Portable Techniques to Find Effective Memory
Hierarchy Parameters

Keith Cooper Jeffrey Sandoval
Rice University Cray, Incorporated
Houston, Texas St. Paul, Minnesota

Abstract—Application performance on modern microproces- L1 data cache capacity is identical to the physical capacity,
sors depends heavily on performance related characterists of pecause thé1 data cache is not shared with other cores, it
the underlying architecture. To achieve the best performane, an is separate from thel instruction cache, and it is virtually

application must be tuned to both the target-processor famy .
and, in many cases, to the specific model, as memory-hierargh mapped. In contrast, an2 cache for the same architecture

parameters vary in important ways between models. Manual Might be shared among cores. It might contain the images
tuning is too inefficient to be practical; we need compilers hat of all those coresl1 instruction caches. It might hold page

perform model-specific tuning automatically. . tables, loaded inta2 by hardware that walks the page table.
To make such tuning practical, we need techniques that gach of these effects might reduce the effectivie cache

can automatically discern the critical performance parameers capacity: modern commodity brocessors exhibit all three
of a new computer system. While some of these parameters pacity; yp ’

can be found in manuals, many of them cannot. To further A compiler that blocks loops to improve memory access
complicate matters, compiler-based optimization should d@rget times should achieve better results using these effectiche
the system’s behavior rather than its hardware limits. Effective sizes than it would using the physical hardware limits beeau
cache capacities, in particular, can be smaller than the hatware he effective number captures the point on the curve of acces
limits for a number of reasons, such as sharing between cores . . .
between instruction and data caches. Physical address maiog cost yer§us capacity where ac?cess costs beglln tq rise. The
can also reduce the effective cache capacity. compiler’s goal should be to tile the computation into that
To address these challenges, we have developed a suite diraction of cache that does not cause access time to rise.
portable tools that derive many of the effective parametersof ~Several authors have advocated the use of effective cigsacit
the memory hierarchy. Our work builds on a long line of prior | 5ther than physical capacities [1]-[3].

art that uses micro-benchmarks to analyze the memory system
We separate the design of a reference string that elicits a spgific This paper describes techniques that measure effective ca-

behavior from the analysis that interprets that behavior. We ~Pacities for a single-threaded application, running on & qu
present a novel set of reference strings and a new robust appach ~ escent system—that is, no other tasks are making significant
to analyzing the results. We present experimental validatn on demands on the memory system. While this scenario is the best
a collection of 20 processors. case for effective capacities, it presents significantlehgks.
To obtain clean data, the techniques must carefully isolate
specific behaviors, separating, for example cache miseeas fr
Application performance on today’s multi-core processona.B misses. They must also reduce the impact of transient
is often limited by the performance of the system’s memoiyehavior, such as interference from autonomous processes
hierarchy. To achieve good performance, the code must fich as operating system daemons. To produce consistent
carefully tailored to the detailed memory structure of #tagét results, the data requires interpretation. That analysistm
processor. That structure varies widely across differecitia be automatic and robust if the tools are to be portable. The
tectures, even for models of the same. Thus, performance tools have been tested on across a broad collection of sgstem
is often limited by the compiler’s ability to understand nebd Section VI shows results from twenty systems.
specific differences in the memory hierarchy and to taile th This paper does not address the problem of finding the
program’s behavior accordingly. effective parameters seen by a single thread in a multideea
This paper presents a set of techniques to discover, ecomputation, whether on one core or many cores. Rather,
pirically, the capacities and other parameters of the uariothese techniques lay the groundwork for a careful investiga
levels in the data memory hierarchy, both cache and. of that phenomenon: carefully validated techniques for-mea
Our toolset computesffective values for the various memory-surement and analysis of the simpler single-thread behavio
hierarchy parameters that it measures, rather than fintieg Neither does the paper address the problem of measuring
full hardware capacity. We defingffective capacity to mean instruction cache capacity, unless that level of cacheasezh
the amount of memory at each level that an application can usetween the instruction and data cache hierarchies.
before the access latency begins to rise. The effectiveefalu ~ This paper builds on a long line of prior work, described in
a parameter can be considered an upper bound on the us&aetion Il. It extends that work in several important wayar O
fraction of the physical resource. focus is on robust micro-benchmarks and automated analysis
In the best case, effective capacity is equal to physidal interpret the results. The microbenchmarks, descrilmed i
capacity. For example, on most microprocessors, the eféectSection 1V, use carefully designed reference strings ttaiso

I. INTRODUCTION

Rice University Computer Science Technical Report 11-06, December 2011

keith
Text Box
Rice University Computer Science Technical Report 11-06, December 2011

and measure specific memory hierarchy behaviors. They adoptools. We have built a set of tools that measure a broad
a disciplined approach to time measurement that provideariety of cache andLB parameters, that are portable across
clean, reproducible data. The automated analysis, destiib a variety of systems, that provide accurate results forezhar
Section V, incorporates a sophisticated multi-step teqmio levels in the memory hierarchy, that include a robust aut@ma
filter, smooth, and interpret the data. It produces a cagsist analysis without arbitrary threshold values, and that esdor
interpretation of the micro-benchmark results across maagch parameter independently to avoid compounding errors.
systems. Finally, Section VI describes our experiencegusin
the tools to characterize more than twenty distinct pramsss
and processor models. All memory characterization work appears to derive from
Saavedra and Smith [8]. They use a Fortran benchmark to

