
Building a Control-flow Graph from

Scheduled Assembly Code

Keith D. Cooper, Timothy J. Harvey and Todd Waterman∗

Abstract

A variety of applications have arisen where it is
worthwhile to apply code optimizations directly to
the machine code (or assembly code) produced by
a compiler. These include link-time whole-program
analysis and optimization, code compression, binary-
to-binary translation, and bit-transition reduction
(for power). Many, if not most, optimizations assume
the presence of a control-flow graph (cfg). Com-
piled, scheduled code has properties that can make
cfg construction more complex than it is inside a typ-
ical compiler. In this paper, we examine the problems
of scheduled code on architectures that have multiple
delay slots. In particular, if branch delay slots contain
other branches, the classic algorithms for building a
cfg produce incorrect results.

We explain the problem using two simple exam-
ples. We then present an algorithm for building cor-
rect cfgs from scheduled assembly code that includes
branches in branch-delay slots. The algorithm works
by building an approximate cfg and then refining
it to reflect the actions of delayed branches. If all
branches have explicit targets, the complexity of the
refining step is linear with respect to the number of
branches in the code.

Analysis of the kind presented in this paper is a
necessary first step for any system that analyzes or
translates compiled, assembly-level code.

We have implemented this algorithm in our
power-consumption experiments based on the
TMS320C6200 architecture from Texas Instruments.
The development of our algorithm was motivated by
the output of TI’s compiler.

∗Authors’ address: Department of Computer Science;
Rice University, MS 132; Houston, TX, USA 77005.
Corresponding author: waterman@rice.edu

1 Introduction

Increasingly, systems are applying compiler technol-
ogy to previously compiled code. The Dynamo sys-
tem interprets statically-compiled, executable code
to improve performance by using dynamic informa-
tion to improve scheduling and cache management [3].
Link-time systems perform whole-program analysis
and optimization; they start from the compiled code
for each procedure or module [13]. Just-in-time
compilers for Java take compiled bytecodes as input
and rapidly produce machine code for performance-
critical regions [24]. Binary translation systems read
in executable code and rewrite it for another instruc-
tion set [9]. In the past, such systems have been used
for emulation; in the future, they will be used to per-
form load-time tailoring in Grid environments [11, 4].
Each of these systems reads and manipulates previ-
ously compiled code.
The control-flow graph (cfg) is a fundamental

data structure needed by almost all compiler tech-
niques used to find optimization opportunities or to
prove the safety of optimizations. Such analysis in-
cludes global data-flow analysis [18, 17], the construc-
tion of an ssa-graph [8], and data-dependence analy-
sis [16, 12]. Other techniques use the cfg to guide a
more local analysis and replacement phase [25, 6, 20].
These techniques all assume the existence of a cfg.
If the input to the transformation is compiled, sched-
uled code, then the cfg construction must handle the
additional complexity that can arise in such code.
Compiled code differs from the intermediate forms

used inside most compilers. Two particular features
can complicate cfg construction. Branches that tar-
get an address held in a register (as opposed to an
explicit or immediate constant) introduce a level of
uncertainty that can add spurious edges to the cfg.
The compiler can avoid such branches in its interme-
diate representations; they are more likely to appear
in compiled, scheduled, assembly code. Branch de-

1



lay slots exacerbate the problem of finding the first
and last operation in each block. If branches can oc-
cupy the delay slot of another branch, the problem
becomes much more complex.
Branch-to-register operations complicate cfg con-

struction because the compiler may be unable to de-
termine the branch targets. When this happens, the
compiler must add an edge from the block contain-
ing the branch to every block that it might reach.
Naively, this set contains every block. The compiler
can narrow the set by finding all of the labels that
the program loads into registers. (This is safe unless
the program performs arithmetic on a label value and
branches to the result.) It can perform more precise
analysis, similar to that required in call-graph con-
struction with function-valued parameters [7]. How-
ever, it first needs an approximate cfg that overesti-
mates the set of potential paths before it can perform
the analysis.
Branch delay slots complicate the task of finding

