Valles, Garrett T. Drysdale, James C.
Abel, Agustin Gonzalez, David A. Levinthal, Stephen P. Smith, Henry Ou, Yong-Fong Lee, Alex A. Lopez-Estrada, Kingsum Chow, Thomas M. Johnson,
Michael W. Chynoweth, Annie Foong, Vish Viswanathan
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• The ”how much” question: This question tries to estimate the potential performance gain (e.g., percentage reduction in
execution time) from mitigating a specific performance issue or a set of performance issues. This question is important
as there may be several performance issues and one needs to decide which ones are most important and whether it is
worth to trying to optimize for a specific issue.

In answering the previous two questions, it is important to take into account the potential interactions between different
performance events. For example, if two events tend to occur at the same time, it is possible that the actual penalty incurred
for one (e.g., Level 1 cache miss) depends on the occurrence or not of the other (e.g., DTLB miss). These interaction effects
create non-linearities and can result in distinct performance models for different categories of workloads and even phases of
a single workload [18].

We investigate the usefulness of machine learning regression techniques to construct accurate and useful performance
models that can address the “what” and “how much” questions. In particular, we focus on models that can be used to
diagnose potential performance issues and to estimate the potential gain from addressing one or more specific performance
issues. Evaluation is performed on five different regression algorithms to compare the pros and cons of these algorithms and
to determine which algorithm or class of algorithms is suitable for performance analysis.

The remainder of the paper is organized as follows. Section 2 discusses some of the related work. Section 3 presents
the different regression algorithms used in this study. Section 4 describes in detail our experimental setup used for data
collection. Section 5 presents our results. Section 6 concludes the paper.

2 Related Work

Recent years have seen several attempts to build models for performance analysis of processors. Unfortunately, most of
these models fail to include many micro-architectural events and design space parameters, which leaves validity unknown
when a large set of events and design parameters are present. This is mainly because these models require prior knowledge
about significant events and parameters, and the required knowledge is gained from expensive, simulation-based sensitivity
analysis. In addition to its prohibitive cost, simulation accuracy is questionable especially in the case of applications whose
time varying behaviors are not easily represented in traces. Our work avoids these problems by relying on counts of a broad
spectrum of processor events collected during the execution of the entire application, rather than those obtained through
simulation. Such counts include, for example, misses in the various code, data and translation caches, branch mispredicts,
load-store address overlaps, and many other events that can potentially reduce performance.

In [10], the authors propose a linear formula expressing the cycles-per-instruction (CPI) metric as a function of data and
instruction cache misses, branch mispredicts and the ideal steady-state CPI. The performance penalty of cache misses and
branch mispredicts is estimated using trace-driven simulation. The work in [20] extends [10] by including the effects of
pre-fetching and resource contention in the model and uses a probabilistic approach to limit the required number of trace-
driven simulation scenarios. These two approaches do not include other critical potential sources of CPI degradation such
as DTLB and ITLB misses, various load blocks and the effects of unbalanced instruction mixes. More importantly, the two
models do not account for the inherent interaction effects between various performance events, or for differing behaviors from
application to application and often among different phases of the same application [18]. In contrast, this work establishes
a classification of workloads or phases of workloads, and builds a model for each class, using measured performance data
rather than simulation data.

In [7, 21], analytical models are used to study the effect of pipeline depth on performance for in-order and out-of-order
processors. These two works use simulation-based sensitivity analysis to determine important model parameters. In [7],
detailed superscalar simulation is used to determine the fractions of stall cycles for different pipeline stages and the degree of
superscalar processing that remains viable. In [21], the authors use detailed simulations of a baseline scenario and scenarios
with increased processor front-end width to determine the effects of micro-architecture loops (e.g., branch mispredict loops)
on the performance. Again, these two models take into account only one aspect of the performance analysis. Our model,
on the other hand, considers the processor performance as a whole while including many potential sources of performance
degradation.

Several statistical techniques have been used to limit the required number of simulation runs for design space exploration
needed during the design phase of new processors. In [5, 4], principal component analysis is used to limit design space
exploration by identifying key design space parameters and computing their correlations. Placket and Burman fractional
design is used in [24] to establish parameter prioritization for sensitivity analysis. The authors model high and low values of
a set of N design parameters using only 2N simulations focusing on parameters with high priority.
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In [6], the authors define interaction cost to account for the interaction between two different micro-architectural per-
formance events. The authors design new hardware to enable sampling workload execution in sufficient detail to construct
representative dependency graphs to be used for the computation of the interaction cost. Our approach also takes into ac-
count the interaction between various micro-architectural events. However, we propose the handling of the interaction cost
in a statistical manner without the requirement of dedicated new hardware.

3 Methodology: Regression Algorithms

This section describes the different regression approaches used in this paper. Regression consists of fitting a model that
relates a dependent variable Y to a set of independent predictors X1, X2, ..., Xk. The functional form of the model can
be estimated using training samples from the unknown underlying distribution. In this study, we compare the merits of five
different regression algorithms in the context of performance analysis: (1) Multi-linear regression [17], (2) Artificial neural
networks [13], (3) Locally weighted linear regression [2], (4) Model trees [22] and (5) Support vector machines [15, 19].
These algorithms are described briefly below.

3.1 Multi-Linear Regression

Linear regression [17] is based on the assumption of a linear relationship between the dependent variable Y and its
predictors X1, X2, ..., Xn. Linear regression offers simple and easily interpretable models. However, it can result in
inaccurate models that predict poorly in the presence of a nonlinear or non-additive relationship. Due to the complexity
of micro-architectural event interaction and varying event performance penalties, however, it is common for a nonlinear
relationship to exist. In the linear case, the functional relationship between Y and its predictors is estimated by minimizing
the residual sum of squares (RSS). For more details on multi-linear regression, the reader is referred to [17] or any classical
statistics text.

3.2 Artificial Neural Networks

Artificial Neural Network (ANN) is a powerful method for generalized nonlinear regression. This class of algorithms
is patterned after cooperative processing of information that is found in the biological world’s neurons and networks of
neurons [13]. A multilayer neural network consists of a number of neurons organized into an input layer, an output layer and
a number of hidden layers. Units in the input layer take as input the information to be processed (values of the predictors in
our case), while the output layer produces the prediction result. The first hidden layer receives as input the results of the units
in the input layer and gives its results as inputs to the units in the next layer.

The training of an ANN establishes the input/output mapping in the form of connections between various units in the
network. The training also computes the weights of input connections. The fitted model can be used to predict the values of
the dependent variable Y for unseen data points. The ANN approach has two key benefits: (1) it has high prediction accuracy
and (2) it does not require any prior knowledge of the form of the functional relationship between the dependent variable and
the independent variables. It has the drawback, however, that the black-box nature of ANN thwarts interpretation of results
and therefore prevents insight into the sources of performance degradation and the exact performance impact of the different
micro-architectural events. In addition, the approach is known to be very sensitive to outliers.

3.3 Locally Weighted Linear Regression

Locally Weighted linear Regression (LWR) [2] is a “lazy” or instance-based learning technique. A new regression equation
is fitted every time the model needs to predict on a new instance. This is in contrast with the other methods seen in this section
where one regression model is built during the training phase and used with all test instances.

LWR combines linear regression and instance-based learning. Unlike regular linear regression, where one regression
is performed on the full unweighted training set, LWR performs a new regression for each instance, weighting training
instances based on their distance (e.g., Euclidean distance) from the specific test instance. The main advantage of LWR is its
high flexibility, which makes it suitable for the approximation of nonlinear functions. The main disadvantage of this method,
like all instance-based learning methods, is that it does not provide much insight into the global structure of the training data.
This limits the interpretability of its output.
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3.4 Model Trees: M5’

Model trees are a sub-class of regression trees [3], having linear models at the leaf node. In comparison with classical
regression trees, model trees deliver better compactness and prediction accuracy. These advantages issue from the ability of
model trees to leverage potential linearity at leaf nodes.

The model tree algorithm used in this work is based on M5’ [22], an optimized, open-source implementation of the
classical M5 [16] algorithm. The input space is recursively partitioned until the data at the leaf nodes constitute relatively
homogeneous subsets such that a linear model can explain the remaining variability. This divide-and-conquer approach
partitions the training data and provides rules for reaching the models at the leaf nodes. The linear models are then used to
quantify, in a statistically rigorous way, the contribution of each attribute (e.g., micro-architectural events here) to the overall
predicted value (e.g., performance in this case). A powerful aspect of the prediction model arrived at in this way is that it is
interpretable, in contrast with other machine learning approaches, such as neural networks.

3.5 Support Vector Machines

Support Vector Machines (SVM) [15] are a combination of instance-based and numeric modeling learning. The idea
behind support vector machines is finding instances, called support vectors, that are at the boundary of the classes and
creating linear functions that discriminate them as widely as possible. The biggest advantage of vector machines is that they
can use linear, quadratic or higher order models to represent nonlinear boundaries between classes. This is in contrast to
basic linear models that only represent linear boundaries. To construct nonlinear boundaries with linear models, support
vector machines use nonlinear mapping, where the instance space is transformed, allowing a linear model to represent a
nonlinear model in the previous space.

The Sequential Minimal Optimization algorithm (SMO) has been shown to be an effective method for training SVM on
classification tasks defined on sparse data sets. SMO differs from most SVM algorithms in that it does not require a quadratic
programming solver. The technique used here is a generalization of SMO by Shevade et al [19] to handle regression problems.

The main benefit of using SVMs is that they are robust against overfitting. Like ANNs, a problem with applying this
technique to analysis of processor performance is that its black-box nature prevents insight into sources of inefficiencies. In
addition, training SVMs is particularly slow. It took the authors more than 10 hours to train a model with performance data.
In contrast, training model trees (M5’) on the same dataset using the same hardware required less than 10 minutes.

4 Experimental Setup

In this section, we describe the experimental setup we used to collect the necessary training data.

4.1 Platform

The data used in this study is collected on an Intel R© CoreTM2 Duo processor-based desktop platform. The test machine
has a speed of 2.4 GHz and 1GB of memory. The memory subsystem consists of a two-level cache. Each core has a 32 KB,
level- one instruction cache and a separate level-one data cache of the same size. The two cores share a unified level-two
cache of 4 MB. For more details on CoreTM2 Duo processor architecture, the reader is referred to [9, 8]. The data collection
platform is running a Microsoft R© WindowsTMXP 64 bit operating system.