)]) _ observe memory behavior. It measures the time needed to
This problem is not new. Prior work has described severgkige through an array of lengt with a stride ofs. They

systems that attempt to characterize the memory hieraddhry [generate plots with varied values bf and s and manually
[9]. Our goal has been to build a set of tools that derive thgterpret the results to determine the cache and capac-
effective memory-system parameters in an automated Wgy. |inesize (pagesize), and associativity. They use alsin
From our perspective, previous systems suffer from sevechmark to determine all characteristics, which reguire
specific flaws. careful disambiguation between various effects. In catra
1) We found no single set of tools that measured the fdlur work uses distinct access patterns for each effect died re
set of cache andLB parameters that a compiler needspn a robust automated analysis that interprets resultsdtr b
With some of the systems, the papers lay out techniqugiysically and virtually mapped caches.
for measuring higher levels of cache ocB that the |n| nbench, McVoy and Staelin replaced array access with
distributed software does not implement. Several of thejinked list traversal to allow indirect and randomizedess:
systems rely on a human to interpret the results. patterns [7]. This advance was necessitated by improvement
2) The prior tools are not easily portable to current man hardware prefetching. Our tools leverage this approach.
chines. Some rely on system-specific features such asn X-RAy, Yotov et al. addressed both algorithmic and
superpages or hardware performance counters to siimplementation issues in prior work [9], [11]. XAR uses a
plify the problems. Others were tested on older systeraiigle test to detect cache capacity and associativityipgo
with shallow hierarchies; they and produce odd arithe cache to determine ishape. While that works reasonably
inaccurate results on modern processors. Our tools limiell on an unshared cache, such ad amata cache, features
themselves to portable code withPosix calls. such as sharing or a victim cache can create unexpectetstesul

3) Sharing in the memory hierarchy complicates the prOB(_-RAY also requires superpages to characterize physically

lems of both measurement and analysis enough so thagpped levels in the cache—a serious problem for portgbilit
the tools need to model it and account for it explicitlyln contrast, our tools measure each parameter separdtely; t

The techniques in this paper address one part of tR@&M€ tools handle physically and virtually ma_pped caches.
problem—understanding behavior. Both Servet [61 and P-Rr [5] e_xte_nd prior work to _
chfaractenze sharing and communication aspects of multi-

4) Our own experience has shown us that robust anaIyS|sC%re clusters. These approaches do not address the issues

the data is difficult. For example, several prior SySteMBat we tackle in this paper. Our work on improving cache
rely on threshold valu_es to d?‘teCt transitions '? th((?haracterization methodology from the perspective of glsin

_dat_a—for example, an increase in access time 20% thread is orthogonal to the work on characterizing shared
indicates a new level in the hierarchy. As systems eVOIYSsources. This paper provides a principled foundation for

and models proliferate, such threshold-based te(:hr"q%ﬁﬁomatic resource characterization, which is necessary f

IIl. LITERATURE REVIEW

II. WHY NOT USEEXISTING TOOLS?

'”}’ar'ab'y fa'_l' _ future extensions to multi-core architectures.
5) Finally, previous tools try to solve for multiple param-
eters at once. When the code works, this approach is IV. PORTABLE MICRO-BENCHMARKS

fine. However, if the code finds a wrong answer for This section describes the micro-benchmarks that we de-
one parameter, it inevitably is wrong for the others. Fafeloped to measure specific behaviors. The micro-benchemark
example, colleagues showed us an example where clude a general test for effective cache capacity at aélte
RAY [9] computed arL1 associativity of 9 rather than g similar test for effectivaL capacity at all levels,and a test
8, with the result that it reported arn capacity that was for cache linesize at all levels. We rely on the operatingtey
3 of the physical value [10]. pagesize reported by tieosix sysconf interface.
One or more of these issues arose with each prior systenBecause.1 data cache linesize is useful to reduce spatial
that we tested. These shortcomings motivated our currént geality in the general tests, our tools use a specializetitte
N _ . find L1 cache parameters. The parameters are later confirmed
We have also developed tools that derive a graph of sharlagameships

between cores and between the instruction cache and data birarchies. PY the more general t(?StS. This speC|-aI|z.ed te$tgﬁpﬂeSt1 IS
Space limitations prevent us from describing those toolghis paper. based on ideas found in XAR [9] running in an infrastructure

baseline— time for the G(2,LB,0) reference string
for n+ 2 to MaxAssociativity
fork + LB to UB
t« time for the G(n,k,0) reference string
if (t > baseline)
L1Assoc—n-1
L1Size+ L1Assocx k
break out of both loops

for offset« 1 to pagesize
t « time for the G(n,k,offset) reference string

if t = baseline

reaches th&1 cache size, the two locations in the reference
string will map to the same cache location and each reference
will miss in the L1 cache. That effect raisesabove base-
line. The code records cache capacity and associativity, and
terminates the loop.

With a set associative cache, the sweep will continue until
n is one greater than the associativity gnd- 1) -k equals the
cache capacity. At that point, the locations in the refeeenc
string all map to the same set and, because there are more
references than ways in the set, the references will begin to
miss. For smaller values af, all the references will hit in
cache and the time will match the baseline time.

The second part of the algorithm uses the same effect to
find linesize. It already has values for and k that match
capacity and associativity. It runs a parameter sweep on
the reference strin@s(n,k,0), When o, the offset in the last
block, reaches the linesize, the last access in the strings ma
that we developed to obtaining accurate measurementsinto a different set in cache, afl references hit in cache, and
measures capacity, associativity, and linesize. Eitharisp the measured time returns baseline
or physical address mapping can defeat glap test, which Of course, both steps assume that we can accurately
makes it unsuitable for caches beyond thecache. measure the running time of the reference string and that

All of the tests rely on a standard compiler. We use compulsory misses at the start of that run do not matter.

standardrPosix interfaces to build an accurate timer and arunning a Reference String To measure the running time for
allocator that returns page-aligned arrays. (All of ourstesy reference string, the tool must instantiate the stringveailéd
use page-aligned arrays to eliminate one source of vamiatigs references enough times to obtain an accurate timing. Ou
between runs.) tools build the reference string into an array of pointerat th
contains a circular linked list of the locations. (&) we use

A. Gap Test) Co
a)]) an array ofvoi d**.) The code to run the string is simple:
We describe the gap test first because it exposes many of

the complications that arise in building micro-benchmatks
expose memory hierarchy behavior. The gap test is simple and ~ Start« timer()
intuitive. It relies directly on hardware effects causedthg while (loads - -> 0)
combination of capacity and associativity. p< *p;

The gap test accesses a seh¢dcations spaced a uniforkn
bytes apart. We call this setreference string. We describe the
reference strings for the gap test with a tu@ig,k,0) wheren
is the number of locations to acce&ds the number of bytes The implementation unrolls the |00p by a factor of ten to make
between those locations, ands an offset added to the startloop overhead small relative to the memory access costs. The
of the last location in the set. The reference stridg,k,0) tool selects a number of accesses that is large enough so that
generates the following locations: the fastest test(2,LB,0), runs for at least 1,000 timer ticks.