the first and last operation in each block. If the
delay slots contain ordinary operations (no control-
flow into or out of the delay slots), then this just
requires an additional counter to track where in the
instruction stream the branch takes effect. Several
existing systems handle this problem [15, 22]. If the
delay slots contain branch operations, then the com-
piler must maintain counters for all pending branches.
When multiple branches target the same label (i.e.,
the block has multiple predecessors in the cfg), the
compiler must handle the effects of multiple sets of
pending branches. Each of these pending branches
can terminate a block and add one or more edges to
the cfg. These effects cause the classic algorithms
for cfg construction [1, 17, 18] to fail—building a
cfg that does not correctly reflect the potential flow
of control in the code.1 Sorting out all of these effects
adds significant complication to the cfg constructor.
In a more traditional setting, the compiler writer

can avoid these problems. Careful design of the
intermediate code can let the compiler avoid using
the branch to register construct internally, for most
source language constructs. When such a construct
must be used, the compiler can annotate the opera-
tion with labels that correspond to the source-code
statements that might be targets of the branch. Sim-
ilarly, since most uses of a cfg occur before schedul-
ing, the compiler can avoid dealing with delay slots
completely in the cfg construction. (If the compiler

1These authors assume that the cfg is built from a well-
behaved intermediate representation that does not include
branches in delay slots. Other authors simply assume that
cfg construction is well understood and omit the algorithm
entirely [10, 14, 2].

B .S1 LOOP ; branch to loop

B .S1 LOOP ; branch to loop

B .S1 LOOP ; branch to loop

B .S1 LOOP ; branch to loop
‖ ZERO .L1 A2 ; zero A side product
‖ ZERO .L2 B2 ; zero B side product

B .S1 LOOP ; branch to loop
‖ ZERO .L1 A3 ; zero A side accumulator
‖ ZERO .L2 B3 ; zero B side accumulator
‖ ZERO .D1 A1 ; zero A side load value
‖ ZERO .D2 B1 ; zero B side load value

LOOP: LDW .D1 *A4++, A1 ; load a[i] & a[i+1]
‖ LDW .D2 *B4++, B1 ; load a[i] & a[i+1]
‖ MPY .M1X A1, B1, A2 ; load b[i] & b[i+1]
‖ MPYH.M2X A1, B1, B2 ; a[i] * b[i]
‖ ADD .L1 A2, A3, A3 ; a[i+1] * b[i+1]
‖ ADD .L2 B2, B3, B3 ; ca += a[i] * b[i]
‖ [B0] SUB .S2 B0, 1, B0 ; decrement loop counter
‖ [B0] B .S1 LOOP ; branch to loop

ADD .L1X A3, B3, A3 ; c = ca + cb

Figure 1: Pipelined code produced by the TI compiler

performs allocation after scheduling, it may can pre-
serve the scheduler’s cfg for later use in the alloca-
tor.) In a system that handles scheduled code, how-
ever, the compiler cannot avoid these problems.2

We first encountered this problem while building
an assembly-to-assembly translator for Texas Instru-
ments’ TMS320C6000, a high-performance DSP chip.
As with other DSP architectures, the C6000 allows
branches to issue in the delay slots of other branches.
Since the branch latency on the C6000 is five cy-
cles, the compiler has many delay slots to fill. The
compiler uses this feature to generate efficient, al-
beit cryptic, code [26]. When the body of a loop
is shorter than the branch latency, the compiler can
pre-schedule multiple loop-ending branches to create
an efficient loop. The resulting loop begins with sev-
eral consecutive branches. The branches are followed
by the instruction or instructions in the loop body,
and another loop-ending branch. At run-time, ev-
ery loop-ending branch, after the first, will execute

2Some systems, such as om and alto, convert scheduled
code back to a higher-level representation that does not con-
tain delay slots [23, 19]. With arbitrary control flow resulting
from multiple branches in delay slots, this may prove to be
impractical.

2



in the delay slot of another branch. Figure 1 shows a
dot product operation that has been optimized in this
manner. The example is taken from Seshan’s 1998 pa-
per [22]. This leads to code that executes efficiently,
but is difficult to analyze.

As branch delays become longer, we expect that
more architectures will experiment with this feature.
Some commodity architectures, such as the Sparc
V.9, already include it [28].

Many systems analyze or modify compiled code.
Examples include performance analyzers, debuggers,
and link-time optimizers. These systems must work
correctly on any code that they encounter. If the exe-
cutable has branches that execute in the delay slots of
other branches, then an algorithm that correctly con-
structs and connects basic blocks, like the algorithm
that we present in this paper, is required. This work
is a necessary precursor to building tools that pro-
cess compiled code for machines that allow branches
within delay slots. Without an accurate set of basic
blocks, even local algorithms for analyzing or rewrit-
ing the code can fail.