4.2 Data Collection Methodology and Tool

The data was collected using an internally-developed tool. This tool is similar to the Intel VTune Performance Analyzer,
but it collects data in counting mode. The counting mode obtains the values of a set of micro-architectural events of interest
every time a threshold count is reached for another reference event. In particular, we divide the execution sequence into
sections of equal numbers of instructions retired and collect the counts of various micro-architectural events for each section,
using instructions-retired as the reference event.

Dividing the execution sequence into fine-grained sections in the above manner is done to capture the phase behavior of
the workload [18]. In general, we expect that several phases, each with distinct performance characteristics, are present in
the workload. Dividing the execution sequence into multiple sections increases the probability of capturing these phases.
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4.3 Micro-Architectural Events

The CoreTM2 Duo architecture implements processor counters for multiplexed collection of information about several
hundred micro-architectural events, that cover different aspects of the processor’s behavior. Of these, a significant fraction
of events can be excluded from consideration simply because they do not have a performance impact or do not arise except
due to error conditions. Of what remains, it is still impractical to collect counts on a majority of events due to the small
number of multiplexed counters. To offset these practical difficulties, it was necessary to pre-select a subset of events so a
subset of 21 events was identified as candidates likely to be most relevant in the performance analysis. This apparently ad-hoc
choice was purely pragmatic and revisable; happily, the prediction accuracy of the model, shown in Section 5, suggests it
was on target. The chosen set of events represents the execution time and various performance-related micro-architectural
events characterizing the instruction mix, the memory sub-system, the branch prediction accuracy, the data and instruction
translation lookaside buffers and other known potential sources of performance degradation.

4.3.1 Execution Time

The execution time is the number of unhalted CPU clock cycles that the workload takes to execute, measured by the event
CPU CLK UNHALTED.CORE, and considered the primary performance metric in this study. Workload sections consisting
of equal numbers of instructions retired have radically different execution times. This event is used to derive the CPI (cycles
per instruction) which constitutes our dependent variable.

4.3.2 Instruction Mix

While each section comprises a fixed number of instructions retired, the instruction mix can change from section to section.
Different instruction mixes can give rise to different performance issues (e.g., data cache misses can only be caused by
memory referencing instructions). In addition, different types of instructions execute on different functional units and stress
different resources. For instance, CoreTM2 Duo architecture can retire up to four instructions per cycle, but these four
instructions cannot contain more than one store instruction. This means that a high percentage of store instructions results
automatically in a lower average number of instructions retired per cycle (longer execution time) even if there is no other
performance issue. For the analysis, the retired instructions are divided into four different groups:

• Load instructions: the number of load instructions, counted using the INST RETIRED.LOADS event.

• Store instructions: the number of store instructions, counted using the INST RETIRED.STORES event.

• Branch instructions: the number of branching instructions counted using the BR INST RETIRED.ANY event. In this
study, it is further divided into correctly predicted and mispredicted branches as will be discussed shortly.

• Other instructions: all other instructions, counted by subtracting the above three counts from the total number of
instructions retired. In particular, this category includes both integer and floating point instructions.

4.3.3 Branch Related Events

The distribution of branches between predicted and mispredicted is critical, as each mispredicted branch forces the execution
pipeline to be flushed and the fetch engine to be restarted at the correct branch target and costs up to a few dozen cycles.

• The number of mispredicted branch instructions is counted using the event BR INST RETIRED.MISPRED

• Subtracting the above from the total, i.e., (BR INST RETIRED.ANY - BR INST RETIRED.MISPRED) yields the
number of correctly predicted branches.

4.3.4 Memory Subsystem Events

Load or Store instructions that miss in caches tend to have a profound impact on performance. We collect data on the number
of misses occurring at various caches within the memory subsystem.
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• The number of level 1 data cache misses is counted using the event MEM LOAD RETIRED.L1D LINE MISS. This
does not double-count a cache line that is missed while still being brought into L1 cache as a result of a previous cache
miss.

• The number of level 1 instruction cache misses. This count is obtained using the event L1I MISSES.

• The number of level 2 cache misses is counted using the event MEM LOAD RETIRED.L2 LINE MISS. In CoreTM2
Duo, the L2 cache is shared between the two cores and so this event counts both data and instruction misses in the level
two cache.

4.3.5 Translation Lookaside Buffers Events

Data and instruction translation lookaside buffers (DTLB and ITLB) are critical resources for efficient execution across
nearly all workloads. Several events are used to monitor the DTLB and ITLB stresses that arise during a specific workload
or sections of it.

• The number of load accesses that miss the first level DTLB (L0 DTLB) is counted using the event DTLB MIS-
SES.L0 MISS LD.

• The number of load accesses that miss the last level DTLB is counted using the event DTLB MISSES.MISS LD.

• The number of non-speculative load accesses that miss the DTLB, a subgroup of the previous event, is counted using
the event MEM LOAD RETIRED.DTLB MISS.

• The overall number of DTLB miss events which arise for any reason (i.e., due to loads, stores and hardware initiated
memory references, including speculative operations) is counted using the event DTLB MISSES.ANY.

• The overall number of retired instructions missing the ITLB is counted using the event ITLB.MISS RETIRED.

4.3.6 Other Events

A number of other events often indicate potential performance issues.

• Load block related events: The CoreTM2 Duo processor uses memory disambiguation [9, 8] to maximize concurrency
among loads and stores that don’t intersect. In certain cases memory disambiguation fails, leading to different types
of load blocks, depending on what causes the failure. LOAD BLOCK.STA counts the number of load instructions
blocked because of a preceding store instruction to an address that is not yet known. LOAD BLOCK.STD measures
the number of load instructions blocked because of a preceding store to the same address when the data to be stored
is not yet known. LOAD BLOCK.OVERLAP STORE counts the number of load operations blocked because of an
actual datum-width overlap with a preceding store, or because of an ambiguous overlap from page aliasing in which
the load and a preceding store have the same offset but into different pages. Generally, these load block events can be
avoided by increasing the distance between load and store instructions.

• Split events: Accesses that are not aligned to natural type-boundaries of data often cause additional cycles to complete,
as the detection of potential conflicts with previous accesses may in general require blocking the current access until
previous memory operations have retired. MISALIGN MEM REF counts the number of memory reads or writes that
cross an eight-byte boundary. L1D SPLIT.LOADS counts the number of load operations from the level 1 cache that
span two cache lines. L1D SPLIT.STORES counts the number of store operations to level 1 cache that span two cache
lines.

• ILD STALL: This event counts the number of instruction length decoder stall cycles due to a length changing prefix [9,
8]. Normally, instruction decoding takes one cycle; in the presence of a length changing prefix, it requires 6 cycles.
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4.4 Data Pre-Processing

The Intel R© CoreTM2 Duo architecture has five performance counters, which means that up to five micro-architectural
events can be monitored simultaneously. However, three of these counters are fixed to always monitor the following events:
“CPU CLK UNHALTED.CORE”, “INST RETIRED.ANY” and “CPU CLK UNHALTED.REF”. As a result, there are only
two reconfigurable performance counters, while our study requires data collection on about 20 different performance events.
To work around this problem, it was decided to run each workload 11 times to collect the values of the required number of
events for each workload section.

While this multiple-run approach is attractive as it allows seemingly simultaneous collection of data on all the necessary
events, it has its own limitations. For instance, we observed a certain amount of variability from run to run. This can result
from the presence of different operating system processes executing on the machine in addition to our workload. In our study,
process affinitization was used to limit this variability. In addition, outliers with large variability were identified and removed
from the data set. On the basis of several pilot tests, it was decided to use a 5% cutoff-threshold on variability; that is,
workload sections for which the standard deviation for execution time from the 11 runs was higher than 5% of the mean were
removed. Multi-run data collection is illustrated in Figure 1. Future work will involve the testing of event multiplexing [12]
as an alternative.
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Figure 1. Multi-run data collection approach

The data is normalized by the number of retired instructions. For example, instead of the execution time as the dependent
variable, the CPI (cycles per instructions) is used. CPI is computed as the execution time (number of unhalted clockticks)
divided by the number of retired instructions. Similarly, the number of level 2 cache misses per retired instruction and the
number of branch mispredicts per retired instruction are used instead of the raw counts of the corresponding events.

Table 1 indicates the short names used for various variables (event counts per retired instruction) along with the corre-
sponding events and a short description.

4.5 Workloads

The data is collected on a subset of SPEC CPU2006 workloads [1], as limiting the set of workloads was necessary to
restrict the size of the data set due to limitations of the WEKA tool [23] used in this study. While the use of a limited set
of workloads can affect the generalization of the proposed approach, it is argued that by dividing each workload into many
sections we can capture more different performance behaviors. This increases the variance of our data, which provides higher

SMART'07

87



Table 1. Selected metrics used in this study
Metric Corresponding event Description
CPI CPU CLK UNHALTED.CORE CPU clock cycles per instruction
InstLd INST RETIRED.LOADS Loads per instruction
InstSt INST RETIRED.STORES Stores per instruction
BrMisPr BR INST RETIRED.MISPRED Mispredicted branches per instruction
BrPred BR INST RETIRED.ANY –

BR INST RETIRED.MISPRED
Correctly predicted branches per instruction

InstOther INST RETIRED.ANY – (INST RETIRED.LOADS +
INST RETIRED.STORES + BR INST RETIRED.ANY)

Non-branch and non-memory instructions per instruction

L1DM MEM LOAD RETIRED.L1D LINE MISS L1 data misses per instruction
L1IM L1I MISSES L1 instruction misses per instruction
L2M MEM LOAD RETIRED.L2 LINE MISS L2 misses per instruction
DtlbL0LdM DTLB MISSES.L0 MISS LD Lowest level DTLB load misses per instruction
DtlbLdM DTLB MISSES.MISS LD Last level DTLB load misses per instruction
DtlbLdReM MEM LOAD RETIRED.DTLB MISS Last level DTLB retired load misses per instruction
Dtlb DTLB MISSES.ANY Last level DTLB misses (including loads) per instruction
ItlbM ITLB.MISS RETIRED ITLB misses per instruction
LdBlSta LOAD BLOCK.STA Load block store address events per instruction
LdBlStd LOAD BLOCK.STD Load block store data events per instruction
LdBlOvSt LOAD BLOCK.OVERLAP STORE Load block overlap store per instruction
MisalRef MISALIGN MEM REF Misaligned memory references per instruction
L1DSpLd L1D SPLIT.LOADS L1 data split loads per instruction
L1DSpSt L1D SPLIT.STORES L1 data split stores per instruction
LCP ILD STALL Length changing prefix stalls per instruction

representativeness of the data set. It must be mentioned here that nothing in the proposed approach restricts working only on
this specific set of workloads. Future work includes data collection on commercial workloads to train the solution on a richer
data set.