Timing a Reference Sring The loop that runs the reference
string computes elapsed time using a set of calipers, the cal
0 k 2k (n—=1)k to timer, placed immediately outside the minimal timing loop.
G(n,k,4) would move then” location out another four bytes. In practice, obtaining good times is difficult. Our task isdaa

As its first step, the gap test finds cache capacity amabre difficult by the desire to run on arbitraPpsix systems
associativity. It uses the reference strings to conductri@sse in multiuser mode (e.g., not in single-user mode). To obtain
of parameter sweeps ovar k, ando, organized as shown in sufficiently accurate timings in this environment, we use a
Figure 1. It measures the time taken to run each referergimple but rigorous discipline.
string. It conducts a simple analysis on those results. WeFirst, we use an accurate timer. It calls theosix
describe how to run and time a reference string in subsectiaret t i meof day routine and combines the resulting_sec
below. The test takes four inputs: a lower bound on cache sia@dt v_usec values to produce a double-precision floating-
LB; an upper bound on cache sizgB; an upper bound on point value. We scale the number of accesses to the apparent
associativity MaxAsso¢ and theos pagesize fronsysconf . resolution of this timer, determined experimentally.

The intuition behind this parameter sweep is simple. Con- Second, we run many trials of each reference string and keep
sider a direct-mapped cache. The algorithm first tries thie ¢ke minimum measured execution time. We want the shortest
of reference strings fron(2,LB,0) to G(2,UB,0). Whenk time for a given reference string; outside interferenceifeats

L1LineSize = offset - 1
break out of loop

Fig. 1. Pseudocode for the Gap Test

loads+ number of accesses

finish <« timer()
elapsed— finish - start

128

| 1page |
1line

¥ T T~ A~ [~ %~ A —]

N Cacr|1e-OnIy I -
TLB-Test ———---- ’

[«2)
~

w
N
T

,,,,,,,,,

¥~ [A— [~ [A— [*— [*—]

©
T

Latency (cycles)
B
o
T

¥ T [— [A— [~ [_— %]

N b
L
T
|
|
|
I
|
|
|
1
i

K [Fm X X [[~ [—]

TOWS Y =TT — % — [* — % — [—]|

32KB 256KB 2MB 8MB 64MB
Data Footprint

F— TR~ [~ [~ [*A— [*— [*—]

¥ T [— [A— [— [_— [A—]

J! \1 kl \1 kl \1 kl KJ

P TR~ R~ %~ %~ [%— []

Fig. 3. Intel E5530 response, log-log plot

from TLB effects. It reuses the infrastructure from the gap test

to run and time the cache-only reference string.

itself in longer times. To find the shortest time, we run thet te The cache-only reference string(k), minimizes the impact

repeatedly until we have not seen the minimum time changéTLB misses. The parametkispecifies the reference string’s

in the lastTrials runs. A typical value forTrials is 100. memory footprint. The generator also usesdtspagesize and
Finally, we convert the measured times into cycles. Wan estimate of.1 linesize. In practicel 1 linesize is used to

carefully measure the time taken by an integer add aadcentuate the system response by decreasing spatiatylocal

convert the measured time into integer-add equivalensuniso any value greater theasi zeof (voi d*) works.

Specifically, we multiply to obtain nanoseconds, dividebg t Givenk, theL1 linesize, and the@s pagesize, the generator

number of accesses, and round the result to an integral numinglds an array of pointers that spakbytes of memory. The

of integer-add equivalents. This conversion eliminates tlgenerator constructs an index set, the column set, thatxove

fractional cycles introduced by amortized compulsory esssone page and accesses one pointer in each line on the page.

and loop overhead. It constructs another index set, the row set, that contdias t
Experimental validation on a broad variety of machinestarting address of each page in the array. It shuffles beth th

shows that these techniques produce accurate resultsefiot th column and row sets into random order.

cache characteristics of a broad variety of architectus=e (To build the linked list, it iterates over the pages in the

Section VI). Our other tests use the same basic techniquew set. Within a page, it links together the lines in the orde

with different reference strings. specified by the column set. It links the last access in one

Reducing the Running Time Figure 1 suggests that thePage to the first access in the next page. If pagesize does not

parameter sweeps sample the space at a fine and unifélifide k, it generates a partial last row in random order. The

grain. We can radically reduce running time by sampling fewdast access then links back to the first, to create the circula

points. On most systems, for example, the size of the gap,list. Figure 2 shows the cache-only reference string withou

will be an integral multiple of kB. Associativity is unlikely randomization; in practice, we randomize the order witlsiore

to be odd. Linesize is likely to be a power of two. The currefi@w and we randomize the order of the the rows.

implementation usetB = 1kB, UB = 16MB, and an initial To measure cache capacity, the test uses this referenug stri

1kB increment that increases in stepskagrows? It testsn in a simple parameter sweep:

for the values 2 and odo! numbers _from 3 to 33. If[vanes fork < LB to UB

over powers of two fronsi zeof (voi d*) to pagesize.