The main result in this paper is a worklist algo-
rithm that constructs a correct cfg for code that
contains branches in the delay slots of other branches.
When applied to code that does not have this feature
it has the same complexity as the classic CFG con-
struction algorithms. This algorithm creates an op-
portunity to analyze and improve compiled code for
architectures with long branch latencies and branches
that execute in delay slots—features that appear in
DSP architectures today.

2 A Simple Example

To illustrate the complexity that arises when
branches issue in branch delay slots, consider the fol-
lowing code fragment:

if x
then inst 1
else inst 2

inst 3

A naive scheduling of this code for a single delay
slot architecture produces the following cfg:

if x goto A
nop

C: inst 1
jump B
nop

A: inst 2
jump B
nop

B: inst 3

�
�
���

H
H
HHj

H
H
HHj

�
�

���

A nop is inserted after each branch instruction in
the code fragment to fill the delay slots. When the
compiler tries to fill the delay slots, it can eliminate
the delays in blocks A and C:

if x goto A
nop

C: jump B
inst 1

A: jump B
inst 2

B: inst 3

�
�
���

H
H
HHj

H
H
HHj

�
�

���

Unfortunately, the nop in the start block remains,
since there are no other instructions in the block that
can be moved into the delay slot.
If branches can be placed inside of delay slots,

an aggressive compiler can trim the schedule even
further. The jump instructions at the beginning of
blocks A and C (above) can be promoted to the start
block and combined since they have the same target.
This results in the following cfg and assembly code:

if x goto A
jump B

C: inst 1 A: inst 2

B: inst 3

�
�
���

H
H
HHj

H
H
HHj

�
�
���

if x goto A
jump B
inst 1

A: inst 2

B: inst 3

The assembly code shows that the existence of
branches within delay slots can quickly become con-
fusing. It is not locally evident from examining blocks
A and C why control flow proceeds to block B. The
common assumption that the instruction that causes
the termination of a basic block is located within the
same basic block is no longer valid.
The situation quickly becomes more complicated

than this simple example. Given an architecture with

3



A: if x goto B
inst 1
inst 2
jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6
inst 7
inst 8

Original Code

A: if x goto B
inst 1
inst 2
jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6
inst 7
inst 8

After Step One

Figure 2: Continuing Example

a large number of delay slots and a program with any
number of branch instructions scheduled into the de-
lay slots of other branches, the resulting cfg can be-
come littered with many small basic blocks that do
not have a clear or obvious path leading to them. In
addition, cycles of branches can be created where the
branches are in each others’ delay slots. As a result,
the cfg construction algorithm cannot complete in
a single pass. This necessitates a more complex ap-
proach.
It may appear that this problem can be solved with

replication. This notion is misleading for several rea-
sons. First, such replication can cause significant code
growth. Second, replication can easily invalidate the
results of register allocation and scheduling. Finally,
to understand what to duplicate and where to put
it, either the compiler needs the cfg built by our
algorithm, or it is forced to duplicate the kind of sim-
ulation that the worklist step performs.
Our new algorithm for cfg construction has three

distinct steps: detecting and marking labels, adding
standard control flow, and adding control flow that
originates in delay slots. The first two steps consti-
tute the standard cfg-construction algorithm. They
take time that grows linearly with the program’s
length. If there are no branches in delay slots, they
construct a valid cfg. When branches occur in de-
lay slots, the third step is needed to model the pro-
gram’s behavior and construct the corresponding con-
trol flow.

3 The Base Algorithm

Without branches in delay slots, cfg construction
takes two steps. The first step partitions the code

into a set of basic blocks (maximal length sequences
of straight-line code). These become the nodes in the
cfg. The second step looks at the branches in the
code and fills in the cfg’s edges to represent the flow
of control. These steps correspond to the two situa-
tions that can terminate a basic block—either a label
or a branch. If the code has branches in the delay
slots of other branches, the cfg construction begins
with these same two steps.