A total of several hundred thousand data points is obtained by dividing the workloads into distinct sections. Due to
the large data set, a subset of the data is chosen randomly in a way that maintains the statistical distribution of the overall
population. This is done using the “stratified remove fold” statistical technique implemented in WEKA. The resulting subset
contains 27, 448 data points and maintains the same statistical distribution as the original application.

We used the following workloads with varying input files (reference and training input files delivered with SPEC).

• 401.bzip2: A compression benchmark based on Julian Seward’s bzip2 version 1.0.3 with the exception that SPEC
bzip2 does not perform any I/O operation except at the reading the input file.

• 403.gcc: A compiler benchmark based on gcc version 3.2. The benchmark modifies the original gcc compiler to
perform more inlining and spend more time analyzing the source code input, which induces higher memory usage.

• 429.mfc: This benchmark is derived from a program to optimize single-depot vehicle scheduling in a public trans-
portation system.

• 436.cactusADM: This benchmark is based on the Cactus computational framework used for solving the Einstein evo-
lution equations in the ADM 3+1 formulation.

• 447.dealII: This benchmark is based on the C++ deal.II library used for adaptive finite elements and error estimation.

• 454.calculix: This benchmark is based on a finite element software used for linear and nonlinear three-dimensional
structural applications.

• 458.sjeng: This benchmark is based on a program that plays chess and other chess variant games such as drop-chess.
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5 Implementation and Results

For the purpose of this study, we use the open-source implementation available in the WEKA software package [23].
WEKA offers a unified framework for comparing the different algorithms described in Section 3. Each regression algorithm
is trained on the dataset described in the previous section to obtain a performance model. To avoid any expert knowledge, we
decided to use the default parameter for each algorithm. The only exception to this rule is the case of M5’, where we report
results for two different sets of runs. For the first set, we employ default algorithm parameters and call it the M5Default. To
improve intepretability and achieve better compactness, for the second set, we forgo the smoothing technique that is otherwise
applied by default and increase the minimum number of instances in leaf nodes and this in turn causes a small reduction in
prediction accuracy for the second set. Results for the second set are labeled as M5Modified.

For performance analysis, two important qualities are desired in fitted models: model interpretability and performance
predictability. Interpretability refers to the ability to explain the predicted value. For example, it is important to know why
the predicted CPI of one class of work is 3, while that of another is 0.5. The understanding that interpretability creates allows
one to diagnose performance issues (e.g., the low performance is due to cache misses) and to guage the possible gain from
addressing specific performance issues. Prediction accuracy, measured in multiple ways, provides bounds on modeling errors
and is important as a primary measure of confidence in the model. A physical systems exact performance may be readily
measured and in such a case, the role of prediction in reaching a performance estimate may be marginal; but, a high prediction
accuracy confirms that the dominant characteristics of the physical system are faithfully abstracted by the model.

5.1 Interpretability of the Algorithms

Among the five algorithms, only model trees and multi-linear regression give easily interpretable results. Equation 1 gives
the multi-linear regression performance model:

CPI = 0.64 + 318.05 ∗ LCP + 181.62 ∗ ItlbM − 0.13 ∗ DtlbL0LdM+

11.40 ∗ DtlbLdM − 6.14 ∗ DtlbM + 1.74 ∗ DtlbLdReM + 8.77 ∗ L1DM − 4057.39 ∗ L1DSpSt+

198.25 ∗ L2M + 6.67 ∗ L1IM + 0.95 ∗LdBlSta + 1.62 ∗ LdBlOvSt

−96.66 ∗ LdBlStd + 2.86 ∗ InstSt + 0.19 ∗ InstLd + −832.07 ∗ L1DSpLd+

91.33 ∗ MisalRef − 1.76 ∗ BrPred + 18.41 ∗ BrMisPr − 0.22 ∗ InstOther

(1)

This equation can be easily interpreted. It tells us, for example, that a level 2 cache miss (L2M) costs on average about
200 cycles and that a branch mispredicts costs about 18 cycles. However, the equation exposes several model anomalies. In
particular, the negative coefficients in front of several micro-architectural events known to impede performance are counterin-
tuitive. It is well known that store and load splits (L1DSpSt and L1DSpLd), DTLB misses (DtlbM) and load blocks (LdBlStd)
degrade performance considerably if they occur, even in moderate frequency. The fact that the model tells otherwise can be
the result of the inherent interactions between the different micro-architectural events. These interactions cannot be captured
by a linear model. In addition, the approach of one model fits all is not realistic as previous research [18] proved that distinct
performance behaviors or phases can exist even within a single workload. This translates to the necessity of using different
performance models for different categories of workloads and phases within each workload.

Model trees seem to provide the best interpretable performance model. Each leaf node in a model tree represents a distinct
workload or sections of workload class. The number in parentheses indicates the percent of the training set that falls into the
corresponding leaf. The performance within each class is explained by a linear model. Interaction terms are captured in the
tree structure, which can show for instance, that the performance effect of a given density of DTLB misses over an interval
differs according to whether or not a significant number of L2 cache misses occur in the same interval. Figure 2 presents the
performance analysis model tree obtained from applying M5’ to the training set. This tree structure provides key insights to
performance analysts. For example, at the root node of the tree, we can immediately see that the model identifies the level 2
cache misses (L2M) as the single event that most strongly affects performance. Among the events used in this study, L2 cache
misses are known to be the longest latency event and so this result is highly intuitive. For more details on the interpretation
of the model tree and its use for workload performance analysis, the reader is referred to [14].

The three other regression algorithms (LWR, ANN and SMOreg) are black-box techniques. Their outputs do not offer
clear insights into the potential sources of performance degradation and, hence, the obtained models cannot be used to guide
the performance optimization efforts as can be done with model trees.
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5.2 Prediction Accuracy

To evaluate the prediction accuracy of the different algorithms for the performance data, we used 10-fold cross valida-
tion [11]. This technique consists of dividing the overall data in 10 disjoint subsets, or folds. Each algorithm is then trained
using 9 of the subsets and evaluated using the tenth subset. The process is repeated 10 times and each time, a different
subset is used for testing and the remaining 9 subsets are used to train the model. The algorithm is evaluated by averaging
the prediction metrics from the 10 different models. Several prediction metrics can be employed and we use the following
common metrics :

• The Correlation Coefficient: This metric is based on the standard correlation coefficient and measures the extent of
linear relationship between predicted (P) and actual (A) values. It is a dimensionless index that ranges from −1 to 1
with 1 corresponding to ideal correlation. The correlation coefficient C is given by:

C =
Cov(P, A)

σpσa

. (2)

where Cov(A,P) is the covariance between the predicted and the actual values, while σp and σa are their respective
standard deviations.

• Root Mean Squared Error (RMSE): This error measure is used in the determination of confidence intervals. Measured
in the same unit as that of the predicted quantity (in this case CPI), it ranges from 0 to infinity with 0 corresponding to
the ideal situation. It is computed as:

RMSE =

√

∑N

i=1
(pi − ai)2

N

(3)

where pi and ai are the predicted and actual CPIs for i

t
h test instance and N the number of instances.

• Mean Absolute Error (MAE): This error measure is similar to RMSE, except that it uses absolute error values instead
of the squared errors, i.e.,

MAE =

∑N

i=1
|pi − ai|

N

.

(4)

• Root Relative Squared Error (RRSE): The relative squared error is relative to what it would have been if a naive
predictor had been used. In particular, this simple predictor is just the mean of the actual values. It takes the total
squared error and normalizes it by dividing by the total squared error of the simple predictor. It is given by:

RRSE =

√

√

√

√

∑N

i=1
(pi − ai)2

∑N

i=1
(â − ai)2

(5)

where â is the mean of the actual CPI values.

• Relative Absolute Error (RAE): This error is computed in a similar way to RSE. It is given by:

RAE =

∑N

i=1
|pi − ai|

∑N

i=1
|â − ai|

. (6)

The value of RAE ranges from 0% to 100% with 0 being the ideal situation.

Table 2 gives the evaluation results for the different algorithms compared in this study.
The results indicate that all nonlinear regression methods have good prediction accuracy. All except the locally weighted

linear regression result in a correlation coefficient exceeding 0.95 and a relative absolute error below 10%. It is also clear that
the model tree methods, M5’ with the default parameters and the modified version, demonstrate very competitive prediction
accuracy. In the case of the modified algorithm, where prediction quality was traded off for more compact tree and improved
interpretability, the predictions are still highly accurate.
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Table 2. Prediction accuracy for different algorithms
Algorithm Correlation RMSE MAE RRSE RAE

LinReg 0.9832 0.1745 0.0844 18.2284 11.342
ANN 0.9955 0.0902 0.0412 9.4254 5.5365
LWR 0.9119 0.3927 0.1931 41.0354 25.9568

M5’Default 0.9962 0.0836 0.0245 8.7301 3.2881
M5’Modified 0.9845 0.1676 0.0582 17.5153 7.8302

SMOreg 0.9758 0.2143 0.0702 22.3865 9.4344

Figure 3. Predicted CPI vs. Actual CPI Using Default and Modified M5’
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To illustrate the prediction accuracy of the different approaches, Figures 4 and 5 plot the predicted CPI versus the actual
CPI for the cross-validation data. Note that the prediction is performed on data points in the test fold. In other words,
the prediction on each data point is performed using a model that was built on training data that does not include the data
point. Figure 3 plots the CPI predictions using the default and modified implementations of the M5’ algorithm. Clearly,
the two algorithms produces CPI predictions that are very close to the actual CPI values. Note, however, that the default
implementation of M5’ seems to perform poorly when it comes to outlier cases. The figure shows a case where the predicted
CPI is negative.