Limitations The gap test only works if it can detect the actual

hardware boundary of the cache. We do not apply the gap té§€ implementation, of course, is more complex, as destribe

beyondL1 for several reasons. Higher levels of cache tend t8 Section IV-A. The sweep produces a series of valugs,

be shared, either between I-cache and D-cache, or betw&# form a piecewise linear function describing the preoe's

cores, or both. Operating systems lock page table entries ifache response.

higher-level caches. Higher levels of cache often use physi The cache only line in Figure 3 shows the results of the

rather than virtual addresses. Each of these factors casecatfche-only test on an Intel E5530 Nehalem. Note the sharp

the gap test to fail. It works oh1 precisely becausel data transition for theL1 cache at 3B and the softer transitions

caches are core-private and virtually mapped, and pagestafPr L2 and L3 caches. Our analysis reports an effective

Fig. 2. Cache-Only Reference String

t, < time forC(K)

are locked intd_2 or L3 cache. capacity of 224«B from this dataset. (See Table 1.)
As long as pagesize is large relative to linesiZ&Kk)
B. Cache-Only Test produces clean results that isolate the cache behavioralo d

The cache-only test avoids the weaknesses that the gap testsistent conclusions from the data, however, requires th
exhibits for upper level caches by solving for cache capacianalytical techniques explained in Section V.

in isolation from associativity. It also isolates cacheeetf
C. TLB Test

2When the test samples the interval fr@h to 271, it uses an increment . .
of max(1024,27—2). Thus, forn > 12, it tests2", 27+1, and three points 1 N€ TLB test uses a reference string that isolates be-

between, space#”—2 bytes apart. For smalles, it tests at ks intervals. havior from cache misses and runs it in the same infrastreictu

| 1page | —a— T(L,k)

(%]
1line o = Tew
g | C(k)
e —
A TLB2 | - o e B
A TLBL | -------- kLo
4
k —~
rows
—= 1 -
T T T I
™ \ 1 L L2 L3 Lines
— |
X —I Fig. 5. Memory Hierarchy Search Space
Fig. 4. TLB-Test Reference String boundaries but not when it crossess boundaries—precisely

because the order of access amortizes the misses. Of
from the earlier tests. It produces a piecewise linear fanct course, if the hardware responds with a rise in access time
that describes the processorss response. Again, the databefore the actual boundary, the test shows that point as the
must be subjected to further analysis. effective boundary.

TheTLB reference stringT(n,k), accesses pointersin each When theTLB line crosses a cache boundary, the rise in
page of an array of bytes. To construct(1,k), the generator measured time is indistinguishable from the responserica
builds a column index set and a row index set as in the cachige plot, however, gives us an insight that allows us to rule
only test. It shuffles both sets. To generate the permutationout false positive results. The line fa2,k) parallels the line
iterates over the row set choosing pages. It chooses a sinfgle T(1,k), but is shifted to the right. IfT(1,k) shows aTLB
line within the page by using successive lines from the columesponse ak pages, theT(2,k) shows aTLB response ak
set, wrapping around in a modular fashion if necessary. Thages. Becaus2,k) uses twice as many lines afpages as
result is a string that accesses one line per page, and spregd k), a false positive response caused by the cachlifk)
the lines over the associative sets in the lower level cach@sll appear at a smaller size ifi(2,K).

Figure 4 showsT(1,k- pagesize), without randomization. To detect false positives, theLB test runs both thd@(1,k)

For n>1, the generator uses lines per page, with a and T(2k) strings. It analyzes both sets of results, which
variable offset within the page to distribute the access@foduces two lists of suspect points in ascending order by
across different sets in the caches and minimize assatyativk, If T(1,k) shows a rise ax pages, buff(2,k) does not, then
conflicts. The generator randomizes the full set of refegencx is a false positive. If botf(1,k) and T(2,k) show a rise ak
both to avoid the effects of a prefetcher and to avoid SUGCEESSpageS, we report the transition agries size. This technique
accesses to the same page. eliminates most false positive results.

The TLB-Test line in Figure 3 showsTLB test results for still, a worst-case choice of cache ands sizes can fool
an Intel Nehalem E5530 processor. For thes data, the X- this test. If T(1,k) maps intom cache lines ak pages, and
axis represents total footprint covered by thes, or pages x T(2,k) maps into2-m cache lines ax pages, and the processor
pagesize. Notice the sharp transitions at 266 and 2vB. has caches witlm and 2-m lines, both reference strings will
Eliminating False Positives The cache-only test hides thediscover a suspect point atpages and the current analysis
impact of TLB misses by amortizing those misses over marill report a TLB boundary atx pages. Using more tests,
accesses. Unfortunately, theB test cannot completely hidee.g., T(3,k), T(4,k), and T(5,k), could eliminate these points.
the impact of cache because any action that amortizes cabtih@ractice, we have not encountered this problem.
misses also partially amortizesLB misses. To see this, o
consider the log-log plot in Figure 5 which depicts the set &f- Linesize
feasible memory-footprints that we can test. The x-axisssho The linesize test operates on a different paradigm than the
the number of lines in a given footprint, while the y-axiswiso cache-only test and theB test. It cannot rely on effects from
the number of pages. Labeled dotted lines show boundariesag§ociativity, as did the gap test, for two reasons. First, a
cache andrLB levels. the response curves from the cache-only test show, the micro

Consider the footprint of the cache-only strifg(k), ask benchmark may not be able to use the full cache; using a
runs from one to largeC(1) generates the footprint (1,1) insmaller footprint will fail to trigger the predictable assa-
the plot. C(2) generates (1,2), and so on. Whkrreaches tivity effects. Second, higher level caches may be phylsical
pagesize- linesize, it jumps from one page to two pag€é) mapped, which also disrupts the associativity behaviousTh
forms a step function that degenerates to a line due to the Itlge linesize test relies on spatial locality and conflictsass
log form of the plot. In contrast, theLB string, T(1,k), has a The test generates a reference stiiffg,s), wheren is the
footprint that rises diagonally, at one page per line. measured cache capacity aaid the stripe, or linesize, to test.