block list = initial list of blocks
for each block b in block list

remove b from block list
branch found = false
for each instruction i in b

if i is a branch
let branch found = true
let countdown = branch-latency
break

if branch found
for each instruction p in b after i

decrement countdown
if countdown = 0 break

if countdown = 0
split b at p
let b′ = remainder of b
add b′ to block list
add edges from b to targets of i
if i is conditional add edge to b′

if not branch found or countdown > 0
add edge from b to fallthrough of b

Figure 3: Handling normal control flow

We will use the code fragment on the left side of
Figure 2 as a continuing example to illustrate each
step of the algorithm. It assumes an architecture with
two delay slots on each branch.
The first step detects labels using a single linear

pass that splits each label off to form the beginning
of a new basic block and a table is created with the
location of each label. The right side of Figure 2
shows how the original code is broken up into basic
blocks by the presence of labels. For simplicity, we
assume that branches can only target labels and not
arbitrary pc addresses. (See the earlier discussion.)
Given the initial set of basic blocks, the algorithm

can add normal control flow. It does this in a sec-
ond linear pass which is detailed in Figure 3. Each
branch that is not in a delay slot triggers the cre-
ation of a counter with a value equal to the num-
ber of delay slots supported by the architecture. The
counter is decremented for each additional instruc-

4



A: if x goto B
inst 1
inst 2

D: jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6
inst 7
inst 8

�
�

�
��

H
H
H
Hj

H
H
H
Hj

�
�

�
��

� �

��

Figure 4: After adding normal control flow

tion examined, and no further counters are created
until it reaches zero; i.e., subsequent branches are,
for now, ignored. When the counter reaches zero, the
basic block is split at that point, and edges are added
to all possible targets of the branch. This produces
the cfg in Figure 4.

If the current block ends before the counter reaches
zero, the counter is discarded without adding edges
to the branch’s targets. (This can only occur when a
label occurs in one of the branch’s delay slots.) These
edges will be added in the algorithm’s third pass. In-
stead, the algorithm adds an edge from the current
block to the block begun by the labeled statement.

If the target machine does not allow branches in
the delay slots of other branches, but does allow a
transfer of control to an operation that occupies the
delay slot of another branch, this situation can be
handled by simply replicating the operations that fall
in both blocks. This creates a label-free copy of the
code in the delay slots, and a separate copy with the
labels from the original code. This requires, at most,
one copy of each operation in the delay slots of that
branch, so the cost is minimal.

The third and final step adds control flow that re-
sults from branches in delay slots that are ignored
by the previous steps. The algorithm simulates the
control flow of the program, this time taking into ac-
count control-flow instructions in delay slots. These
branches can necessitate splitting the initial blocks,
which, in turn, affects the continuing walk. If the ex-
ample did not include the jump to label C in block B,
then the cfg built in step two (shown above) would
be correct and the third step, shown in the next sec-
tion, would be unnecessary.

4 The Iterative Algorithm

At the completion of the algorithm’s second step, the
approximate cfg consists of blocks that either end
with a branching instruction and up to k instruc-
tions in delay slots, or end with no branch. The
delay-slot instructions may be ordinary operations,
nops, or (as yet) unconsidered control-flow instruc-
tions. On a given architecture, control-flow instruc-
tions take k cycles to activate – that is, k cycles after
a control-flow instruction issues, control shifts accord-
ingly. If a control-flow instruction, BR1, executes in,
for example, the second delay slot of a control-flow in-
struction, BR0, control will shift to one of BR1’s tar-
gets two instructions into the block targeted by BR0.
Thus, any block reached through BR0 will end on its
second instruction when BR1 activates. To model
this in the cfg, the cfg-builder must break the tar-
geted block after two instructions and add edges that
lead to the block (or blocks) targeted by BR1.
The algorithm proceeds in a symbolic walk over the

cfg. As control passes from one block to another, the
algorithm passes to the target blocks a list of pending
control-flow instructions with a countdown timer for
each that shows when it will activate. We call these
data structures branch counters ; each instance is a
pair containing the pending branch and a numerical
counter that represents the number of cycles remain-
ing before the branch activates. At each block, the
algorithm walks through the instructions in the block,
in order, counting down each of the branch counters
until one reaches zero. When a counter reaches zero,
it breaks the block at that point, adds an edge from
the shortened block to the remainder of the block,3

and adds an edge from the shortened block to each of
the targets of the activated branch. Any remaining
branch counters in the list are replicated and passed
to each of the new target blocks.
The algorithm continues in this way, processing

blocks until no block has a new branch counter. To
make this efficient, we implement the algorithm with
a worklist, adding a block to the worklist each time
it gets a new branch counter. A block and its associ-
ated branch counters represent a specific control-flow
path that reached the block. Hence, a block can be on
the worklist more than once at a single point in time
with each different set of branch counters denoting a
different path to the block. It is critical that the algo-

3We assume that there is no unreachable code in the sched-
uled, compiled code that the algorithm takes as its input. If
this assumption is not justified, then the branch from the short-
ened block to the block created to hold its remainder may be
spurious. A simple postpass on the final cfg can detect this
situation and remove the dead branch and block.