Figure 4 plots the predicted against the actual CPI for the ANN and SMOreg (extension of SVM) algorithms. As noted
earlier, artificial neural networks shows exceptionally good prediction accuracy. In the case of SVM-based regression, the
predicted CPI shows a negative bias for large CPI. This seems also to be the case for LWR (locally weighted linear regression)
and multi-linear regression as shown in Figure 5.

Figure 4. Predicted CPI vs. Actual CPI Using ANN and SVM

It is clear from these figures that the modified implementation of M5’ does not sacrifice prediction accuracy for inter-
pretability. It shows very competitive overall prediction and resilience to outlier cases.

6 Summary and Conclusions

In this paper, we presented several regression algorithms and assessed their appropriateness for computer architecture
performance analysis for workload tuning. The results show that the M5’ algorithm representing model trees demonstrates
high prediction accuracy and excellent interpretability. These two properties allow the exploitation of the resulting models
for the identification of main performance issues and the quantification of the potential gain from addressing each. The
work presented here has many potential applications in the area of micro-architecture and software performance analysis. In
particular, the model tree approach is worth investigating for use in processor design space exploration.
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Branch Prediction with Bayesian Networks

Jeremy Singer, Gavin Brown, and Ian Watson

University of Manchester, UK

Abstract. This paper studies the architectural problem of branch pre-
diction. We analyse the popular technique of two-level adaptive predic-
tion, relating it to the state-of-the-art Machine Learning technique of
Bayesian Networks (BNs). We show that a two-level predictor is an ap-
proximation to the BN formalism. This link allows us to explore the wider
family of BN predictors. We investigate how to adapt BN techniques to
operate within realistic hardware constraints, using the same primitive
components that are present in existing branch predictors. We system-
atically study how performance is affected by these simplification. We
aim to use these ideas to reduce the storage overhead of BN predictors
without losing significant prediction accuracy. The key motivating factor
is that storage required in two-level predictors grows exponentially with
branch history length, whereas BNs provide a framework to reduce this
overhead.

1 Introduction

There is an increasing trend to apply machine learning (ML) techniques to di-
verse prediction problems in computer systems. Recent examples include archi-
tectural simulation [1] and operating system message passing [2]. A challenging
case appears to be the online learning problem of branch prediction since it re-
quires (1) high accuracy, (2) low latency and (3) low implementation complexity.

1. High accuracy is essential, since predictors deployed in existing commod-
ity processors achieve accuracy rates of over 97% on integer benchmarks
[3]. However even slight improvements on this score are welcome, since the
branch mispredict penalty is increasing all the time, with longer pipelines
and speculative execution schemes relying on almost-perfect branch predic-
tion.

2. Low latency generally means that the predictor must be able to supply a
result in less than than a single processor cycle [4]. With the seemingly
relentless increase of clock speeds, this latency requirement becomes ever
more demanding.

3. Low complexity is necessary to ensure that the predictor designs can be
fabricated in realistic transistor budgets, using low storage overheads and
simple inputs that are trivially available in existing processor layouts.
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1.1 Motivation

This paper relates a popular ML technique, Bayesian Networks (BNs), to exist-
ing branch prediction technology, two-level adaptive branch predictors [5], partic-
ularly the GAg and gshare schemes. We investigate how to adapt BNs to operate
within realistic hardware constraints, by using the same primitive components
that are present in existing branch predictors. We systematically study how per-
formance is affected by these simplifications. We aim to use these ideas to reduce
the storage overhead of two-level predictors without losing significant prediction
accuracy. The key motivating factor is that storage required in two-level predic-
tors grows exponentially with history length, whereas BNs provide a framework
to reduce this overhead. The general community consensus is that longer history
allows more accuracy, only the exponential growth rate of two-level adaptive
predictors prevents longer histories from being used.

1.2 Contributions

This paper has four main contributions.

1. It simplifies the design of BNs so that they are suitable for hardware imple-
mentation.

2. It studies how the parameters of the BN model affect its prediction accuracy
and storage capacity, the age-old tradeoff in a new context.

3. It discusses the theoretical relation between the GAg predictor and the fully

connected Bayesian Network.
4. It explores whether BNs are a suitable alternative to GAg or gshare for

branch prediction tasks.

2 Background

Any project that combines research from two distinct areas has the task of
communicating with two distinct audiences, often with very different research
objectives. In this work we attempt to use consistent terminology throughout,
so after clarification, some ML concepts may be given architectural labels and
vice versa. Section 2.1 describes the practicalities of two-level prediction from
an architectural perspective. Section 2.2 outlines the theory of BNs from a ML
perspective. Section 2.3 relates these two approaches to prediction, highlighting
potential research issues.

2.1 Two-Level Adaptive Branch Prediction

Conventional branch predictors in the systems architecture community are gen-
erally implemented as lookup tables. This paper focuses on predictors composed
of a global table indexed by a global history register. Yeh and Patt describe
these as GAg schemes [5].
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Each table entry is a 2-bit bimodal counter [6]. When the branch is taken, the
appropriate counter is incremented until it saturates at 112. When the branch
is not taken, the appropriate counter is decremented until it saturates at 002.
The more significant bit is used to determine whether the predicted outcome is
taken or not taken. The bimodal counter provides hysteresis, or the ability to
remember general previous behaviour despite transient variations, for instance
after the last iteration of a loop.

The index into this table of counters is derived from the outcomes of the
most recently executed branches. Hence such schemes are known as finite context

method predictors since they use a finite context of recent global branch history
outcomes to construct the table index. This finite context is recorded in the
global history register which operates like a shift register, shifting in the most
recent branch outcome as the least significant bit after each branch instruction
execution. In the simplest case (GAg), this global history is used as the table
index directly, which means that the table must have 2n entries where n is the
length of the global history register. In a more complicated case, the global
history may be XOR’d with low-order bits from the branch instruction address.
This scheme is known as gshare [7]. Its XOR-based hashing function spreads the
branch predictions more evenly throughout the table. This spreading alleviates
the aliasing problem, which can occur when different branch instructions with
different history patterns (although with a common suffix) map onto the same
table entry.

2.2 Bayesian Networks

Bayesian Networks are a type of probabilistic model—a mathematical formalism
within the field of Machine Learning, capable of representing and manipulating
arbitrary probability distributions over arbitrary random variables. These are
now commonly accepted as a state-of-the-art learning technique, finding appli-
cations in numerous domains from medical informatics to traffic control.

Bayesian Networks (BNs) are represented as directed acyclic graphs, where
each node represents a different random variable. A directed edge from node
X to node Y indicates that X has a direct influence on Y . This influence is
quantified by the conditional probability P (Y |X), stored at node Y . Nodes in a
network can be of two types: evidence (or attribute) nodes, and query (or class)

nodes.
For our purposes, BNs have multiple evidence variables X1, X2, . . ., Xn and

a single class variable C. In terms of branch prediction, the evidence is the value
of previous branch outcomes. Xn is the outcome of the most recently committed
branch and X1 is the outcome of the oldest branch on record. The class node C

represents the predicted next branch outcome. We adopt the standard encoding
for branch outcomes, that 0 denotes ‘not taken’ and 1 denotes ‘taken’. Thus all
variables in the network are boolean.

The task of any branch predictor is to predict the next outcome, which can be
rephrased as predicting the chance of each possible outcome (taken/not taken),
given the evidence of previous outcomes. In the language of probability theory,
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this is the posterior probability, P (C|X1, . . . , Xn). One approach to this is to
attempt to devise a function that will directly estimate this value. This is the
approach taken by the majority of predictors to date.

Alternatively, Bayes’ theorem can be used to rearrange the problem,

P (C|X1, X2, . . . , Xn) =
P (C) P (X1, X2, . . . , Xn|C)

P (X1, X2, . . . , Xn)
(1)

In practice, for a fixed branch history vector (X1, X2, . . . , XN ) the right-
hand denominator is fixed. So we disregard this constant scaling factor. Now the
numerator can be rearranged according to the rules of conditional probabilities,
giving us a decision rule

if P (C = 1)P (X1, . . . , Xn|C = 1) > P (C = 0)P (X1, . . . , Xn|C = 0)
then predict taken

else predict not taken

The power of this approach is that we can make assumptions on the depen-
dencies between the branches contained in the branch history buffer.

The simplest type of BN is called Naive Bayes (NB). This assumes that all
the attributes are independent of each other. Figure 1 shows a NB network.

C

X1 X2 Xn

Fig. 1. Naive Bayes classifier

The independence property removes the dependence between each Xi and
Xj , simplifying to:

P (C|X1, X2, . . . , XN ) α P (C)
∏

i

P (Xi|C) (2)

Note that we employ upper case letters (X) to denote random variables, and
lower case to denote specific values (x).

For a given history vector x1, x2, . . . , xn, we calculate P (C = c|X1 = x1, X2 =
x2, . . . , XN = xn) using Equation 2 above, for each possible value of c (in our
case either 0 or 1). We select as our prediction the more likely value, i.e. the
one with the higher conditional probability. (Note that the scaling constant of
proportionality is the same for all values of C.)
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Although the NB classifier makes simplifying assumptions, it performs ro-
bustly for many prediction tasks.

Now we consider the space requirements of the NB classifier in terms of
number of probability values that must be stored. Note that probabilities can be
represented in different ways in hardware, as Section 3 explores. So, since there
are two possible values for C, we require one probability value P (C = 1). We
can calculate P (C = 0) as 1 − P (C = 1). Then, for each attribute Xi, each
corresponding to a bit of global history, we require two conditional probabilities.
P (X = 1|C = 0) and P (X = 1|C = 1). Again, we can derive P (X = 0|C = c) as
1−P (X = 1|C = c). This means, in total, we must remember 2n+1 probabilities,
where n is the length of the global history register.