The plot predicts points where performance might changeor each cache level of sizethe test performs a parameter
When the line for a given reference string crosses a cacheeep overL(n,s) for sizeof(void*) < s < pagesize+ 2. To
or TLB boundary in the memory hierarchy, performance maave time we limits to values that are powers of two, but the
jump. With C(k), we see a jump when it crosses cachiest works for anys within the given bounds.

both of lengthn. However, physically mapped caches do not
1S't";’i°r: guarantee that the arrays map contiguously into the cache.
P Our key insight is that physically mapped caches provide

2-word contiguous mappingvithin each page.

stripe To leverage this observation, the test generate the access
patterns at gpagesize granularity. It allocates2* n/pagesize

4-word pages and randomly fills half of them with pattern A and half

stripe with pattern B. Because the reference string spans twice as

Bl = Accessed word many pages as should fit in cgche, on avelﬂg!épa.\ge_s. will

B = Accessed cache line map to each cache set, whekas the cache associativity.

"I Actual cache line Two competing pages can occupy the cache simultaneously

o if and only if: (1) one page contains pattern A and other

page contains pattern B and (2) the stripe width is an integra

multiple of the effective linesize. Otherwise, the two page
L(n,s) generates two complementary striped access patterc@flict with each another. (Note that it suffices to have some

A and B, depicted in Figure 6. Pattern A accesses the fitait not all, pages meet condition (1), because avoiding some

location in each of the even numbered stripes while pattecnnflict misses will decrease the time below the baseline.)im

B accesses the first location in each of the odd numberedNe cannot, in a portable way, control the page mapping. We

stripes. The value o determines the width of each stripecan, however, draw random samples from a large set of pages

Both patterns are constructed to span the entire measuasd mappings to look for these conditions. The methodology

cache capacity, so the combined span is twice the measuitteat we developed to run a reference string achieves thasteff

cache capacity. But, because each pattern only accesdes lhal< linesize, then condition (2) never holds and the measured

of the stripes, the total data footprint is no larger than tHatency remains high. Fa=linesize (or an integral multiple

cache capacity. The test accesses every location in patteftinesize), condition (2) always holds and condition (b)ds

A followed by every location in B, repeating until sufficientin some random samples. If the valu€eToffals is large enough,

timing granularity has elapsed. The accesses within eagdy 100, the test will find the desired mapping in some of its

pattern are shuffled to defeat a prefetcher. samples, which will produce the predicted decrease inmmti
When patterns A and B both map to the same cache linés effect, our timing methodology samples over many possibl

they conflict. Fors<linesize, each access generates a misartual to physical mappings. Because it keeps the minimum

because both A and B access every line. Since the combitieak, it finds large enough effects for the analysis to reaan

patterns span twice the measured cache capacity, the thstlinesize effect.

accesses twice the number of lines in the cache. ©@neaches o

an integral multiple of the linesize, patterns A and B no kng E- AsSociativity

conflict. Intuitively, each pattern has empty “holes” intbish Following X-RAY, our gap test detects associativity in the

the other pattern fits. The test starts with a small valus ofL1 cache, provided that it is virtually mapped [11]. The X-

and increases it until A and B do not conflict, at which poinRAY paper suggests the use of superpages to test associativity

the time to run the reference string drops dramatically. in higher cache levels. Because superpage support is not yet
Consider the one-word stripe at the top of Figure 6. Sing®rtable, we did not follow that path.

the linesize in this example is four words, A and B conflict. With effective sizes smaller than hardware limits and physi

The test uses the latency measured with the one-word strga address mappings, it is not clear that the compiler cign re

as its baseline. Witls = 2, A and B still conflict, but spatial on associativity effects in caches at the and higher level.

locality decreases and run time increases. With4, A and B Thus, we do not measure associativity for caches ahave

map to different lines, so conflict misses disappear coralylet We have developed a straightforward test faB associa-

and the time to run the reference string drops dramaticallytivity based on the gap test. It functions well in most cabes,
The analysis portion of this test is straightforward. Meadu an architect can fool it. TherM 926EJ-Shas a two-parrLB

latency increases relative to the baseline ascreases due to with an 8-page, fully-associative B and a 56-page, 2-way set

the decrease in spatial locality. As soon as the stripe widtissociativerLs. A TLB lookup first consults the smaiiLB; a

is large enough to prevent conflict misses, measured latemaiss in the smalfrLB faults to the largemrLs. The TLB test

drops below the baseline. The effective linesize, thengisaké finds both the 8-page and the 56-paga. The associativity

to thes for which the latency of (n,s) is less than the latency test reports that bothLes are 8-way set associative; we have

of the baselinel (n,sizeof(void*)). Of course, a system with not been able to devise a reference string that exposes the

linesize equal to wordsize would produce the same respor@sway associativity in the largern.s.®

for all values ofs. We have not encountered such a system.

For the linesize test to function properly both patterns A an 3The fact that we cannot, in portabte code, discover the associativity
uggests that the architects made a good decision. Theyausethller and

- h S
B must map to .the same cache |Ill’leS. On a virtually mapp sumably cheaper associativity precisely in a place evtier compiler could
cache we can just create two adjacent arrays for A and mjther see nor use the larger associativity.

Fig. 6. Linesize micro-benchmark access pattern

Smoothed Fine-Grained

Histogram Histogram Cache-Only Results
128
Original
— Smoothed ———
& 64 FQ
o
e 32
o) -
& 16 ie
=
E —
s 8
4 ——
0 0.0150.03 0.045 0 0.1 02030405 4KB 32KB 256KB 2MB 16MB
Frequency Frequency Data Footprint Size

Fig. 7. Histogram Analysis for Intel Xeon E5530 Nehalem, i@a©nly Reference Stream