5



1 worklist = {start-block:Ø}
2 while (worklist)
3 remove element e from worklist
4 process-block(e.block, e.list)
5
6 process-block(block, counter list)
7 if block has been seen with counter list before
8 break
9 for each instruction i in block
10 decrement counters in counter list
11 if i is a branch
12 counter list = counter list + {i : branch-latency}
13 if any counter in counter list = 0
14 break for
15 if i is not at end of block
16 create new block with remaining instructions in block
17 add edge from block to new block
18 if no counter in counter list = 0
19 let f = block’s fall through block
20 worklist = worklist + { f : counter list }
21 else
22 let j = branch instruction in counter list with (counter = 0)
23 for each target block t of instruction j
24 add edge from block to target t
25 worklist = worklist + { t : counter list - {j : 0}}

Figure 5: Pseudo-code for the worklist algorithm

rithm only adds a block when that block is assigned
a distinct, new branch counter. This restriction en-
sures that the algorithm terminates. Pseudo-code for
the algorithm is shown in Figure 5.

The worklist algorithm continually calls
process-block on the first element in the worklist
until the worklist is empty. Process-block accepts a
basic block to examine and a list of branch-counters.
The list of counters represents those branches that
were still pending when control flow passed to the
current block along some path. Process-block
examines each instruction, adding new branches to
the list of counters, and decrementing the counters
that already exist. When some counter reaches zero
before the block ends, it creates a new block with
the remaining instructions, and adds each target
of the branch whose counter reached zero to the
worklist with the remaining counters. If no counter
reaches zero before the end of the block, the block’s
fall-through block is added to the worklist with the
current list of counters. A block’s fall-through is the
one immediately following the block in the input
stream.

Returning to our continuing example, block A, the

start block, begins on the worklist. Processing the
start block does not change the cfg, because there
is no extraordinary control flow; only one branch is
encountered and its counter reaches zero when the
block ends. Upon completion, block A’s successors,
blocks B and D, are added to the worklist.

Processing block D causes no changes. Only
Block B contains a branch within a delay slot. When
process- block reaches the end of block B, the
branch counter associated with the jump instruction
will not have completed. Therefore, the possible suc-
cessors of the terminating branch, A and C, are placed
on the worklist with the outstanding branch counter.

When block A is reexamined, the inherited counter
will complete two instructions into the block. This
forces the algorithm to split the block after the second
instruction and add a new edge from the shortened
block A to block C, as shown in Figure 6. In addition,
since the branch counter associated with the branch
at the beginning of block A has not completed, it
is propagated to the newly created block E and to
block C.

Block E does not change when it is processed again,
but block C is split after the first instruction, and

6



an edge is added back to block B due to the branch
from block A. Block B does not need to be placed
on the worklist again, since it has already been vis-
ited and there are no new branch counters passed in.
The newly created block F is processed, but, because
processing the block does not deal with any branch
counters, it remains unchanged.
Next, block C must be processed again with the

branch counter inherited from block B. Since block C
has been reduced to a single instruction, the counter
is decremented and passed on to block F, which is
added to the worklist. Block B is not added to the
worklist, because no counter reaches zero when the
block completes, so only the fall-through successor
is added to the worklist. This correctly conveys the
fact that there is no possible control flow path from
block B into block C that branches back to block B.
Finally, block F is processed with the branch

counter and is split with a branch back to block C.
Block G is also added to the worklist and processed,
but it has no affect on the cfg.

A: if x goto B
inst 1

E: inst 2

D: jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6

F: inst 7

G: inst 8

?

�
�

�
��

H
H
H
Hj

H
H
H
Hj

�
�

�
��

?

?

��

� -

� �

��

� �

��

� �

��

Figure 6: The final CFG

Note that the order of blocks chosen from the work-
list is irrelevant. Although the cuts in our example
would have happened differently if we had removed
the blocks in a different order, the final cfg will be
the same in all cases.