Friedman et al [8] show that the performance of a BN improves when aug-

menting edges are added between attributes. Recall that the NB classifier as-
sumes all attributes are independent of one another. An augmented naive Bayes

classifier relaxes this assumption by allowing edges between attributes.
A tree-augmented naive Bayes classifier (TAN) is a BN in which the class

variable C has no parents and each attribute Xi has as parents the class vari-
able and at most one other variable. Figure 2 shows a TAN network, in which
each attribute Xi depends on the preceding attribute Xi−1. In terms of branch
prediction, this means that a historical branch outcome depends on the prior
branch outcome.

C

X1 X2 Xn

Fig. 2. Tree-augmented Naive Bayes classifier

The probability equation now looks like:

P (C|X1, X2, . . . , Xn) α P (C) P (X1|C) P (X2|X1, C) . . . P (Xn|Xn−1, C) (3)

Whereas NB stores 2n + 1 probability values for a history length n, TAN
requires 4n − 1 probability values, due to the additional dependences in the
conditional probabilities. However the asymptotic space complexity is still O(n).
It is possible to add further augmenting edges to the BN, until eventually it
becomes fully connected. In a fully connected Bayesian network, if there are n
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attribute nodes and one classifier node, then each node is a member of n edge
relations, either incoming or outgoing.

2.3 Relating Bayesian Networks and GAg

The GAg scheme effectively stores P (C|X1, X2, . . . , Xn) directly, using 2-bit bi-
modal counters as discretized estimates of conditional probability. This paper
shows how we can use Bayes’ rule to approximate this conditional probability,
storing fewer probability values along the way. However, poor accuracy of pre-
dictors leads us to conclude that the NB network and its improvements do not
capture sufficient dependence information for good prediction accuracy. This
could be due to compound errors from approximations to probability multipli-
cation.

3 Modifying Bayesian Networks for Hardware

Implementation

The default NB model requires some adaptation to make it suitable for deploy-
ment in hardware. This section shows how a simplification of the NB model can
be implemented using standard hardware components from existing branch pre-
diction schemes, with a small storage overhead. Thus the simplified NB predictor
satisfies two requirements from Section 1: low latency and low implementation

complexity.

3.1 Representing the Probabilities

Equation 2 shows that a NB classifier requires the following probability values
to be stored, or at least estimated: P (C = 1) and each P (Xi = 1|C = c) where
i is bounded by the length of the global history register, and c ∈ {0, 1}. Recall
that Xi is the ith bit of the global history register, storing the ith most recent
branch outcome.

The accurate calculation of probability values requires frequency counts of
events. For instance, to calculate P (Xi = 1|C = 1) requires two event counters:

1. number of times that Xi = 1 and C = 1
2. number of times that C = 1

The second event counter will be reused for many probability calculations.
However asymptotically the number of event counts scales as O(n) with the
history length n, in the same way as the number of probabilities.

Unfortunately, such event counts require an unbounded amount of storage.
It is not possible to record probabilities as floating-point numbers since then
it is not possible to know the relative significance of each new event, so the
probabilities cannot be updated properly.

One workaround solution is to have a fixed window of recent events (like
the global history register). It would be possible to store bounded counts in
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relation to this window size. This gives us a bound on storage capacity but there
is another difficulty. The event counts have to be converted into probabilities
using floating point arithmetic, which is almost certainly too complicated to
include in the prediction unit. It may be possible to work in terms of logarithms,
then the calculations become integer arithmetic but this is still too complex.

Discrete Approximations to the Probabilities A simpler scheme uses 2-bit

bimodal counters, inspired by the conventional table-based prediction schemes
such as GAg and gshare. This effectively discretizes probability estimates. So
P (Xi = x|C = c) can be a value from the set {002, 012, 102, 112}. We use Smith’s
standard update scheme with increment/decrement and counter saturation at
002 and 112 [6]. For each bit of history, there are two counters pi,0 and pi,1 one
for the case when c=0, the other for c=1. Counter pi,0 will be updated when the
branch outcome is 0. It will be incremented if xi = 1, and decremented if xi = 0.
On the other hand, counter pi,1 will be updated when the branch outcome is 1.
Again, it will be incremented if xi = 1, and decremented if xi = 0. There is also
a counter pc, which is incremented every time the branch outcome is taken and
decremented every time it is not taken.

So counter pi,c corresponds to the original probability value P (Xi = 1|C = c).
Just as we can compute P (Xi = 0|C = c) using 1 − P (Xi = 1|C = c), we can
compute the corresponding 2-bit bimodal counter as 112 − pi,c. For the rest of
this section, we define function q as follows:

qi,c =

{

pi,c when xi = 1
112 − pi,c when xi = 0

This scheme provides a discretized estimate of posterior probabilities.

qi,c P (Xi = xi|C = c)
002 0
012 1/3
102 2/3
112 1

It might be possible to use these discretized probabilities to perform the ac-
tual probability calculation from Equation 2, using either lookup tables or simple
binary algebra. However, the high frequency of 002 values ensures that most cal-
culations generally result in 002 answers. The more satisfactory alternative to
predict the outcome is to determine the more likely value (0 or 1) in the most
significant bit of each bimodal counter indicated by Equation 2. So, for a history
vector x1, x2, . . . , xn, we determine which of the following sets of counters has
more top bits set: either (a) {pc} ∪

⋃

i qi,1, or (b) {(112 − pc)} ∪
⋃

i qi,0. If (a)
has more top bits set than (b) then the predicted outcome is 1, otherwise the
predicted outcome is 0.

The storage overhead of this 2-bit bimodal NB predictor is: two 2-bit counters
for each bit in the global history register, plus one counter for C. This is a small
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storage overhead indeed. Moreover it scales linearly with history length, whereas
the gshare storage scales exponentially.

Figure 3 shows how the simplified NB predictor is conceptually implemented
in hardware. This schematic diagram shows that the set of 2-bit counters is
arranged as a 3-d array, based on (c, i, xi) where c is branch outcome, i is history
bit index and xi is the actual value of the ith history bit. In fact, since the limits
of each dimensional index are fixed in advance, the 3-d array can be flattened
to a linear vector. Also note that in the xi dimension, we only need to store the
2-bit value v for when xi = 1, since we can calculate the value for when xi = 0
as 112 − v. The same applies for the unconditional probabilities P (C = 1) and
P (C = 0). Thus it is clear to see that for n bits of global history, the simplified
NB predictor stores 2n + 1 counter values.

The figure shows how to calculate the likelihood that the next branch out-
come will be 0. We use counters from the c = 0 row and select between the
xi = 0 and xi = 1 counters for each i based on the corresponding values in the
global history register. We check the top bits for each selected counter and sum
to see how many of these top bits are set. Then we do the same for the c = 1
row. We use a comparator (not shown in figure) to determine which outcome is
more likely, and use this outcome as our prediction.

Predictor state update works in a similar way. We use the actual branch
outcome to determine whether to update the c = 0 or c = 1 row. We update the
xi = 1 counters based on the values in the global history register—increment
the counter if xi = 1 or decrement if xi = 0.

4 Evaluation Framework

We use the recently released second championship branch prediction framework
(CBP2) [9] to evaluate our branch prediction implementations. Each implemen-
tation is coded in high-level C++, although in such a way that could easily
be encoded in hardware. Thus arrays will map into indexed table lookups, in-
tegers will become bit strings, shifts and masks are used for bit selection and
concatenation, and so on.

The default predictor is a simple gshare implementation. We compare all
our predictors in this paper with this default gshare predictor. The framework
includes a selection of real-world execution traces containing branch information.
For each branch, the predictor is supplied with the branch instruction address
and the branch target address. From these inputs and its internal state, the
predictor must predict the branch outcome. Some short time later, the result
of this branch is fed back to the predictor to enable it to update its state. The
framework keeps track of the prediction accuracy and reports this at the end of
the trace. Traces cover programs from benchmark suites including SPEC INT
2000 and SPEC JVM 98. The final result for a trace is reported in units of
MPKI, which is mispredicts per 1000 instructions. The final result for all the
programs is taken as the arithmetic mean of all individual traces. We modify
the framework to report results in terms of percentage of mispredicted branches,
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Fig. 3. Schematic diagram of simplified Naive Bayes predictor, calculating the likeli-
hood that the next branch outcome will be 0 given the history 1010. The complete
calculation requires checking the likelihood that the next branch will be 1, and then
selecting the larger probability as the predicted outcome.
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which is the conventional metric for branch prediction accuracy. CBP2 is an
industrial quality simulation framework for branch prediction. Its predecessor,
CBP1, has been comprehensively analysed by Loh [10].

The CBP2 default gshare predictor achieves a score of 6.3 MPKI (just under
5% misprediction rate). In CBP1, the winning predictor achieved a score of
2.5 MPKI. Any new predictor will need to have comparable performance and
hardware complexity if it is to be accepted as a realistic alternative to current
implementations.

5 Predictor Comparison: unbounded versus bounded NB

This section investigates how the NB simplification affects prediction accuracy.
We implement two predictors, u-NB and n-NB. The u-NB model is an unbounded

NB predictor, as described in Section 3.1. It keeps unbounded integer counts of all
necessary events. It uses double-precision floating-point arithmetic to calculate
all probabilities. It computes Equation 2 exactly to determine the most likely
outcome. The n-NB model is the bimodal simplification as outlined in Section
3.1. It maintains probabilities as n-bit bimodal counters. These are updated with
saturating increments or decrements. The prediction is made by examining top
bits and choosing the outcome that has more top bits set.

Figure 4 shows the accuracy scores for u-NB, 2-NB and 4-NB on the CBP2
dataset, with different lengths of global history register. It is clear to see that
accuracy improves as history length increases. This trend is apparent for both all
three predictors. Although 2-NB tracks the performance of u-NB for short history
lengths, the divergence increases with history length. The 4-NB predictor is more
accurate than u-NB for all history lengths, and the performance improvement
is sustained over longer history lengths than 2-NB. This is a most satisfactory
result—our discrete approximation to the NB algorithm performs better than
the original algorithm, for this dataset. This is because 4-bit counters provide
enough hysteresis to avoid being upset by transient behaviour, but they are
sensitive enough to forget the distant past history, in a way that u-NB cannot.
Section 7.2 discusses this tradeoff further.