V. AUTOMATIC ANALYSIS at the same value. The test tries each parameter value until

The cache-only andLe only micro-benchmarks produceit finds Trials consecutive attempts with no decrease in the

piecewise linear functions that describe the processers finimum value for that point; typicallylrials=100. This
sponse, as shown in Figure 3. The tools use a multi-st8fj@Ptive approach collects more samples when the timing

analysis to derive consistent and accurate capacities fhan '€SUlts are unstable and fewer samples when the results are
data. The analysis derives two key pieces of informatiomfroCOnsistent. It always collects at ledstals samples per point.
a dataset: (1) the number of levels of cachecs and (2) the The first step in analysis filters the data to remove noise. Our
transition point between each levele(, the capacity of each filtering scheme Ie_/erag_es two observations. First, werassu
level). The discussion uses data from the cache-only teitt inthat cache latency is an integral number of cycles, so welélivi
examples. The same analysis is used onTite test data. the empirical latency by the measured latency of an integer
The analysis isutomatic: it needs no human intervention.2dd and round to the nearest integer. For the sizes that fit in a
Manual interpretation of the data is complex and subjectiveAche, all accesses should be hits and should, therefleeaita
The analysis uses mathematical optimization to find answef§€gral number of cycles. For sizes that include some rjsse
The analysis igonservative. In the presence of ambiguouthe total Iatengy is a mix .of hits and mlsses..Rou_ndlng toeycl
results, it favors an underestimate rather than an overattj " these transitional regions produces a slight inaccyraay
which might cause over-utilization of the cache. one that has minimal impact. As the data approaches the next
The analysis igobust. Each step in the analysis has cleafache boundary, all the references are misses in the lovr le

justification. It avoids arbitrary thresholds. Although wannot cache and the latency is, once again, accurate. .
prove that it draws perfect conclusions in the presenceisjno S€cond, we assume that the empirical results approximate an
data, our thorough testing and analytical justificatiorséase SPtonic, or non-decreasing latency curve. We don't expect the

our confidence that it will at least produce reasonable arswdat€ncy to decrease when data footprint increases. Soetim
It holds up experimentally (se&VI). the empirical results contain non-isotonic data points.cdie

The following sections describe the three steps of offfCt these anomalies witisotone regression, which removes

analysis: (1) filtering noise, (2) determining the number &fecreasing regions from a curve with a form of weighted
levels and (3) determining the capacity of each level. averaging. We use the Pool Adjacent Violators Algorithm][12

A. Filtering Timing Noise B. Determining the Number of Cache Levels

Timing error is a major obstacle to correctly interpreting Next, the analysis determines the number of levels in the
the micro-benchmark results. We cannot request single-usache hierarchy. Because this step only determines théroug
or real-time execution in a portable way; thus, the timinglobal structure of the curve, it can use aggressive smaogthi
results are likely to reflect transient events of dwor daemon techniques, as long as they preserve the curve’s important
processes. Our tools use a two pronged approach to minimigatures. The third step, finding transition points, caruss
timing error: we reduce such errors during collection and wauch aggressive smoothing as it may blur the transitions.
filter the data after collection to remove any remaining @ois First, the analysis smoothes the curve with a Gaussian filter

Our timing methodology, introduced in Section IV-A, pro-The filter eliminates noise while preserving the curve’sbglo
vides the first-line defense against timing error. The testbape. It uses a filter window whose width is derived from the
perform multiple trials for each value in the parameter gsyeeminimum distance that we expect between two cache levels.
but only keep the smallest time. To prevent transient systaie assume that each cache level should be at least twice as
events from affecting multiple trials of the same parameté&rge as the previous level; onlag, scale the appropriate
value, we sweep across the entire parameter space befeirdow width islog,(2) = 1. With this window, the filter
repeating for the next trial. Thus, any anomaly is spreadsacr aggressively smoothes out noise between cache levels. It
one trial at several parameter values rather than multijgkst cannot filter out an actual level unless it is less than twiee t

size of the previous level. The smoothed curve in the riglstmanemory accesses. That number, #ffective cache capacity,
graph in Figure 7 shows the results of a Gaussian filter aghplieorresponds to the point at which access latency startseo ri
to the cache-only data points in Figure 3. The analysis identifies the largest point in a flat region ef th
Next, the analysis identifies regions in the curve that eorreurve. Unfortunately, “flat” is subjective if the transitibegins
spond to levels in the cache. Informally, we expect to findith a gradual slope. Thus, the analysis uses an objective
relatively flat regions of the curve that are surrounded Hdynction that selects for points that occur early in the iéon.
sloped regions. To detect such regions, the analysis casput models a step-function that steps upward at the tramsitio
a one-dimensional density estimate along the y-axis, uaingpoint between two levels. The number of steps should match
fine-grained histogram. It splits the y-axis into a large bem the number of levels found by the second step in the analysis.
of adjacent bins and computes the number of points that falhus, the analysis tries to minimize error between a step-
in the y-range of each bin. Intuitively, the bins for flat regé function approximation and the original (unsmoothed) data
have much larger counts than bins for sloped regions. Thus, a’he analysis employs a dynamic programming algorithm,
cache levels is marked by a region of high density surroundedsed on extending Perez’s polygonal approximation algo-
by regions of low density. rithm [13] to a step-function approximation. While the com-
The fine-grained histogram, shown rotated sideways in Fiplexity of this algorithm is9 (M N?), whereM is the number
ure 7, provides a rough indication of the desired infornmatioOf levels cache and/’ is the number of data points, the running
Further smoothing with a Gaussian filter clarifies the regidfine is not a practical problem. The values faf and N are
structure. The analysis derives the filter window width frofimall and the total cost of analysis is insignificant rektio
the minimum expected magnitude of a transition betweéhe cost of gathering the data.
regions—that is, the minimum relative cost of a cache miss.Figure 8 shows the result of the step-function approxinmatio
We assume that a cache miss incurs at least a 25% performatehe original data. Smoothing would alter the transition
penalty; this step of the analysis considers anything ledset points. The first three steps representithel 2, andL3 caches.
insignificant. That assumption implies that the window Widt The right endpoint of a step indicates that level's capagite
on alog, scale, should béog,(1.25) ~ 0.322. height of a step indicates its worst-case latency. Althotingh
With this filter window width, the Gaussian filter consolL2 andL3 transitions are gradual in the data, the approximation
idates the adjacent bins and produces a smooth curve wifinservatively identifies the start of the slope as the t¥fec
clear maxima and minima. The leftmost graph in Figure ¥ache size. A more gentle slope might cause the algorithm to
depicts the smoothed histogram. The final step counts $Rlect a larger effective size with a slightly longer latenc
number of local maxima in the curve by computing thdhe transition points are chosen to minimize the error of
slope of the smoothed histogram. Local maxima correspondtf® step-function approximation. The rightmost step in the
points where the first derivative changes from non-negative@PProximation corresponds to main memory and indicates the
negative. This simple algorithm detects the peaks in the higiss penalty for the.3 cache.
togram, indicated by the circles on the peaks of the smoothed VI
histogram. Each peak corresponds to a distinct level in the

memory hierarchy. If the analysis findspeaks, that indicates 1° validate our techniques, we run them on a collection of
n—1 levels of cache, plus main memory. This step concludg¥Stems that range from commoditgé processors through
by returning the number of levels in the cache. an IBM POWERY7, an ARM, and thelBM Cell processor in a