5 Termination and Correctness

The worklist step terminates because it cannot con-
sider a given 〈block,counter list〉 pair more than once.
The code explicitly checks for this case in lines 7

and 8. The counter list consists of up to k branch
counters, where k is the number of delay slots that
follow a branch. Each branch counter is a branch op-
eration and a number c in the range 0 ≤ c ≤ k. The
number of branch counters is finite, O(k · b), where b
is the number of branches. (Of course, b ≤ i, where i
is the number of instructions.) Thus, the number of
counter lists is finite. Since the number of blocks is
also finite, the set of 〈block,counter list〉 pairs is finite
and the algorithm terminates.
The number of possible 〈block,counter list〉 pairs

looks large. The algorithm considers all paths of
length k that start from a branch operation. This
allows it to construct the correct and precise cfg.
We can speed up the algorithm by having it consider
individual branch counters, rather than counter lists.
However, that algorithm can add spurious edges to
the final cfg—edges that cannot arise in any execu-
tion.
Correctness can be proven through contradiction.

Assume that there is a reachable branch statement
whose associated edge is not in the final cfg. Line 24
of the algorithm shows that any branch that is added
to the counter list has the appropriate edge created;
hence, the branch without an edge must not have
been added to a counter list. Lines 9 and 11 further
show that if a block is encountered by process-block
all counters within the block must be added to a
counter list. Therefore, the block which contains
the branch statement must not have been processed.
However, since all blocks placed on the worklist are
processed by line 4, and all targets of a branch are
added to the worklist by line 25, the block must not
be reachable from the start block. This contradicts
the original assumption that the branch statement is
reachable. Therefore, every reachable branch state-
ment must have an associated edge in the final cfg,
and construction of the cfg is correct.
Note that this discussion addresses only correct-

ness, not precision. The question of precision is,
in general, undecidable; however, our algorithm adds
an edge only when some execution path calls for it.
Unreachable code can be an exception to this rule:
when the bottom half of a split block is unreachable,
the edge between the two halves will not be taken.

6 Complexity

The complexity of each pass can be considered sepa-
rately. The first step examines each instruction once
and performs O(1) work at each instruction. Thus, it
takes O(i) time, for i instructions.
The second step also examines each instruction

7



once. On most operations, it takes O(1) time. For
a branch, however, it must add j edges, where j is
the number of potential branch targets—the branch-
ing factor. Thus, the time for the second step is
O(i+ j · b), where b is the number of branches. If all
of the branches of the program have explicit targets,
then j is two, and the second step requires O(i) time.
However, branches with ambiguous targets, such as a
branch-to-register, produce a higher value of j. For
such branches, j is the number of values that the reg-
ister might have. In the worst case, j is O(i), and the
cost of the second step is O(i2). Taken over the entire
second step, however, the work will be proportional
to the number of edges in the cfg, given by j · b.
The third step invokes process-block on every

〈block, counter list〉 pair that appears on the worklist.
Thus, an upper bound on its cost is the number of
these pairs. We can view the counter list as a list of k
elements, where an element is either a branch counter
or a token indicating a counter with no branch. (This
corresponds to a delay slot that is filled with a non-
branching operation.) The number of such counters
appears to be O(bk).
Fortunately, the structure of the code restricts the

set of valid branch counters. Assume that the list is
kept in increasing order. If the first slot is occupied
by some branch B, the second slot must be occupied
by the null token or by a branch that is reachable in
one cycle from B. The number of such branches is j,
the branching factor used above. The third slot must
contain either the null token, or a branch reachable
from the second branch, and so on out to the kth

position. The number of counter lists that can result
from a specific branch B is limited to O(jk). Thus,
the number of distinct items that can appear on the
worklist is O(jk · b).
Thus, the complexity of the third pass domi-

nates the overall complexity. The overall complex-
ity of the algorithm derives from this bound. The
algorithm calls process-block at most O(jk · b)
times. Process-block examines each operation, tak-
ing at most O(j) time per operation. Blocks that
process-block examines twice can be no longer
than k instructions, since the first trip through
process-block will split the block within k instruc-
tions of the entry. Thus, the worst case complexity
of the third step is O(jk · b · k · j), or O(jk+1 · b · k).
In practice, the worst case complexity depends