6 Predictor Comparison: NB versus gshare

This section compares the performance of our n-NB predictor with the standard
gshare predictor. A fair comparison must ensure that predictors use equal stor-
age capacities. We assume that the rest of the prediction logic to be roughly
equivalent, so when we set the storage capacities to be equal then the predictors
have equivalent implementation complexity.

For the 4-NB predictor from the previous section, with a history register
length of hb, there will be 2hb + 1 4-bit bimodal counters, making a total of
8hb + 4 bits. In contrast, a gshare predictor for history length hg will have a
table of 2hg entries, each of which is a 2-bit bimodal counter, making a total of
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Fig. 4. Comparison of Naive Bayesian Predictors

2hg+1 bits. A rearrangement of these equations shows that to have equal storage,
the gshare predictor must have history length hg = ⌈1 + log2(2hb + 1)⌉.

We investigate how these equations effect the predictors by comparing 4-NB
predictors of varying history lengths with equivalently sized gshare predictors
(with correspondingly shorter history lengths according to the above equation).
Figure 5 shows the difference in performance between equally sized 4-NB and
gshare predictors. Note that gshare is the clear winner and the performance
difference grows with history length.

Thus it is clear that the simple adaptation of NB is inferior to gshare, not
a suitable candidate for deployment in real processors. The next section inves-
tigates how to close this gap between n-NB and gshare, by considering different
improvements to the n-NB prediction scheme. We hope to retain the branch
predictor characteristics (from Section 1) of low implementation complexity and
low latency, while achieving high accuracy.

7 Exploring the Bayesian Predictor Family

There are various parameters in the n-NB predictor model that may be tuned in
order to improve the accuracy of predictions. This section considers tuning the
global history register length (Section 7.1), the bimodal counter length (Section
7.2), the set associativity (Section 7.3) and the connectedness of the BN (Section
7.4).
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7.1 History Length

The standard method to increase prediction accuracy is to make the global
history register longer. This allows for more context in a prediction, reducing the
effects of the aliasing problem. Figure 6 shows how NB predictors, with different
bimodal counter lengths perform as the global history register length increases.
It is clear to see that the misprediction rate decreases as the history register
lengthens, although the rate of decrease reduces at higher history lengths.

7.2 Reactivity

The problem with the u-NB predictor from Section 3.1 is that it is insensitive
to sudden probability distribution changes or program phase shifts. In contrast,
saturating bimodal counters are able to react to such changes. The length of
the bimodal counter determines its hysteresis, or how long it takes to react to
changes.

We varied the length of the bimodal counters to find the optimum length. For
the benchmarks given, the optimum performance was 4-NB, as shown in Figure
6. Longer counters cause degraded predictions since since they take too long to
react to changes. Shorter counters cause degraded predictions since they forget
reliable old history in favour of extremely transient behaviour. Note that some
n-NB implementations outperform u-NB since u-NB is never able to ‘forget’ old
history, so it becomes progressively more difficult to react to phase changes.
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7.3 Set Associativity

A common reason for low prediction accuracy is aliasing. The gshare predictor
reduces aliasing by incorporating some low order bits from the branch instruc-
tion address into table lookup index. Another approach to reduce aliasing is set

associativity. In this case, there are several NB predictors operating in parallel
(NB/sa). The appropriate NB predictor to use for branch instruction b is based
on the low-order bits from the branch instruction address. This approach is com-
monly used in processor caches. We investigate how it works for NB predictors.
The main drawback is the growth in storage requirements for the predictor. The
storage space grows exponentially with the number of instruction address bits
used.

Figure 7 shows how set associativity affects the performance of the 2-NB
and 4-NB predictors, each with a global history register length of 20. The x axis
shows the number of bits of branch instruction address used, so the number of NB
predictors will be 2x. The graph shows how NB/sa prediction accuracy increases
with set associativity. This is due to the decreasing amount of aliasing. However
once the set-associativity exceeds a certain amount then the accuracy begins to
degrade, presumably because there are so many parallel n-NB predictors, each
for so few branch instructions that there is little or no global correlation between
branch instructions.
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7.4 Network Connectivity

Section 2.2 described how the performance of the NB predictor can be improved
by adding augmenting dependence edges between the attribute nodes, result-
ing in an augmented Naive Bayes predictor (aNB). This section investigates
how these extra edges affect prediction accuracy. The conditional probability
terms simply gain extra dependent variables. So for NB each term has the form
P (Xi|C) which translates into two counters, for when (Xi = 1, C = 0) and
when (Xi = 1, C = 1). For TAN, each term has the form P (Xi|Xi−1, C) which
translates into four counters, for the four possible combinations of values for
(Xi−1, C). In the general case, if each term has m dependent variables, then it
requires 2m counters.

The update scheme only examines n+1 counters each time, one for P(C) and
one for each of the n history bits. It uses the values of the dependent variables
to determine which counter to select for each term. Similarly, a likelihood check
for a particular outcome only examines the top bits of n + 1 counters.

Figure 8 shows how increased network connectivity affects the performance
of the 2-aNB and 4-aNB predictors, each with a global history register length of
20. The x axis represents the maximum number of augmenting edges (AEs) per
node. (Edges always point forwards, so X1 can only depend on C, X2 on C and
X1 whereas Xn can depend on C and all of X1, X2, . . . , Xn−1.)

When the number of AEs is 0, the predictor is the special case of NB. When
the number of AEs is 1, the predictor is the special case of TAN.
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8 Predictor Comparison: Improved NB versus gshare

Whereas Section 6 compared the performance of the n-NB predictor with equiv-
alently sized gshare predictor, this section compares the improved version of the
NB predictor with gshare. We combine all the NB performance enhancements
from Section 7. Note that some enhancements seem to provide greater improve-
ments than others. A more detailed empirical investigation would measure the
ratio of accuracy improvement to storage overhead for the different enhancement
schemes. Again, it is not clear how the various enhancements interact with one
another. For simplicity, here we assume independence. A more detailed study
would investigate this empirically!

We conducted numerous experiments, although we did not exhaustively ex-
plore the parameter space. Disappointingly none of our parameter settings en-
abled the bayesian predictor to achieve better accuracy than gshare, although
many settings were close. For instance, given a aNB/sa predictor that uses 4-
bit counters, 31 bit history, maximum of 15 augmenting edges and 256-way set
associativity, the average mispredict rate is 4.7%. In contrast, an equivalently
sized gshare predictor would have a history length of 19 bits, achieving accuracy
score 4.0%.

9 Related Work

Several papers characterize branch prediction as a ML problem. For instance,
Calder et al [11] use decision trees to predict branch outcomes at compile time,
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based on static program features. Fern and Given [12] formulate dynamic branch
prediction as an online learning problem. They use ensemble learning techniques
that are suitable for ‘resource-limited environments.’ However they do not pro-
vide hardware implementation details and they focus on a small set of branches
that are difficult to predict.

Vintan [13] pioneers the idea of using perceptrons for branch prediction.
Jimenez and Lin [14, 15] go on to show how perceptrons can be implemented
in realistic hardware, and achieve better results than existing non-ML predic-
tors. However they require complex techniques to disguise the latency of their
perceptron predictor, involving cascaded predictors and pipelining.

Yeh and Patt [5] study a parameterized family of two-level adaptive predic-
tors. They fully explore this small parameter space, which has 9 members. Their
principled approach is a good guide for our work. Emer and Gloy [16] devise
a language to describe conventional branch predictor models, and then use ge-

netic programming to evolve new predictor models. However they admit that
the auto-generated predictors are ‘logically complex and probably not directly
implementable.’

Online feature selection [17] is another interesting ML problem. In our case,
we could chose which augmenting edges to insert dynamically, and perhaps adapt
for programs with different branching characteristics.

10 Concluding Remarks

This paper has shown that Bayesian Networks provide a useful formalism for
describing a family of branch predictors. The common GAg and gshare schemes
can be explained in relation to BNs in terms of conditional probabilities. We
have sketched a potential hardware implementation of this ML technique, and
performed some initial evaluation.

One interesting observation is that a full floating-point implementation of NB
is outperformed by our discrete approximation, using 4-bit bimodal counters.

Although we have not yet fully explored the space, we have found BN pre-
dictors that approach the gshare accuracy (to within 1%). We believe that this
framework provides promise for future branch prediction technology, particularly
in terms of storage overhead reduction. Our current research is focusing on fur-
ther exploration of the space, and application of ML methods to automatically
learn the best network connectivity, while the predictor is in use.

It should be noted that in adopting the BN formalism, we are addressing
a subtle aspect of branch predictors that has not been previously considered.
The Machine Learning literature can be broadly divided into two camps—
discriminative and generative learning. The form of learning we have used is
generative, since we model the joint distribution P (X,C). Neural branch predic-
tors [14] are discriminative, since they model the posterior distribution P (C|X).
The exact advantages of each in any given situation are an area of active research
and therefore constitute a novel and promising technology for the architectural
community to consider.
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Abstract. Multiple clock domain (MCD) chip design addresses the problem of

the increasing clock skew in the different chip units. MCD design opens the op-

portunity for independent power management in each domain when used in con-

junction with dynamic voltage scaling (DVS). A significant power and energy

improvement has been shown for finer control of each domain voltage rather than

managing the chips single voltage, as in traditional chips with global DVS. How-

ever, published policies in the literature focus on each domain in isolation without

considering the possible inter-domain effects when varying their clock/voltage

from other domain.

In this paper we propose to use a supervised machine learning technique to au-

tomatically derive an integrated CPU-core and on-chip L2-cache DVS policy.

Our policy relies on simple performance counters that can be easily monitored.

We discuss the machine learning process and the implementation issues associ-

ated with our technique. We show that our derived policy improves on traditional

power management techniques used in MCD chips. Our technique saves up to

34% (10% on average) over a DVS techniques that apply independent DVS de-

cisions in each domain. Moreover, energy and energy-delay product results are

within 3% of a near-optimal scheme.

1 Introduction

Dynamic Voltage Scaling (DVS) is a technique that can be used to reduce power con-

sumption in CMOS digital circuits. A lower frequency of operation gives the possibility

that a lower supply voltage can be applied. A convex relationship holds between fre-

quency and power consumption for specific types of circuits and thus a small decrease

of frequency/voltage can have a substantial impact on energy [14].