Sony Playstation 3. All of these systems run some flavor of
Unix and support enough of theoBix interface for our tools.
Table | shows the measured cache parameters: linesize,
The final analysis step finds the transition points betwee@ssociativity, capacity, and latency for each level of esittat
levels in the curve—the points where latency begins to rigke tools detect. Thé/easured column shows the numbers
because the cache is effectively full. This section presant produced by the tools. Capacities were produced by the eache
intuitive algorithm to find objectively the optimal points t only test; the gap test agrees with it on each system we have
split the curve, given the number of levels in the cache. tested. A blank in thévleasured column means that the tools

Interpreting the cache-latency curve is somewhat subgcti

. EXPERIMENTAL VALIDATION

C. Determining the Sze of the Cache Levels

as it entails a judgment call with regard to the capacitgfiay - 128 ———1 o'rig'inall ' !
tradeoff. The ideal curve would resemble a step functioth wi 9 64 Approximation — 1]
long, flat regions connected by short steep transitions.u@h s 2 32 r 1 |]
a curve, cache capacity is easily determined as the finat poin & 16 ¢]
before the rise in latency. However, modern processors show I3 8T E
soft response curves that rise well before the hardwareecach = 4t S N T S S A]
boundary, at least on the higher levels of cache. Some previo 2 32KB 256KB 8MB
approaches try to estimate hardware cache capacity from the Data Footprint Size

shape of the latency curve. In contrast, our analysis finds
a number that makes sense for compiler-based blocking ofFig. 8. Step-Function Approximation for Intel Xeon E5530Hsem

Processor Linesize in Bytes Associativity Capacity in KB Latency in Cycles
Actual | Measured | Actual | Measured | Actual | Measured Measured

1 64 64 2 2 64 64 3

AMD Opteron 2360 SE Barcelona 2 64 64 16 512 448 12

3 64 64 32 2048 1792 46

1 64 64 2 2 64 64 3

AMD Opteron 275 2 64 64 16 1024 896 17

1 64 64 2 2 64 64 3

AMD Opteron 6168 Magny-Courg 2 64 64 512 512 13

3 64 64 12288 5120 32

1 64 64 2 2 64 64 3

AMD Phenom 9750 Agena 2 64 64 16 512 448 12

3 64 64 32 2048 2048 31

1 32 32 4 4 16 16 2

ARMIZ6EJ-S 2 32 32 2 256 224 15

1 128 128 ? 4 32 32 2

IBM Cell (PS3) 2| 128 128 2 512 320 20

1 128 128 8 8 32 32 1

2 128 128 8 256 256 6

IBM POWER7 3 128 256 ? 32768 3072 15

4 256 20480 51

1 64 64 8 8 32 32 3

Intel Core 2 Duo T5600 Merom > 64 128 8 2048 1280 14

1 64 64 4 4 16 16 2

Intel Itanium 2 900 McKinley 2 128 128 256 256 6

3 128 128 1536 1024 18

1 64 64 4 4 16 16 2

Intel ltanium 2 9040 Montecito 2 128 128 8 256 256 6

3 128 128 12 12288 4096 11

Intel Pentium 4 1 64 o4 4 4 8 8 4

2 64 128 512 256 36

1 64 64 8 8 32 32 3

Intel Xeon E5420 Harpertown > 64 128 24 6144 4096 15

1 64 64 8 8 32 32 3

Intel Xeon E5440 Harpertown > 64 64 24 6144 4096 15

1 64 64 8 8 32 32 4

Intel Xeon E5530 Nehalem 2 64 64 8 256 224 10

3 64 64 16 8192 5120 19

. 1 64 64 8 8 32 32 3

Intel Xeon E7330 Tigerton > 64 128 12 3072 1792 14

. 1 64 64 8 8 32 32 3

Intel Xeon X3220 Kentsfield > 64 64 4096 2560 15

1 64 64 8 8 32 32 4

Intel Xeon X5660 Westmere 2 64 64 8 256 224 10

3 64 64 16 12288 8192 22

1 32 32 8 8 32 32 3

PowerPC 7455 G4 2 64 64 8 256 224 10

3 128 128 8 2048 1536 32

1 32 32 8 8 32 32 2

PowerPC 750 G3 2| 128 128 2 1024 512 20

1 16 16 4 4 8 8 4

Sun UlraSPARC T1 2 64 64 12 3072 3072 23

TABLE |

CACHE RESULTS

do not measure that value (e.g§2 cache associativity). The A couple of entries deserve specific attention. P@WER7
Actual column lists the documented number for that processtias an unusual3 cache structure. Eight cores share ava2

if available. Table Il shows the capacity numbersfoBs on L3 cache; each core has a8 portion of that cache that it can
the same systems. We do not show pagesize numbers in dbeess faster than the remainingv@8 The cache-only test
table; they are available from theoBix sysconf call. discovers two distinct latencies: a& cache with a 15 cycle
@éency and a larger 208 cache with a 51 cycle latency. Our
sts were run on an active system; the effective sizes teflec
Feactual behavior that a program might see. A compiler that
blocks for POWER7caches would do better to use the tool's

The tables are produced by a script that distributes the,co
usesmake to compile and execute it, and retrieves the results:
Two of the systems use batch queues; those systems req
manual intervention to schedule the job and retrieve thdtses