heavily on the branching factor and the number of de-
lay slots. With branches that have explicit targets, j
is usually two. The number of delay slots is typically
small. For example, k = 1 on the Sparc and k = 5 on
the C6000. With j = 2 and k = 1, jk is a small con-
stant and the algorithm runs in O(22 · i · 1) = O(i)

time. Adding a small number of delay slots with-
out adding ambiguous branches raises the constant,
but not the asymptotic limit. Adding ambiguous
branches with a single delay slot (j = i and k = 1)
produces a worst case complexity of O(i2). The com-
bination of ambiguous branches and multiple delay
slots causes the complexity to explode.4 However,
the increased complexity reflects the number of po-
tential paths that the algorithm must consider. Each
of these paths requires a constant amount of work.
The increase in complexity in the algorithm, there-
fore, is solely a function of the increase in the number
of these paths.

7 Comparison with other work

It is natural to ask not only how quickly the algo-
rithm runs, but how often situations which require
this algorithm occur. We believe, however, that the
correct question is not how often, but, rather, if the
situation occurs. Literature in this area shows not
only that this situation occurs, but, until now, the
solutions were not general.
For example, Larus and Schnarr examine the prob-

lem of annulled branches with a single delay slot [15].
Their algorithm transforms the code to eliminate de-
lay slots in this case, but does not handle the general
case. Ramsey and Cifuentes approach the problem
from a different perspective, adding looping code to
mimic the behavior of delay slots when translating
binary code from a machine with delay slots to a ma-
chine without delay slots[21]. Their compiler gives up
in the presence of too many branches in delay slots.
In contrast, our algorithm handles any num-

ber of delay slots and was implemented for the
TMS320C6200, which has five delay slots. Seshan
documents the existence and utility of aggressively
pipelined loops, like the one shown in Figure 1, for
the C6200 [22]. We used the output of the C6200
compiler in our experiments in power-consumption
reduction[27], and step three of the algorithm pre-
sented in this paper was triggered on multiple occa-
sions.

8 Conclusion

Recent years have seen a number of systems that con-
sume as input compiled code that has already been
optimized, scheduled, and allocated. These systems

4This provides yet another reason why compilers should
avoid ambiguous branches whenever possible!

8



perform optimizations that require data-flow analy-
sis computed over the cfg. However, the presence of
branches in branch delay-slots complicates the con-
struction of a cfg from compiled code and causes
the classic algorithms for building a cfg to produce
incorrect results.
This paper presents a method to correctly build the

cfg for scheduled code in the presence of branches
within delay slots. A three-pass algorithm is used
to construct the cfg; the first two passes build the
“normal” cfg, and the third pass uses a worklist al-
gorithm to propagate branch information from block
to block to construct the control flow associated with
branches in delay slots. Decomposing the algorithm
into separate steps simplifies its explanation and al-
lows the algorithm to bypass the final step if the
code does not include branches in branch delay slots.
The running time of the algorithm is dependent on
the complexity of the CFG itself – if all branches
have explicit targets, the worklist portion of the al-
gorithm is linear. We have implemented this algo-
rithm in an assembly-to-assembly translator for the
TMS320C6000.

Acknowledgements

This work has benefited from the support, sugges-
tions, and encouragement of the entire Scalar Com-
piler Group at Rice University. Reid Tatge of Texas
Instruments has patiently answered our many ques-
tions about both the TMS320C62xx and the code
produced by TI’s compiler. This work has been sup-
ported by Darpa through Usafrl contract F30602-
97-2-298, by a grant from the Texas Advanced Tech-
nology Project, and by the Los Alamos Computer
Science Institute.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] Andrew W. Appel. Modern Compiler Imple-
mentation in Java. Cambridge University Press,
1998.

[3] Vasanth Bala, Evelyn Duesterwald, and San-
jeev Banerjia. Dynamo: A transparent dynamic
optimization system. Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Lan-
guage Design and Implementation, pages 1–12,
June 2000.

[4] Fran Berman, Andrew Chien, Keith Cooper,
Jack Dongarra, Ian Foster, Dennis Gannon,
Lennart Johnsson, Ken Kennedy, Carl Kessel-
man, John Mellor-Crummey, Dan Reed, Linda
Torczon, and Rich Wolski. The GrADS project:
Software support for high-level grid application
development. Inernational Journal of High Per-
formance Computing Applications, 15(4), Win-
ter 2001.

[5] Preston Briggs. Drawing control-flow graphs
with style. July 1994.