Due to the continuous increase in the number of transistors and lower feature size,

higher chip densities create a problem for clock synchronization among different chip

computational units. An effective solution to this problem is the use of design tech-

niques for multiple clock domains (MCD) chips. In MCD, a processor chip is divided

into multiple domains. Each domain operates synchronously with its own clock, and

communicates with other domains asynchronously through FIFO queues. MCD design

allows for fine grain power management of each domain especially when using dy-

namic voltage and frequency scaling (DVS). Since each domain has its own clock and
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voltage (i.e., independent of the other domains), DVS can be applied in each domain

for an extra level of power management (rather than applying DVS at the chip level).

Power and energy can be reduced with minimal impact on performance by dynamically

reducing the clock speed and voltage in domains with low activity.

Several power management policies have been proposed to incorporate DVS into

MCD chips. The published results show a significant power and energy improvement

over applying DVS to a fully synchronized chip (i.e., with a single master clock) [7].

However, these policies focus on each domain in isolation without considering the pos-

sible effect of varying one domain’s clock speed and voltage on other domains. More-

over, existing techniques rely on online heuristics.

In this work, we are interested in minimizing the overall energy or energy-delay

product in a processor. We are especially interested in the CPU-core and the on-chip

L2-cache, as they consume a large fraction of the total power in current processors.

In this paper, we propose a novel methodology to derive an integrated CPU-core and

L2-cache DVS policy. The integrated policy identifies application phases at runtime

and takes corresponding actions (i.e., setting the voltage and frequency of both the

processor and the L2-cache). The policy is derived with a supervised learning process

on a representative training workload. We present and evaluate a policy that optimizes

for either energy or energy-delay product of the entire processor (including the core and

caches).

The rest of the paper is organized as follows. We briefly discuss related work in

Section 2. Our problem description is given in Section 3. We describe the supervised

learning technique we use to determine an integrated CPU-core and L2-cache DVS

policy in Section 4, followed by evaluation in Section 5. Finally, we conclude the paper

and discuss future work in Section 6.

2 Related Work

DVS was extensively explored for a variety of systems (from embedded devices to

server farms) and application areas. For embedded systems, DVS techniques save en-

ergy by lowering the voltage and frequency for just-in-time completion of real-time

applications [9, 3, 14]. For personal computers running Linux, DVS is used to lower

the energy consumption while maintaining performance requirements of applications

and good responsiveness of interactive jobs [5]. For web servers, utility-based DVS

schemes adapt the frequency and voltage according to the incoming load [1]. In server

clusters, DVS is used as a local power management scheme aware of Quality-of-Service

constraints [11]

Multiple clock domains (MCD) are proposed as a fine grain processor DVS mech-

anism in [7]. Magklis et al. propose an online power management policy that monitors

queue occupancy of a domain and adapts the domain’s voltage accordingly [8]. For each

domain, the policy computes the change in the average queue length among consecutive

intervals. When queue length increases, the voltage and clock speed are increased. Sim-

ilarly, when queue length decreases, the voltage and clock speed are decreased. How-

ever, this policy does not take into account the cascading effects of changing a domain

voltage on other domains. Another technique by Magklis et al. uses a profile-based ap-
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proach to identify program regions that justify reconfiguration [7]. This approach incurs

extra overhead due to profiling and analysis phases for each application under consid-

eration. In contrast, our technique learns the DVS policy with training samples and can

be directly applied to new applications without profiling. Zhu et al present architectural

optimizations for improving power and reducing complexity [17]. Voltage scaling of

off-chip L2 caches for embedded systems is studied in [10].

Sherwood et al. showed that programs have repeatable phase-based run-time behav-

ior over many hardware metrics, such as cache behavior or branch prediction [13]. The

authors also provide a tool, called SimPoint, that automatically identifies and clusters

the phases in a program in order to speed up architectural simulations [12]. Application

phases and predictable behavior are essential to our work as well.

Applying machine learning techniques to reconfigure architectural and compiler set-

tings is relatively a newly explored field. Wildstrom et al. present a policy to alter server

configuration in reaction to workloads [15]. The policy learns to identify preferable

CPU and memory configurations. They showed significant performance benefits using

machine learning policy over any fixed configuration. Cavazos et al. use supervised

learning to predict which application’s basic blocks can benefit from scheduling [2].

The learned policy selects whether to schedule a block or not. The policy achieves most

of the potential performance improvement with significantly less overhead.

3 Problem Description

A typical application goes through phases throughout its execution. An application has

varying cache/memory access patterns and CPU stall patterns. In general, application

phases correspond to loops, and a new phase is entered when control branches to a dif-

ferent code section. Since we are interested in the performance and energy of the CPU-

core and L2-cache, we characterize each code segment in a program with two metrics:

cycles per instruction (CPI) and number of L2 accesses per instruction (L2PI). CPI and

L2PI are selected as indications of the amount of workload in the CPU-core and L2-

cache, respectively. Examples of CPI and L2PI showing different program phases can

be seen in Figure 1 for two benchmarks: gcc and gzip (from the SPEC2000 benchmark

suite).

Intuitively, each program phase has a different requirement and preference toward

a certain “configuration” of the CPU-core and L2-cache frequencies. For example, if a

section of code is CPU bound, it will benefit from running at high CPU frequencies,

and may be insensitive to L2-cache latency. On the other hand, a memory bound phase

benefits the most from reducing the gap between the core and cache performance. This

is precisely the intuition behind our approach. Our goal is to construct an integrated

CPU-core and L2-cache DVS policy that identifies application phases and selects good

frequencies for the CPU-core and L2-cache domains for each section of code.

Clearly, the L2-cache and CPU frequencies can be set independently based on ac-

tivity represented by CPI and L2PI. Thus, we need to answer the following questions

about an integrated policy: (a) Is an integrated CPU-core and L2-cache DVS scheme

better than an independent scheme? (b) What are the mechanisms to be adopted with
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Fig. 1. Application phases variation throughout execution.

respect to these options? (c) What are the frequencies/voltages to be chosen at each

program phase? We attempt to answer these questions throughout this paper.

One approach to building an integrated DVS policy is inspired by control systems. A

phase change can be easily identified from simple performance counters. For example,

a decrease in the CPI (after filtering noise) may suggest that a higher CPU frequency is

needed, or that a higher cache latency is tolerable. A stable system phase is defined as a

small variation (within a threshold) around the average CPI. The goal is then to change

(i.e., increase/decrease) the CPU and/or L2-cache frequencies when a phase shift is

identified.

The problem with a control approach is not identifying application phases, but se-

lecting the correct frequencies on phase changes. The problem is that we can identify the

correct action towards the optimal configuration, but not the optimal configuration it-

self. Using performance counters, we could decide, for example, whether the frequency

of the CPU should be increased or decreased, but not the exact amount. This is because

phase changes are not gradual, but instantaneous, corresponding to a jump to a different

section of code. As soon as the jump is taken and the code enters a new phase (with sta-

ble CPI) there is no more feedback regarding how good the frequency change actually

was, and if it was just a step in the right direction. Typically, there is little correla-

tion between the amount of variation of some performance metric (such as CPI) and the

right frequency. Furthermore, for more complex metrics such as energy or energy-delay

product, even the step towards the correct action (i.e., increase or decrease frequency

by one level) is hard to identify, as it is not trivial to estimate how energy consumption

relates to the performance counters.
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4 An Integrated CPU-core and L2-cache DVS policy

Because control-based approaches can fail to identify a good policy for integrated CPU-

core and L2-cache DVS, we propose an approach based on a supervised machine learn-

ing. Our technique derives a policy expressed in the form of propositional rules for a

particular system by analyzing a training program workload. For a given architecture,

our approach analyzes the system to derive a DVS policy for both the CPU-core and

L2-cache to optimize the energy-delay product. The approach describes the state of

the system under different program behaviors and run-time system characteristics. A

program behavior description captures the instruction level parallelism and cache de-

mands of the application and a run-time characteristics description captures program

latencies during a given program phase. The goal is to identify for each possible system

state the correct action. An action determines how the CPU-core and L2-cache frequen-

cies should be adjusted to minimize energy-delay product. The derived policy is thus a

function that maps states to actions that take into account the effect on the energy and

delay.

We first describe the methodology to obtain the training data used to learn the policy

and then our learning approach.

4.1 Obtaining Training Data

It is our hypothesis that for a relatively simple (single issue) processor the system state

that encapsulates the program behavior can be described by simple performance met-

rics. These metrics are the CPI and L2PI, which can be determined from hardware

performance counters. The CPI indicates the CPU utilization; however, it does not by

itself fully describe program phases. For example, a high CPI corresponds either to a

high cache miss ratio, a high cache access latency, or long instruction latencies (such as

division). Adding the L2PI into the state description eliminates the confusion and more

fully describes application behavior. However, the L2PI does not take into account the

effective latency of cache accesses, and to fully characterize the program, this latency

has to be factored into the state description. We describe the effective access latency

as a tuple of CPU-core and L2-cache frequencies. This representation of cache access

latency provides similar information to the effective cache access latency but it also

captures the energy, as energy cost is closely related to the operating frequencies.

Thus, a state is described by four parameters: CPI, L2PI, CPU-core frequency and

L2-cache frequency. CPI and L2PI are continuous variables and need to be discretized.

We choose a number of intervals (discretization bins) for both CPI and L2PI in such a

way that the samples in the training data are distributed evenly. For example, because

of the L2-cache efficiencies in current designs, if most samples have low L2PI, this

would consequently create more L2PI ranges with lower values (i.e., finer granularity

where the density is higher). Let K and L be the number of discrete values of the

CPI and L2PI, respectively. Let M be the number of available CPU frequencies and

N be the number of cache frequencies. The state is a table State[CPIk][L2PIl][i][j],
where CPIk and L2PIl are the discretized values of CPI and L2PI (0 ≤ k < K and

0 ≤ l < L), respectively. i and j are the CPU-core and cache frequencies (0 ≤ i < M
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and 0 ≤ j < N ), respectively. For each state we want to determine the action that

minimizes energy-delay product.