Processor Capacity in KB
Actual | Measured
AMD Opteron 2360 SE Barcelona % 2%3% 2%3223
AMD Opteron 275 % 2%)512 2%32
AMD Opteron 6168 Magny-Courg % 2%3% 2%3223
AMD Phenom 9750 Agena % 2%3% 2%3223
ARM926EJ-S % 256 23%
IBM Cell (PS3) % f’) 4%32
IBM POWER? % 409? 3;922
Intel Core 2 Duo T5600 Merom % 1021 1021
Intel Itanium 2 900 McKinley % gggg 7680
Intel Itanium 2 9040 Montecito % Zg}é 1920
Intel Pentium 4 1 256 256
Intel Xeon E5420 Harpertown % 1 Ogj, 1031
Intel Xeon E5440 Harpertown % 1 Ogj, 1031
Intel Xeon E5530 Nehalem % 2(2322 2%33
Intel Xeon E7330 Tigerton % 1021 1031
Intel Xeon X3220 Kentsfield % 1021 1031
Intel Xeon X5660 Westmere % 2(2322 zgig
PowerPC 7455 G4 % 512 12;%
PowerPC 750 G3 % 512 12;%
Sun UltraSPARC T1 1 512 3840

TABLE Il
TLB RESULTS

description than to treat it as a unified 138 L3 cache.

As discussed in§IV-E, the TLB on the ARM 926EJ-S
generates a result that differs from the hardware desonipti
Again, a compiler would do well to use the tools’ result rathe

than the description from the manuals.

is typically smaller than actual size. Fo2 cache and beyond,
effective size can be as small as 50-75% of actual size. For
L1 caches, effective size matched actual size on each system.

VII. CONCLUSION

This paper presents techniques to measure the effective
sizes of levels in a processor's cache and hierarchy.
The tools are portable; they rely on @ compiler and the
POsSIX osinterfaces. The tools discover effective cache and
TLB sizes that are suitable for use in memory-hierarchy
optimizations; in fact, these effective numbers should/jg®
better optimization results than would be obtained usirgy th
actual hardware values from the manufacturer's manual. The
tools will be available in open source form (befosPAss.

We are pursuing two extensions of this work. The first
will use the micro-benchmarks described in this paper to
measure effective capacity when other cores are loaded. The
experiments will run a known memory load on all but one
core, while measuring cache size on the final core. The
second project will explore in more detail the reasons fer th
discrepancy between effective and physical cache sizes.

REFERENCES

[1] C.-K. Luk and T. C. Mowry, “Architectural and compiler gport for
effective instruction prefetching: a cooperative apphgadCM Trans.
Comput. Syst., vol. 19, no. 1, pp. 71-109, 2001.

[2] S. A. Moyer, “Performance of the IPSC/860 Node Architeet” Uni-
versity of Virginia, Charlottesville, VA, USA, Tech. Refd991.

[8] A. Qasem and K. Kennedy, “Profitable loop fusion and glimsing
model-driven empirical search,” ihCS '06: Proceedings of the 20th
annual international conference on Supercomputing. New York, NY,
USA: ACM, 2006, pp. 249-258.

[4] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. Youcc¢Arate
cache and tlb characterization using hardware counter&tdceedings
of the International Conference on Computational Science (ICCS), 2004,
pp. 432-439.

[5] A. X. Duchateau, A. Sidelnik, M. J. Garzaran, and D. PadiP-ray: A
software suite for multi-core architecture characteigt Languages
and Compilers for Parallel Computing: 21th International Workshop,
LCPC 2008, Edmonton, Canada, July 31 - August 2, 2008, Revised
Selected Papers, pp. 187-201, 2008.

[6] J. Gonzalez-Dominguez, G. L. Taboada, B. B. Fragukla,). Martin,
and J. Tourifio, “Servet: A benchmark suite for autotunimgnzulticore
clusters,” in24th |EEE International Parallel and Distributed Processing
Symposium (IPDPS 10), Atlanta, GA, USA, April 2010.

[7] L. McVoy and C. Staelin, “Imbench: Portable tools for fgmance anal-
ysis,” in Proceedings of the USENIX 1996 Annual Technical Conference,

Several of our systems have cache designs that use different San Diego, California, January 1996.

linesizes for different levels of cache. The ItaniungiERPC
G3, and Sun T1 all use a smaller linesize farand a larger
linesize for higher levels of the cache. Th@WwerPC G4 [9]
has a different linesize for each level of cache. The liresiz
test detects the correct linesize in each case. OPGWER7

Intel T5600, Pentium4, Intel E540, and the Intel E7330, tH&0]
tools detect a largeeffective linesize for the last level of (11
cache. While it is possible that the documentation is irescirr

it seems more likely that the test exposes behavior of tH&l
hardware prefetcher or the memory controller. Again, the?f3
examples reinforce the need to determine such paramete
experimentally rather than rely on documentation.

Effective Cache Szes The tests measure effective cache size
rather than the actual cache size. The discovered effesitiee

8] R. H. Saavedra and A. J. Smith, “Measuring cache and ttlopaance

and their effect on benchmark runtimeEZEE Trans. Comput., vol. 44,

no. 10, pp. 1223-1235, 1995.

K. Yotov, K. Pingali, and P. Stodghill, “X-ray: A tool foautomatic
measurement of hardware parameters,"QBST '05: Proceedings of

the Second International Conference on the Quantitative Evaluation of

Systems, Washington, DC, USA, 2005, p. 168.

“Omitted for blind review,” Reference will appear in full paper.

K. Yotov, K. Pingali, and P. Stodghill, “Automatic meagement of mem-
ory hierarchy parameters8 GMETRICS Perform. Eval. Rev., vol. 33,

no. 1, pp. 181-192, 2005.

T. Robertson, F. Wright, and R. Dykstr@rder Restricted Statistical

Inference. John Wiley @ Sons Ltd., 1988.

] J.-C. Perez and E. Vidal, “Optimum polygonal approxiioa of digi-
I'S tized curves,”Pattern Recogn. Lett., vol. 15, no. 8, pp. 743-750, 1994.