[6] Preston Briggs, Keith D. Cooper, and L. Taylor
Simpson. Value numbering. Software Practice
and Experience, 27(6):701–724, June 1997.

[7] David Callahan, Alan Carle, Mary W. Hall, and
Ken Kennedy. Constructing the procedure call
multigraph. IEEE Transactions on Software En-
gineering, 16(4), April 1990.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Effi-
ciently computing static single assignment form
and the control dependence graph. ACM Trans-
actions on Programming Languages and Sys-
tems, 22(1):171–179, January 1987.

[9] Paul J. Drongowski, David Hunter, Morteza
Fayyazi, David Kaeli, and Jason Casmira.
Studying the performance of the FX!32 binary
translation system. In Proceedings of the First
Workshop on Binary Translation, October 1999.

[10] Charles N. Fischer and Junior Richard
J. LeBlanc. Crafting a Compiler with C.
Benjamin/Cummings, 1991.

[11] Ian Foster and Carl Kesselman. The GRID:
Blueprint for a New Computational Infrastruc-
ture. Morgan Kaufman Publishers, Inc., San
Francisco, CA, USA, 1999.

[12] Gina Goff, Ken Kennedy, and Chau-Wen Tseng.
Practical dependence testing. SIGPLAN No-
tices, 26(6):15–29, June 1991. Proceedings of
the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation.

[13] David W. Goodwin. Interprocedural dataflow
analysis in an executable optimizer. SIGPLAN
Notices, 32(6):122–133, June 1997. Proceed-
ings of the ACM SIGPLAN ’97 Conference on
Programming Language Design and Implemen-
tation.

9



[14] Allan I. Holub. Compiler Design in C. Prentice
Hall, 1990.

[15] James R. Larus and Eric Schnarr. EEL:
machine-independent executable editing. SIG-
PLAN Notices, 30(6):291–300, June 1995. Pro-
ceedings of the ACM SIGPLAN ’95 Conference
on Programming Language Design and Imple-
mentation.

[16] Dror E. Maydan, John L. Hennessy, and Mon-
ica S. Lam. Efficient and exact dependence anal-
ysis. SIGPLAN Notices, 26(6):1–14, June 1991.
Proceedings of the ACM SIGPLAN ’90 Confer-
ence on Programming Language Design and Im-
plementation.

[17] Charles R. Morgan. Building an Optimizing
Compiler. Digital Press, 1998.

[18] Steven S. Muchnick. Advanced Compiler Design
& Implementation. Morgan Kauffman, 1997.

[19] Robert Muth, Saumya Debray, Scott Watterson,
and Koen De Bosschere. alto: A link-time opti-
mizer for the Compaq Alpha. Software Practice
and Experience, pages 67–101, January 2001.

[20] Karl Petis and Robert C Hansen. Profile guided
code positioning. SIGPLAN Notices, 25(6):16–
27, June 1990. Proceedings of the ACM SIG-
PLAN ’90 Conference on Programming Lan-
guage Design and Implementation.

[21] Norman Ramsey and Cristina Cifuentes. A
transformational approach to binary translation
of delayed branches. Technical Report 440,
Department of Computer Science, University
of Virginia and Department of Computer Sci-
ence and Electrical Engineering, University of
Queensland, December 1998.

[22] Nat Seshan. High velociti processing. IEEE Sig-
nal Processing Magazine, pages 86–117, March
1998.

[23] Amitabh Srivastava and David W. Wall. A prac-
tical system for intermodule code optimization at
link-time. Journal of Programming Languages,
pages 1–18, March 1993.

[24] Sun Microsystems, Inc. The Java HotSpot
Virtual Machine, 2001. Available online at
http://java.sun.com/products/hotspot.

[25] Philip H. Sweany and S.J. Beatty. Dominator-
path schedule—a global scheduling method.

In Proceedings of the 25th Annual Interna-
tional Symposium on Microarchitecture, Decem-
ber 1992.

[26] Reid Tatge. Private communication. Several dis-
cussions related to the TMS320C6xxx ISA and
the code produced by Texas Instruments’ com-
piler for those processors., 2000.

[27] Todd Waterman. Post-compilation analysis and
power reduction. Master’s thesis, Rice Univer-
sity, December 2001.

[28] Daniel L. Weaver and Tom Germond, editors.
The SPARC Architecture Manual, Version 9.
PTR Prentice-Hall, 2000.

10