The training data used to learn the policy is obtained from training benchmarks

in the following manner. We run all training code at all CPU/cache frequency combi-

nations (MN combinations). A sample is defined as a continuous sequence of code of

fixed number of instructions equal to size. Thus, a set of training benchmarks with a to-

tal of inst instructions and size instructions will generate C = inst/size code samples

for one particular CPU/cache frequency, and MNC samples for all frequency combi-

nations. We denote the samples by Sc
ij = {CPIc

ij, L2PIc
ij, EDc

ij}, where c represents

the code sample (0 ≤ c < C). Each sample contains three values: CPIc
ij, L2PIc

ij , and

EDc
ij , namely, the discretized CPI, discretized L2PI, and energy-delay product of the

sample while running at frequencies i and j.

After collecting these values for all samples, Sc
ij , the correct action for each state is

determined as follows. Since for each section of code all the possible frequency com-

binations are available, the best action can be determined by adding the energy-delay

product of each sample running at the new frequency. Since different sections of code

may have the same state, an array that accumulates all values for the same state are

used: Cum[CPIk][L2PIl][i][j][x][y], where CPIk, L2PIl, i, and j are the state pa-

rameters and x and y are the new CPU and cache frequencies (that is, the action). For

each training sample Sc
ij and each possible action x, y (x is the next CPU frequency, y

is the next cache frequency), we update the arrays as follows:

Cum[CPIc
ij][L2PIc

ij][i][j][x][y] + = EDc
xy (1)

Equation (1) accumulates the energy-delay product for all training samples and all

possible actions. After updating the counters for all samples, the action for each state is

the one that minimizes the actions. After updating the counters for all samples, the ac-

tion for each state, State[CPIk][L2PIl][i][j], is the frequencies 〈x, y〉 that minimizes

Cum[CPIk][L2PIl][i][j][x][y].

4.2 Learning DVS Policy

With the training data, we can use supervised learning to derive the DVS policy. There

are many supervised learning techniques, including logistic classification, neural net-

work, decision tree, and propositional rule. We prefer the propositional rule approach

because it is more compact, more expressive, and more human readable than the other

techniques. Furthermore, propositional rules are easy to implement in hardware. In fact,

we tried all the aforementioned techniques on the training data and the propositional

rule approach had the least error.

We use the Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

learner [4]. The RIPPER algorithm is known to achieve low error rates while being

efficient on large data sets. RIPPER represents the collected states in the form of prepo-

sitional (if-then) rules. Each rule specifies the desirable CPU frequency and cache fre-

quency for the next program interval based on the current state. The learner is based on

the Incremental Reduced Error learning IREP algorithm [6]. RIPPER repeatedly calls

IREP to construct the rule set with low error rates.
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IREP iteratively builds its rule set in a greedy fashion; one rule at a time. IREP

works in two phases: growing and pruning phases. First, it randomly partitions the data

set in to two subsets: growing and pruning sets. The rule growth phase constructs an

initial rule set. It starts with an empty clause and then repeatedly adds sub-conditions

to the antecedent. The sub-conditions maximize the coverage of the rule (represents

more states). The stopping criterion for adding sub-conditions is either covering all the

input states or not being able to improve the rule coverage. After growing a rule, the

rule is immediately pruned in the pruning phase. Pruning is an attempt to prevent the

rules from being too specific. IREP chooses the candidate literals for pruning based on

a score which is applied to all the sub-conditions of the antecedent and evaluate the

score using the pruning data. This process is repeated until all states are covered or the

learned rules have very small error.

The resulting rules are generated in the form of: IF <condition> THEN <set freq>,

where condition is a conjunction of one or more of the following sub-conditions.

(CPIcur ≤ CPIk), (CPIcur ≥ CPIk), (L2PIcur ≤ L2PIl), (L2PIcur ≥ L2PIl),

(cf = i), and (mf = j) where CPIcur, L2PIcur, cf and mf are the current CPI, L2PU,

CPU frequency and and cache frequency, respectively. set freq specifies the value of the

next CPU or cache frequencies.

5 Evaluation

In this section, we evaluate the effectiveness of an integrated CPU-core and L2-cache

DVS policy derived with the supervised learning technique from Section 4. We compare

the derived policy to (a) a local clairvoyant solution, which is near optimal for the

energy-delay metric and (b) an independent CPU-core and L2-cache DVS policy [8].

5.1 Experimental Setup

We use the Simplescalar and Wattch architectural simulators with an MCD processor

extension [17]. The MCD extension by Zhu et al. models inter-domain synchronization

events and voltage scaling overheads. We alter the design in [17] to merge their in-

dividual core domains into a single domain and to separate the L2-cache into its own

domain. The simulated frequencies for both domains vary from 250MHz to 1GHz with

250MHz steps. Voltage scales linearly with the frequency in the specified range. Mem-

ory is considered an external domain with a fixed latency.

We evaluate the policy learned with our method using an Alpha-like core config-

uration. We use a small number of functional units and narrow decode/issue widths

to emphasize the CPU-core and L2-cache performance gap. Wider issue and decode

widths combined with more functional units increase ILP are more likely to mask cache

latencies. The processor configuration used in our simulations is listed in Table 1.

To obtain the propositional rules, we use JRip from the WEKA data mining software

package [16]. JRip is an optimized implementation of the RIPPER learner. The rules

are produced based on the data collected for the given architectural configuration. Each

rule specifies the desirable CPU frequency and cache frequency for the next program

interval based on the current state: CPI, L2PI, old CPU and cache frequencies.
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Table 1. Simulation configurations

Parameter Configuration

Dec./Iss. Width 1/1

dL1 cache 64KB, 2-way

iL1 cache 64KB, 2-way

L2 Cache 1MB DM

L1 lat. 2 cycles

L2 lat. 12 cycles

Int ALUs 2+1 mult/div

FP ALUs 1+1 mult/div

INT Issue Queue 4 entries

FP Issue Queue 4 entries

LS Queue 8

Reorder Buffer 40

An important aspect of using JRip in the WEKA engine is the format of the training

data, which affects the quality of the generated rule set. Although all the state parame-

ters of the training data are discrete (cache and CPU frequencies are discrete in nature,

while L2PI and CPI are discretized into bins), we specify in the input to JRip that all

parameters are continuous to get a more compact rule set. Using JRip also involves

tuning the parameters for the RIPPER algorithm. For instance, the RIPPER algorithm

needs to partition the training data into a growing set and a pruning set. We choose the

partition size to be two thirds for the growing set. Since RIPPER is a randomized al-

gorithm, different randomization seeds will lead to different results. We experimented

with different values and chose a seed value that reduced the error rate and rule set size

for our input.

We run a mixture of integer and floating point benchmarks from SPEC2000. The

simulations are split into “training” and “evaluation” data. The training data contains the

samples used for deriving the policy (i.e., the mapping of states to actions). The policy

is evaluated on the evaluation data. In particular, for SPEC benchmarks, the “train”

input data set was used for training samples and the “ref input data set” was used for

evaluation runs. For both training and evaluation simulations, we fast forwarded the first

one billion instructions and simulated the following 500M instruction.

We normalize results to a clairvoyant technique. The clairvoyant policy is obtained

by selecting the best CPU-core and L2-cache frequencies for each sample (that is, the

CPU-core and L2-cache frequency combination that minimizes the metric). While the

clairvoyant algorithm is optimal for energy, note that it is only an approximation of

optimal when the metric is the energy-delay product, as minimizing the energy-delay

product for every interval does not necessarily minimize the overall energy-delay prod-

uct for the entire application. We refer to this technique as local-clairvoyant in case

of optimizing energy-delay product and as clairvoyant when optimizing for energy. We

report how far the optimized metric is from the local-clairvoyant and clairvoyant results.
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We compare our derived policy versus a base policy proposed in [8]. The base policy

periodically monitors CPI and L2PI to control the CPU-core and L2-cache domains

independently. We use a 500K cycle control period for the periodic voltage changes.

5.2 Experimental Results

Using the methodology from Section 4.1, we derived an integrated DVS policy for

our experimental target system. Figure 5.2 compares the energy-delay product resulting

from using the independent DVS policy versus our integrated DVS policy. Data is nor-

malized to a local-clairvoyant policy. Lower values in Figure 5.2 are better as they are

closer to the local-clairvoyant results. In all applications, we achieve an energy-delay

product lower than the independent DVS policy. Reduction in energy-delay product

over the independent policy is up to 34% in art (10% on average) across all applica-

tion. More interestingly, the energy-delay results from our policy is within 3% of the

local-clairvoyant technique.

In this setting we divided the CPI values into 11 bins (discretization intervals), and

eight L2PI bins. Data from the training phase were able to cover 945 states out of 1408

possible states (11 CPI bins x 8 L2PI bins x 16 frequency combinations).

Mapping the states table into rules using JRip involves an approximation error. The

error rate obtained in our set of rules is 6%. This corresponds to coverage of the training

data by the rules of 94% . This implies that the rules are a good approximation of the

full training data. For the states not covered by the rules, the action selected, though dif-

ferent, is close to the original. In fact, the differences in the optimization metric results

are so negligible that the average error (relative to the full table) across all benchmarks

is just 0.1%.

From these results, we conclude that our learning methodology being aware of the

CPU-core and L2-cache states is effective and able to derive beneficial policies for the

optimization metric (energy-delay product) on our experimental platform.

Fig. 2. Percentage increase in energy-delay relative to local-clairvoyant policy.
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6 Conclusions and Future Work

In this work, we proposed the use of two important techniques for controlling the power

and energy consumption in multiple clock domain processors. First, we proposed an in-

tegrated CPU-core and L2-cache DVS scheme that is based on simple performance

counters (cache misses and instructions per cycle). Second, we used a supervised ma-

chine learning technique to derive a DVS policy for a given architecture. Our proposed

scheme learns a frequency and voltage setting policy for scaling both CPU-core and

L2-cache simultaneously. Our policy is within 3% of a locally clairvoyant policy.

In future work, we intend to study the impact of the different architectural con-

figurations on our technique’s accuracy. Also, we will investigate the significance of

varying the learning process parameters (such as training data size, sampling size, and

discretization granularity of both CPI and L2PI) on the results.
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